
COS 318: Operating Systems

Lecture 2:
 Continuation of Introduction

 Overview of Operating Systems

Jaswinder Pal Singh

Computer Science Department

Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Logistics

! Precepts:

" Wed: 8:30-9:30pm, 105 CS building

! Please check times for Design review and Assignment
1 due date on the Web site

! Reminder:

" Register for the cos318 mailing list today!

3

Today

! Overview of OS structure

! Overview of OS components

4

Previous Lecture

! Course Staff and Logistics

! What is an operating system?

! Evolution of computing and operating systems

! Why study operating systems?

! What’s in COS 318?

5

Today

! Evolution of computing and operating systems

! Why study operating systems?

! What’s in COS 318?

! Overview of Operating Systems

6

A Typical Academic Computer (1986 v. 2007)

1986 2007 Ratio

CPU clock 4Mhz 4!3Ghz 3000x

$/machine $60k $600 1/100x

DRAM 1MB 2GB 2000x

Disk 50MB 0.5-1TB 10K-20Kx

Network BW 10Mbits/sec 1GBits/sec 100x

Address bits 32 64 2x

Users/machine 10s < 1 >10x

$/Performance $60k $600/3000 1/200,000x

7

! Performance/Price doubles every 18 months
! 100x per decade
! Progress in next 18 months

 = ALL previous progress
" New storage = sum of all old storage (ever)
" New processing = sum of all old processing.

! This has led to some broad phases in computing,
and correspondingly in the nature of operating
systems

15 years ago

!Courtesy Jim Gray

Exponential Growth in Computing, Comm.

Generations:

• (1945–55) Vacuum Tubes

• (1955–65) Transistors and Batch Systems

• (1965–1980) ICs and Multiprogramming

• (1980–Present) Personal Computers

History of Computers and OSes

! Hardware very expensive, humans cheap

! When was the first functioning digital computer built?

! What was it built from?

! How was the machine programmed?

! What was the operating system?

! The big innovation: punch cards

! The really big one: the transistor
" Made computers reliable enough to be sold to and

operated by customers

9

Phase 1: The Early Days

! Hardware still expensive, humans relatively cheap

! An early batch system
! Programmers bring cards to reader system

! Reader system puts jobs on tape

Phase 2: Transistors and Batch Systems

! An early batch system

! Operator carries input tape to main computer

! Main computer computes and puts output on tape

! Operator carries output tape to printer system, which
prints output

Phase 2: Transistors and Batch Systems

Punch cards and Computer Jobs

! Integrated circuits allowed families of computers to be
built that were compatible

! Single OS to run on all (IBM OS/360): big and bloated

! Key innovation: multiprogramming

! What happens when a job is waiting on I/O

! What if jobs spend a lot of the time waiting on I/O?

Phase 3: ICs and Multiprogramming

! Multiple jobs resident in computer’s memory

! Hardware switches between them (interrupts)

! Hardware protects from one another (mem protection)

! Computer reads jobs from cards as jobs finish (spooling)

! Still batch systems: can’t debug online

! Solution: time-sharing

Phase 3: ICs and Multiprogramming

! Time-sharing:

! Users at terminals simultaneously

! Computer switches among active ‘jobs’/sessions

! Shorter, interactive commands serviced faster

hardware
Hardware

App1

Time-sharing OS

App2 App2. . .

Phase 3: ICs and Multiprogramming

Phase 3: ICs and Multiprogramming

! The extreme: computer as a utility: MULTICS (late 60s)

! Problem: thrashing as no. of users increases

! Didn’t work then, but idea may be back

! Let others administer and manage; I’ll just use

! ICs led to mini-computers: cheap, small, powerful

! Stripped down version of MULTICS, led to UNIX

! Two branches (Sys V, BSD), standardized as POSIX

! Free follow-ups: Minix (education), Linux (production)

17

Phase 4: HW Cheaper, Human More Costly

! Personal computer

" Altos OS, Ethernet, Bitmap display, laser printer

" Pop-menu window interface, email, publishing SW,
spreadsheet, FTP, Telnet

" Eventually >100M units per year

! PC operating system

" Memory protection

" Multiprogramming

" Networking

18

Now: > 1 Machines per User

! Pervasive computers

" Wearable computers

" Communication devices

" Entertainment equipment

" Computerized vehicle

! OS are specialized
" Embedded OS

" Specially configured general-
purpose OS

19

Now: Multiple Processors per Machine

! Multiprocessors
" SMP: Symmetric MultiProcessor

" ccNUMA: Cache-Coherent Non-Uniform
Memory Access

" General-purpose, single-image OS with
multiproccesor support

! Multicomputers
" Supercomputer with many CPUs and high-

speed communication

" Specialized OS with special message-
passing support

! Clusters
" A network of PCs

" Commodity OS

20

Now: Multiple “Cores” per Processor

! Multicore or Manycore transition
" Intel and AMD have released 4-core and soon 6-core CPUs
" SUN’s Niagara processor has 8-cores
" Azul Vega8 now packs 24 cores onto the same chip
" Intel has a TFlop-chip with 80 cores
" Ambric Am2045: 336-core Array (embedded, and accelerators)

! Accelerated need for software support
" OS support for many cores; parallel programming of applications

Summary: Evolution of Computers

60’s-70’s - Mainframes
! Rise of IBM

70’s - 80’s – Minicomputers
! Rise of Digital Equipment Corporation

80’s - 90’s – PCs
! Rise of Intel, Microsoft

Now – Post-PC
! Distributed applications

21

Summary: Evolution and Implications for OS

22

Mainframe Mini Micro

System $ /

Worker $

10:1 –
100:1

10:1 –
1:1

1:10-1:100

Goal System
utilization

Overall
cost

Productivity

Target Capacity Features Ease of
Use

23

Today

! Evolution of computing and operating systems

! Why study operating systems?

! What’s in COS 318?

! Overview of Operating Systems

24

Why Study OS?

! OS is a key part of a computer system
" It makes our life better (or worse)

" It is “magic” to realize what we want

" It gives us “power”

! Learn about concurrency
" Parallel programs run on OS

" OS runs on parallel hardware: all hw becoming parallel

" OS is great way to learn concurrent programming

! Understand how a system works
" How many procedures does a key stroke invoke?

" What happens when program references 0 as a pointer?

" Real OS is huge and impossible to read everything, but
building a small OS will go a long way

Why Study OS?

! Important for studying further areas

" Networking, distributed systems, …

! Full employment
" New hardware capabilities and organizations

" New features

" New approaches

" E.g. handheld computers, Java, WWW

" Engineering tradeoffs, keep changing as the hardware
changes from below and the needs of apps from above

! Lots of jargon: sound smart (or super-nerdy)

25

26

Today

! Evolution of computing and operating systems

! Why study operating systems?

! What’s in COS 318?

! Overview of Operating Systems

27

What Is in COS 318?

! Methodology
" Lectures with discussions

" Readings with topics

" A lot of design and rationale, some theory, a fair bit of practice

" Six projects to build key aspects of a basic OS

! Covered concepts
" Operating system structure

• Processes, threads, system calls and virtual machine monitor

" Synchronization

• Mutex, semaphores and monitors

" I/O subsystems

• Device drivers, IPC, and introduction to networking

" Virtual memory

• Address spaces and paging

" Storage system

• Disks and file system

What is COS 318 Like?

! Is tt theoretical or practical?

" Focus on concepts, but also getting hands dirty in projects

" More about engineering tradeoffs, constraints,
optimization and imperfection than about optimal results
and beautiful mathematics

" High rate of change in the field yet lots of inertia in OSes

! Is it easy?

" No. Fast paced, hard material, a lot of programming

! What will enable me to succeed?
" Solid C background, pre-reqs, tradeoff thinking

" NOT schedule overload

28

29

Today

! Evolution of computing and operating systems

! Why study operating systems?

! What’s in COS 318?

! Overview of Operating Systems

30

Hardware of A Typical Computer

CPU

ChipsetMemory

I/O bus

CPU. . .

Network

ROM

31

A Typical Computer System

MemoryCPU

CPU

.

.

.

OS

Apps

Data
Network

Application

Operating System

ROM

BIOS

32

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

User level

Kernel level

Portable OS Layer

33

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

User function calls
written by programmers and
compiled by programmers.

34

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

• Written by elves
• Objects pre-compiled
• Defined in headers
• Input to linker
• Invoked like functions
• May be “resolved” when
program is loaded

35

Pipeline of Creating An Executable File

! gcc can compile, assemble, and link together
! Compiler (part of gcc) compiles a program into assembly
! Assembler compiles assembly code into relocatable object file
! Linker links object files into an executable
! For more information:

" Read man page of a.out, elf, ld, and nm
" Read the document of ELF

foo.c gcc asfoo.s foo.o

ldbar.c gcc asbar.s bar.o

libc.a …

a.out

36

Execution (Run An Application)

! On Unix, “loader” does the job

" Read an executable file

" Layout the code, data, heap and stack

" Dynamically link to shared libraries

" Prepare for the OS kernel to run the application

a.out loader*.o, *.a ld
Application

Shared
library

37

What’s An Application?

! Four segments

" Code/Text – instructions

" Data – initialized global
variables

" Stack

" Heap

! Why?
" Separate code and data

" Stack and heap go
towards each other

Stack

Heap

Initialized data

Code

2n -1

0

38

Responsibilities

! Stack
" Layout by compiler

" Allocate/deallocate by process creation (fork) and termination

" Names are relative off of stack pointer and entirely local

! Heap
" Linker and loader say the starting address

" Allocate/deallocate by library calls such as malloc() and free()

" Application program use the library calls to manage

! Global data/code
" Compiler allocate statically

" Compiler emit names and symbolic references

" Linker translate references and relocate addresses

" Loader finally lay them out in memory

39

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer “Guts” of system calls

40

OS Service Examples

! Examples that are not provided at user level

" System calls: file open, close, read and write

" Control the CPU so that users won’t stuck by running
• while (1) ;

" Protection:
• Keep user programs from crashing OS

• Keep user programs from crashing each other

! System calls are typically traps or exceptions
" System calls are implemented in the kernel

" Application “traps” to kernel to invoke a system call

" When finishing the service, a system returns to the user code

41

Interrupts

! Raised by external events

! Interrupt handler is in the
kernel
" Switch to another process

" Overlap I/O with CPU

" …

! Eventually resume the
interrupted process

! A way for CPU to wait for
long-latency events (like I/O)
to happen

0:
1:
…

i:
i+1:
…

N:

Interrupt
handler

42

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

• Bootstrap
• System initialization
• Interrupt and exception
• I/O device driver
• Memory management
• Mode switching
• Processor management

43

Applications

Software “Onion” Layers

LibrariesOS Services

Device

Driver

Kernel

User and Kernel
boundary

HW

44

Processor Management

! Goals
" Overlap between I/O and

computation
" Time sharing
" Multiple CPU allocations

! Issues
" Do not waste CPU resources
" Synchronization and mutual

exclusion
" Fairness and deadlock free

CPU I/O CPU

CPU

CPU

CPU I/O

CPU

CPU

CPU

I/O

45

Memory Management

! Goals
" Support programs to run
" Allocation and management
" Transfers from and to

secondary storage

! Issues
" Efficiency & convenience
" Fairness
" Protection

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

Archive storage: >1000M x

46

I/O Device Management

! Goals

" Interactions between
devices and applications

" Ability to plug in new
devices

! Issues
" Efficiency

" Fairness

" Protection and sharing

User 1 User n. . .

Library support

I/O
device

I/O
device

. . .

Driver Driver

47

File System

! Goals:
" Manage disk blocks
" Map between files and disk

blocks

! A typical file system
" Open a file with

authentication
" Read/write data in files

" Close a file

! Issues
" Reliability
" Safety

" Efficiency
" Manageability

User 1 User n. . .

File system services

File File. . .

48

Window Systems

! Goals

" Interacting with a user

" Interfaces to examine and
manage apps and the system

! Issues
" Direct inputs from keyboard and

mouse

" Display output from applications
and systems

" Labor of division
• All in the kernel (Windows)

• All at user level

• Split between user and kernel (Unix)

49

Bootstrap

! Power up a computer

! Processor reset

" Set to known state

" Jump to ROM code (BIOS is
in ROM)

! Load in the boot loader from
stable storage

! Jump to the boot loader

! Load the rest of the operating
system

! Initialize and run

! Question: Can BIOS be on disk?

Boot
loader

OS
sector 1

OS
sector 2

OS
sector n

.

.

.

Boot
loader

COS318 Lec 2 50

System Boot

! Power on (processor waits until Power Good
Signal)

! Processor jumps on a PC to address FFFF0h
• 1M= 1,048,576= 220 =FFFFFh+1

• FFFFFh=FFFF0h+16 is the end of the (first 1MB of) system
memory

• The original PC using Intel 8088 had 20 address lines :-)

! (FFFFFFF0h) is a JMP instruction to the ROM
BIOS startup program

Maps to FFFFFFF0h= 232-16

COS318 Lec 2 51

! POST (Power-On Self-Test)
• If pass then AX:=0; DH:=5 (586: Pentium);

• Stop booting if fatal errors, and report

! Look for video card and execute built-in ROM
BIOS code (normally at C000h)

! Look for other devices ROM BIOS code
• IDE/ATA disk ROM BIOS at C8000h (=819,200d)

! Display startup screen
• BIOS information

! Execute more tests
• memory

• system inventory

SCSI disks: must often
provide their own BIOS

ROM Bios Startup Program (1)

COS318 Lec 2 52

ROM BIOS startup program (2)

! Look for logical devices
" Label them

• Serial ports

• COM 1, 2, 3, 4

• Parallel ports

• LPT 1, 2, 3

" Assign each an I/O address and IRQ

! Detect and configure Plug-and-Play (PnP) devices

! Display configuration information on screen

COS318 Lec 2 53

ROM BIOS startup program (3)

! Search for a drive to BOOT from
" Floppy or Hard disk

• Boot at cylinder 0, head 0, sector 1

! Load code in boot sector
! Execute boot loader
! Boot loader loads program to be booted

• If no OS: "Non-system disk or disk error - Replace and press
any key when ready"

! Transfer control to loaded program
! Is it okay to boot at first sector on the floppy or

disk?

54

Ways to Develop An Operating System

! A hardware simulator

! A virtual machine

! A good kernel debugger
" When OS crashes, always goes to the debugger

" Debugging over the network

