
The training error theorem for boosting

Here is pseudocode for the AdaBoost boosting algorithm presented in class:

Given: (x1, y1), . . . , (xN , yN) where xi ∈ X, yi ∈ {−1, +1}
Initialize D1(i) = 1/N .
For t = 1, . . . , T :

• Train weak learner using training data weighted according to distribution Dt.
• Get weak hypothesis ht : X → {−1, +1}.
• Measure “goodness” of ht by its weighted error with respect to Dt:

εt = Pri∼Dt
[ht(xi) 6= yi] =

∑

i:ht(xi)6=yi

Dt(i).

• Let αt =
1

2
ln
(

1 − εt

εt

)

.

• Update:

Dt+1(i) =
Dt(i)

Zt

×

{

e−αt if yi = ht(xi)
eαt if yi 6= ht(xi)

(1)

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).

Output the final classifier:

H(x) = sign

(

T
∑

t=1

αtht(x)

)

.

Although the notation is different, this algorithm is the same as in Fig. 18.10 of R&N.
In this note, we prove the training error theorem, which states that the training error of

H is at most

exp

(

−2
T
∑

t=1

γ2
t

)

where εt = 1
2

− γt.
We prove this in three steps.

Step 1: The first step is to show that

DT+1(i) =
1

N
·
exp (−yif(xi))

∏

t

Zt

where
f(x) =

∑

t

αtht(x).

Proof: Note that Eq. (1) can be rewritten as

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

1



since yi and ht(xi) are both in {−1, +1}. Unwrapping this recurrence, we get that

DT+1(i) = D1(i) ·
exp (−α1yih1(xi))

Z1

· · · · ·
exp (−αT yihT (xi))

ZT

=
1

N
·
exp (−yi

∑

t αtht(xi))
∏

t Zt

=
1

N
·
exp (−yif(xi))

∏

t Zt

.

Step 2: Next, we show that the training error of the final classifier H is at most

T
∏

t=1

Zt.

Proof:

training error(H) =
1

N

∑

i

{

1 if yi 6= H(xi)
0 else

by definition of the training er-
ror

=
1

N

∑

i

{

1 if yif(xi) ≤ 0
0 else

since H(x) = sign(f(x)) and
yi ∈ {−1, +1}

≤
1

N

∑

i

exp(−yif(xi)) since e−z ≥ 1 if z ≤ 0

=
∑

i

DT+1(i)
∏

t

Zt by Step 1 above

=
∏

t

Zt since DT+1 is a distribution

Step 3: The last step is to compute Zt.
We can compute this normalization constant as follows:

Zt =
∑

i

Dt(i) ×

{

e−αt if ht(xi) = yi

eαt if ht(xi) 6= yi

=
∑

i:ht(xi)=yi

Dt(i)e
−αt +

∑

i:ht(xi)6=yi

Dt(i)e
αt

= e−αt

∑

i:ht(xi)=yi

Dt(i) + eαt

∑

i:ht(xi)6=yi

Dt(i)

= e−αt(1 − εt) + eαtεt by definition of εt

= 2
√

εt(1 − εt)
by our choice of αt (which was
chosen to minimize this expres-
sion)

=
√

1 − 4γ2
t plugging in εt = 1

2
− γt

≤ e−2γ2

t . using 1 + x ≤ ex for all real x

Combining with Step 2 gives the claimed upper bound on the training error of H .
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