
COS 318: Operating Systems

Mutex Implementation

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

! Disabling Interrupts for mutual exclusion

! Hardware support for mutual exclusion

! Competitive spinning

3

Revisit Mutual Exclusion (Mutex)

! Critical section

! Conditions of a good solution
" Only one process/thread inside a critical section

" No assumption about CPU speeds

" A process/thread inside a critical section should not be blocked by any
processes/threads outside the critical section

" No one waits forever

" Works for multiprocessors

" Same code for all processes/threads

Acquire(lock);

if (noMilk)

 buy milk;

Release(lock);

Critical section

4

Use and Disable Interrupts

! Use interrupts
" Implement preemptive CPU scheduling

" Internal events to relinquish the CPU

" External events to reschedule the CPU

! Disable interrupts
" Introduce uninterruptible code regions

" Think sequentially most of the time

" Delay handling of external events

CPU

Memory Interrupt

DisableInt()

.

.

.

EnableInt()

Uninterruptible
region

5

A Simple Way to Use Disabling Interrupts

! Issues with this approach?

Acquire() {

 disable interrupts;

}

Release() {

 enable interrupts;

}

Acquire()

 critical section?

Release()

6

One More Try

! Issues with this approach?

Acquire(lock) {

 disable interrupts;

 while (lock.value != FREE)

 ;

 lock.value = BUSY;

 enable interrupts;

}

Release(lock) {

 disable interrupts;

 lock.value = FREE;

 enable interrupts;

}

7

Another Try

! Does this fix the “wait forever” problem?

Acquire(lock) {

 disable interrupts;

 while (lock.value != FREE){

 enable interrupts;

 disable interrupts;

 }

 lock.value = BUSY;

 enable interrupts;

}

Release(lock) {

 disable interrupts;

 lock.value = FREE;

 enable interrupts;

}

8

Yet Another Try

! Any issues with this approach?

Acquire(lock) {

 disable interrupts;

 while (lock.value == BUSY)

 {

 enqueue me for lock;

 Yield();

 }

 lock.value = BUSY;

 enable interrupts;

}

Release(lock) {

 disable interrupts;

 if (anyone in queue) {

 dequeue a thread;

 make it ready;

 }

 lock.value = FREE;

 enable interrupts;

}

9

Atomic Memory Load and Store

! Assumed in in textbook (e.g. Peterson’s solution)

! A multiprocessor spin solution

 Acquire(lock) {

 while (!lock.value) { ;

 lock.value = i;

 if (lock.value == i)

 break;

 Yield()

 }

 }

! L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM
Trans. on Computer Systems, 5(1):1-11, Feb 1987.

" 5 writes and 2 reads

Release(lock.value) {

 lock.value = 0;

}

10

Atomic Read-Modify-Write Instructions

! LOCK prefix in x86
" Make a specific set instructions atomic
" Together with BTS to implement Test&Set

! Exchange (xchg, x86 architecture)
" Swap register and memory
" Atomic (even without LOCK)

! Fetch&Add or Fetch&Op
" Atomic instructions for large shared memory multiprocessor

systems

! Load link and conditional store
" Read value in one instruction (load link)
" Do some operations;
" When store, check if value has been modified. If not, ok;

otherwise, jump back to start

11

A Simple Solution with Test&Set

! Define TAS(lock)
" If successfully set, return 1;

" Otherwise, return 0;

! Any issues with the following solution?

Acquire(lock) {

 while (!TAS(lock.value))

 ;

}

Release(lock.value) {

 lock = 0;

}

12

What About This Solution?

! How long does the “busy wait” take?

Acquire(lock) {

 while (!TAS(lock.guard))

 ;

 if (lock.value) {

 enqueue the thread;

 block and lock.guard = 0;

 } else {

 lock.value = 1;

 lock.guard = 0;

 }

}

Release(lock) {

 while (!TAS(lock.guard))

 ;

 if (anyone in queue) {

 dequeue a thread;

 make it ready;

 } else

 lock.value = 0;

 lock.guard = 0;

}

13

Example: Protect a Shared Variable

! Acquire(mutex) system call
" Pushing parameter, sys call # onto stack
" Generating trap/interrupt to enter kernel
" Jump to appropriate function in kernel
" Verify process passed in valid pointer to mutex
" Minimal spinning
" Block and unblock process if needed
" Get the lock

! Executing “count++;”
! Release(mutex) system call

Acquire(lock)

count++;

Release(lock)

14

Available Primitives and Operations

! Test-and-set
" Works at either user or kernel

! System calls for block/unblock
" Block takes some token and goes to sleep

" Unblock “wakes up” a waiter on token

15

Block and Unblock System Calls

Block(lock)
" Spin on lock.guard

" Save the context to TCB

" Enqueue TCB to lock.q

" Clear lock.guard

" Call scheduler

! Questions
" Do they work?

" Can we get rid of the spin lock?

Unblock(lock)
" Spin on lock.guard

" Dequeue a TCB from lock.q

" Put TCB in ready queue

" Clear lock.guard

Always Block

! What are the issues with this approach?

Acquire(lock) {

 while (!TAS(lock.value))

 Block(lock);

}

Release(lock) {

 lock.value = 0;

 Unblock(lock);

}

17

Always Spin

! Two spinning loops in Acquire()?

Acquire(lock) {

 while (!TAS(lock.value))

 while (lock.value)

 ;

}

Release(lock) {

 lock.value = 0;

}

CPU CPU

L1 $ L1 $

L2 $

Multicore

CPU

L1 $

L2 $

CPU

L1 $

L2 $

… …

Memory

SMP

TAS
TAS

18

Optimal Algorithms

! What is the optimal solution to spin vs. block?
" Know the future

" Exactly when to spin and when to block

! But, we don’t know the future
" There is no online optimal algorithm

! Offline optimal algorithm
" Afterwards, derive exactly when to block or spin (“what if”)

" Useful to compare against online algorithms

19

Competitive Algorithms

! An algorithm is c-competitive if
for every input sequence !

 CA(!) ! c " Copt(!) + k

" c is a constant

" CA(!) is the cost incurred by algorithm A in processing !

" Copt(!) is the cost incurred by the optimal algorithm in

processing !

! What we want is to have c as small as possible
" Deterministic

" Randomized

Constant Competitive Algorithms

! Spin up to N times if the lock is held by another thread
! If the lock is still held after spinning N times, block

! If spinning N times is equal to the context-switch time, what is the
competitive factor of the algorithm?

Acquire(lock, N) {

 int i;

 while (!TAS(lock.value)) {

 i = N;

 while (!lock.value && i)

 i--;

 if (!i)

 Block(lock);

 }

}

21

Approximate Optimal Online Algorithms

! Main idea
" Use past to predict future

! Approach
" Random walk

• Decrement N by a unit if the last Acquire() blocked

• Increment N by a unit if the last Acquire() didn’t block

" Recompute N each time for each Acquire() based on some
lock-waiting distribution for each lock

! Theoretical results
E CA(! (P)) ! (e/(e-1)) " E Copt(!(P))

The competitive factor is about 1.58.

22

Empirical Results

A. Karlin, K. Li, M. Manasse, and S. Owicki,
“Empirical Studies of Competitive Spinning
for a Shared-Memory Multiprocessor,”
Proceedings of the 13th ACM Symposium
on Operating Systems Principle, 1991.

23

The Big Picture

OS codes and concurrent applications

High-Level

Atomic API
Mutex Semaphores Monitors Send/Recv

Low-Level

Atomic Ops
Load/store

Interrupt

disable/enable
Test&Set

Other atomic
instructions

Interrupts
(I/O, timer)

Multiprocessors
CPU

scheduling

24

Summary

! Disabling interrupts for mutex
" There are many issues

" When making it work, it works for only uniprocessors

! Atomic instruction support for mutex
" Atomic load and stores are not good enough

" Test&set and other instructions are the way to go

! Competitive spinning
" Spin at the user level most of the time

" Make no system calls in the absence of contention

" Have more threads than processors

