
COS 318: Operating Systems

Semaphores, Monitors and
Condition Variables

2

Today’s Topics

! Semaphores

! Monitors

! Mesa-style monitors

! Programming idiom

! Barriers

Bounded Buffer Problem

3

Producer Consumer

Bounded Buffer with Sleep and Wakeup

producer() {

 while (1) {

 produce an item

 if (count == N) sleep;

 count = count + 1;

 if (count == 1)

 wakeup(consumer);

 }

}

consumer() {

 while (1) {

 if (count == 0) sleep();

 take an item from buffer

 count = count – 1;

 if (count == N-1)

 wakeup(producer);

 consume the item

 }

}

Bounded Buffer with Sleep and Wakeup

! What if consumer is descheduled after reading count?

! Lost wakeup problem

! Problem: access and test of count not atomic

producer() {

 while (1) {

 produce an item

 if (count == N) sleep;

 count = count + 1;

 if (count == 1)

 wakeup(consumer);

 }

}

consumer() {

 while (1) {

 if (count == 0) sleep();

 take an item from buffer

 count = count – 1;

 if (count == N-1)

 wakeup(producer);

 consume the item

 }

}

6

Semaphores (Dijkstra, 1965)

! Keep count of number of wakeups saved

! Initialization
" Initialize a value atomically

! P (or Down or Wait) definition
" Atomic operation

" Wait for semaphore to become positive and then decrement
P(s){ P(s){

 while (s <= 0) if (--s < 0)

 ; block(s);

 s--; }

}

! V (or Up or Signal) definition
" Atomic operation

" Increment semaphore by 1
V(s){ V(s){

 s++; if (++s <= 0)

} unblock(s)

 }

Bounded Buffer with Semaphores

! Initialization: emptyCount = N; fullCount = 0

! Are P(mutex)and V(mutex) necessary?

producer() {

 while (1) {

 produce an item

 P(emptyCount);

 P(mutex);

 put the item in buffer

 V(mutex);

 V(fullCount);

 }

}

consumer() {

 while (1) {

 P(fullCount);

 P(mutex);

 take an item from buffer

 V(mutex);

 V(emptyCount);

 consume the item

 }

}

8

Interrupted Thread

…

Interrupt
…

Use Semaphores for Interrupt Handling

Interrupt handler
...

V(s);

...

Device manager
while (1) {

 P(s);

 Acquire(m);

 ...

 deal with interrupt

 ...

 Release(m);

}

Init(s,0);

Is Mutual Exclusion Enough?

producer() {

 while (1) {

 produce an item

 P(mutex);

 put the item in buffer

 V(mutex);

 }

}

consumer() {

 while (1) {

 P(mutex);

 take an item from buffer

 V(mutex);

 consume the item

 }

}

Uses of Semaphores in this Example

! Event sequencing
" Don’t consume if buffer empty, wait for something to be added

! Mutual exclusion
" Avoid race conditions on shared variables

10

Bounded Buffer with Semaphores (again)

producer() {

 while (1) {

 produce an item

 P(emptyCount);

 P(mutex);

 put the item in buffer

 V(mutex);

 V(fullCount);

 }

}

consumer() {

 while (1) {

 P(fullCount);

 P(mutex);

 take an item from buffer

 V(mutex);

 V(emptyCount);

 consume the item

 }

}

Does Order Matter?

producer() {

 while (1) {

 produce an item

 P(mutex);

 P(emptyCount);

 put the item in buffer

 V(mutex);

 V(fullCount);

 }

}

consumer() {

 while (1) {

 P(fullCount);

 P(mutex);

 take an item from buffer

 V(mutex);

 V(emptyCount);

 consume the item

 }

}

Monitor: Hide Mutual Exclusion

! Brinch-Hansen (73), Hoare (74)

! Procedures are mutually exclusive
" Enforced by monitor (by compiler)

Shared

data

...

Queue of waiting processes

trying to enter the monitor

procedures

! What about blocking and
sequencing?

Condition Variables in A Monitor

! Wait(condition)
" Block on “condition”

! Signal(condition)
" Wakeup a blocked process

on “condition”

Shared

data

...

Entry queue
procedures

x
y

Queues
associated
with x, y
conditions

! Look like semaphores, but are not
! They don’t “count”, or accumulat signals

! Like sleep/wakeup, but with mutual exclusion at monitor level

Producer-Consumer with Monitors

monitor ProdCons

 condition full, empty;

 procedure Enter;

 begin

 if (buffer is full)

 wait(full);

 put item into buffer;

 if (only one item)

 signal(empty);

 end;

 procedure Remove;

 begin

 if (buffer is empty)

 wait(empty);

 remove an item;

 if (buffer was full)

 signal(full);

 end;

procedure Producer

begin

 while true do

 begin

 produce an item

 ProdCons.Enter();

 end;

end;

procedure Consumer

begin

 while true do

 begin

 ProdCons.Remove();

 consume an item;

 end;

end;

16

What happens after a signal?

! Run the signaled thread immediately and suspend the
current one (Hoare)
" If the signaler has other work to do, life is complex

" It is difficult to make sure there is nothing to do, because the
signal implementation is not aware of how it is used

" It is easy to prove things

! Exit the monitor (Hansen)
" Signal must be the last statement of a monitor procedure

! Continues its execution (Mesa)
" Easy to implement

" But, the condition may not be true when the awaken process
actually gets a chance to run

Mesa Style “Monitor” (Birrell’s Paper)

! Associate a condition variable with a mutex
! Wait(mutex, condition)

" Atomically unlock the mutex and enqueue on the condition
variable (block the thread)

" Re-lock the lock when it is awoken

! Signal(condition)
" No-op if there is no thread blocked on the condition variable

" Wake up at least one if there are threads blocked

! Broadcast(condition)
" Wake up all waiting threads

! Original Mesa paper
" B. Lampson and D. Redell. Experience with processes and

monitors in Mesa. Comm. ACM 23, 2 (feb 1980), pp 106-117.

18

Consumer-Producer with Mesa-Style Monitor

static count = 0;

static Cond full, empty;

static Mutex lock;

Enter(Item item) {

 Acquire(lock);

 if (count==N)

 Wait(lock, full);

 insert item into buffer

 count++;

 if (count==1)

 Signal(empty);

 Release(lock);

}

Remove(Item item) {

 Acquire(lock);

 if (!count)

 Wait(lock, empty);

 remove item from buffer

 count--;

 if (count==N-1)

 Signal(full);

 Release(lock);

}

Any issues with this?

19

Consumer-Producer with Mesa-Style Monitor

static count = 0;

static Cond full, empty;

static Mutex lock;

Enter(Item item) {

 Acquire(lock);

 while (count==N)

 Wait(lock, full);

 insert item into buffer

 count++;

 if (count==1)

 Signal(empty);

 Release(lock);

}

Remove(Item item) {

 Acquire(lock);

 while (!count)

 Wait(lock, empty);

 remove item from buffer

 count--;

 if (count==N-1)

 Signal(full);

 Release(lock);

}

20

The Programming Idiom

! Waiting for a resource

Acquire(mutex);

while (no resource)

 wait(mutex, cond);

...

(use the resource)

...

Release(mutex);

! Make a resource available

Acquire(mutex);

...

(make resource available)

...

Signal(cond);

/* or Broadcast(cond);

Release(mutex);

21

Condition Variables Primitives

! Wait(mutex, cond)
" Enter the critical section

(min busy wait)

" Release mutex

" Put my TCB on cond’s
queue

" Call scheduler

" Exit the critical section
 . . . (blocked)

" Waking up:

• Acquire mutex

• Resume

! Signal(cond)
" Enter the critical section

(min busy wait)

" Wake up a TCB in cond’s
queue

" Exit the critical section

More on Mesa-Style Monitor

! Signaler continues execution

! Waiters simply put on ready queue, with no special
priority
" Must reevaluate the condition

! No constraints on when the waiting thread/process must
run after a “signal”

! Simple to introduce a broadcast: wake up all

! No constrains on signaler
" Can execute after signal call (Hansen’s cannot)

" Do not need to relinquish control to awaken thread/process

Evolution of Monitors

! Brinch-Hansen (73) and Hoare Monitor (74)
" Concept, but no implementation

" Requires Signal to be the last statement (Hansen)

" Requires relinquishing CPU to signaler (Hoare)

! Mesa Language (77)
" Monitor in language, but signaler keeps mutex and CPU

" Waiter simply put on ready queue, with no special priority

! Modula-2+ (84) and Modula-3 (88)
" Explicit LOCK primitive

" Mesa-style monitor

! Pthreads (95)
" Started standard effort around 1989

" Defined by ANSI/IEEE POSIX 1003.1 Runtime library

! Java threads
" James Gosling in early 1990s without threads

" Use most of the Pthreads primitives

24

Example: A Simple Barrier

! Thread A and Thread B
want to meet at a
particular point and then
go on

! How would you program
this with a monitor?

Thread A Thread B

25

Using Semaphores as A Barrier

! Use two semaphore?

 init(s1, 0);

init(s2, 0);

! What about more than two threads?

Thread A
…

V(s1);

P(s2);

…

Thread B
…

V(s2);

P(s1);

…

26

Barrier Primitive

! Functions
" Take a barrier variable

" Broadcast to n-1 threads

" When barrier variable has
reached n, go forward

! Hardware support on
some parallel machines
" Multicast network

" Counting logic

" User-level barrier variables

Thread 1
…

Barrier(b);

…

Thread n
…

Barrier(b);

…

. . .

Barrier
variable

27

Equivalence

! Semaphores
" Good for signaling

" Not good for mutex because it is easy to introduce a bug

! Monitors
" Good for scheduling and mutex

" Maybe costly for a simple signaling

28

Summary

! Semaphores

! Monitors

! Mesa-style monitor and its idiom

! Barriers

