
COS 318: Operating Systems

OS Structures and System Calls

Jaswinder Pal Singh

Computer Science Department

Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Outline

! Protection mechanisms
! OS structures

! System and library calls

3

Protection Issues

! CPU
" Kernel has the ability to take CPU away from users to

prevent a user from using the CPU forever
" Users should not have such an ability

! Memory
" Prevent a user from accessing others’ data
" Prevent users from modifying kernel code and data

structures
! I/O

" Prevent users from performing “illegal” I/Os

4

Architecture Support: Privileged Mode

An interrupt or exception (INT)

A special instruction (IRET)

Kernel (privileged) mode

• Regular instructions
• Privileged instructions
• Access user memory
• Access kernel memory

User mode

• Regular instructions
• Access user memory

5

Privileged Instruction Examples

! Memory address mapping
! Flush or invalidate data cache

! Invalidate TLB entries

! Load and read system registers
! Change processor modes from kernel to user

! Change the voltage and frequency of processor
! Halt a processor

! Reset a processor

! Perform I/O operations

6

x86 Protection Rings

Level 0

Level 1

Level 2

Level 3

Operating system

kernel

Operating system

services

Applications

Privileged instructions

Can be executed only

When current privileged

Level (CPR) is 0

7

Outline

! Protection mechanisms
! OS structures

! System and library calls

8

Monolithic

! All kernel routines are together,
any can call any

! A system call interface (main
program, sys calls, utility funcs)

! Examples:
" Linux, BSD Unix, Windows

! Pros
" Shared kernel space

" Good performance

! Cons
" No information hiding

" Inflexible

" Chaotic

" Difficult to understand

" How many bugs in 5 million lines
of code?

Kernel

(many things)

User

program

User

program

syscall syscall

9

Layered Structure

! Level N constructed on top of N-1

! Hiding information at each layer

! E.g. level 1 is processor allocation,
level 1 memory management,
level 2 comm, level 3 I/O, etc.

! Examples
" THE System (6 layers)

" MS-DOS (4 layers)

! Pros
" Layered abstraction

" Separation of concerns, elegance

! Cons
" Protection, boundary crossings

" Performance

Hardware

Level 1

Level 2

Level N

.

.

.

10

Microkernel

! Put less in kernel mode: only small
part of OS; reduce kernel bugs

! Services are regular processes; one
file system crashing doesn’t crash full
system; can’t corrupt kernel memory

! !-kernel gets svcs on behalf of users
by messaging with service processes

! Examples:
" Mach, Taos, L4, OS-X

! Pros?
" Flexibility
" Fault isolation and reliability (used

in avionics and military apps)
! Cons?

" Inefficient (boundary crossings)
" Insufficient protection
" Inconvenient to share data

between kernel and services

entry

User

program

OS

Services

!-kernel

syscall

11

Virtual Machine Monitor

VM1

OS1

Virtual Machine

! Separate out multiprogramming
from abstraction; VMM provides
former

! Virtual machine monitor
" Virtualize hardware, but expose it

as multiple instances of ‘raw’ hw

" Run several OSes, one on each set

" Examples

• IBM VM/370

• Java VM

• VMWare, Xen

! What would you use virtual
machine for?

Apps

VMk

OSk

Apps

. . .

Raw Hardware

12

Two Popular Ways to Implement VMM

Hardware

Linux

Linux Apps

VMM

Win Vista

Win Apps

Hardware

Linux

Linux Apps VMM

Win Vista

Win Apps

VMM as an applicationVMM runs on hardware

(A special lecture later in the semester)

13

Outline

! Protection mechanisms
! OS structures

! System and library calls

14

System Call Mechanism

! Assumptions
" User code can be arbitrary

" User code cannot modify kernel
memory

! Design Issues
" User code makes a system call

with parameters

" The call mechanism switches
code to kernel mode

" Execute system call

" Return with results

" (Like a procedure call, just
crosses kernel boundary)

Kernel in

protected memory

User

program

User

program

syscall syscall

15

System Calls

! Operating system API
" Interface between an application and the operating

system kernel

! Categories
" Process management

" Memory management

" File management

" Device management

" Communication

16

OS Kernel: Trap Handler

HW Device

Interrupt

HW

exceptions

SW exceptions

System Call

Virtual address

exceptions

HW implementation of the boundary

System
service
dispatcher

System

services

Interrupt
service
routines

Exception

dispatcher Exception

handlers

VM manager’s

pager

Syscall table

System
Service
dispatcher

17

Passing Parameters

! Pass by registers
" # of registers

" # of usable registers

" # of parameters in system call

" Spill/fill code in compiler

! Pass by a memory vector (list)
" Single register for starting address

" Vector in user’s memory

! Pass by stack
" Similar to the memory vector

" Procedure call convention

18

Library Stubs for System Calls

! Example:

int read(int fd, char * buf, int size)

{

 move fd, buf, size to R1, R2,

R3

 move READ to R0

 int $0x80

 move result to Rresult

}

Linux: 80

NT: 2E

Kernel in

protected memory

User

program

Int $0x80

iret

19

System Call Entry Point

User

stack

Registers

User

memory

Kernel

stack

Registers

Kernel

memory

EntryPoint:

 switch to kernel stack

 save context

 check R0

 call the real code pointed by R0

place result in Rresult

 restore context

 switch to user stack

 iret (change to user mode and return)

(Assume passing parameters in registers)

20

Design Issues

! System calls
" There is one result register; what about more results?

" How do we pass errors back to the caller?

" Can user code lie?

" How would you perform QA on system calls?

! System calls vs. library calls
" What should be system calls?

" What should be library calls?

21

Division of Labor (or Separation Of Concerns)

Memory management example
! Kernel

" Allocates “pages” with hardware protection

" Allocates a big chunk (many pages) to library

" Does not care about small allocs

! Library
" Provides malloc/free for allocation and deallocation

" Application use these calls to manage memory at fine
granularity

" When reaching the end, library asks the kernel for
more

22

Feedback To The Program

! Applications view system
calls and library calls as
procedure calls

! What about OS to apps?
" Various exceptional

conditions

" General information, like
screen resize

! What mechanism would OS
use for this?

Application

Operating
System

23

Interrupt and Exceptions

! Interrupt Sources
" Hardware (by external devices)

" Software: INT n

! Exceptions
" Program error: faults, traps, and aborts

" Software generated: INT 3

" Machine-check exceptions

! See Intel document volume 3 for details

24

Interrupt and Exceptions (1)

Vector # Mnemonic Description Type

0 #DE Divide error (by zero) Fault

1 #DB Debug Fault/trap

2 NMI interrupt Interrupt

3 #BP Breakpoint Trap

4 #OF Overflow Trap

5 #BR BOUND range exceeded Trap

6 #UD Invalid opcode Fault

7 #NM Device not available Fault

8 #DF Double fault Abort

9 Coprocessor segment overrun Fault

10 #TS Invalid TSS

25

Interrupt and Exceptions (2)

Vector # Mnemonic Description Type

11 #NP Segment not present Fault

12 #SS Stack-segment fault Fault

13 #GP General protection Fault

14 #PF Page fault Fault

15 Reserved Fault

16 #MF Floating-point error (math fault) Fault

17 #AC Alignment check Fault

18 #MC Machine check Abort

19-31 Reserved

32-255 User defined Interrupt

26

Summary

! Protection mechanism
" Architecture support: two modes

" Software traps (exceptions)

! OS structures
" Monolithic, layered, microkernel and virtual machine

! System calls
" Implementation

" Design issues

" Tradeoffs with library calls

