The training error theorem for boosting
Here is pseudocode for the AdaBoost boosting algorithm presented in class:

Given: (x1,y1),...,(xN,yny) where z; € X, y; € {—1,+1}
Initialize Dy (i) = 1/N.
Fort=1,...,T":

Train weak learner using training data weighted according to distribution D;.
Get weak hypothesis h; : X — {—1,+1}.
Measure “goodness” of h; by its weighted error with respect to Dj:

e = Priop, [h(z) #uil = > Dy(i).
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Update:

Din(i) = e if y; # hy(zy)

where Z; is a normalization factor (chosen so that D;,; will be a distribution).
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Output the final classifier:

H(z) = sign (sz oztht(x)> .

t=1

Although the notation is different, this algorithm is the same as in Fig. 18.10 of R&N.
In this note, we prove the training error theorem, which states that the training error of

H is at most .
exp <—2 > )
t=1

where ¢ = % — Y.
We prove this in three steps.

Step 1: The first step is to show that
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Proof: Note that Eq. (1) can be rewritten as

Dia(i) = 240 exp(;tyiht@))




since y; and hy(z;) are both in {—1,41}. Unwrapping this recurrence, we get that

Dryi(i) = Di(i)
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Step 2: Next, we show that the training error of the final classifier H is at most

Proof:
1

training error(H) = ~ 3
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if y; # H(x;)
else

if y; f(x;) <0
else

Step 3: The last step is to compute Z;.
We can compute this normalization constant as follows:
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by definition of the training er-
ror

since H(z) = sign(f(z)) and
Y € {—1, +1}

since e * > 11if 2 <0
by Step 1 above

since Drp.4 is a distribution

by definition of ¢,

by our choice of a; (which was
chosen to minimize this expres-
sion)

plugging in & = 3 —

using 1 4+ x < e” for all real x

Combining with Step 2 gives the claimed upper bound on the training error of H.



