
COS 318: Operating Systems

Virtual Memory and Its Address
Translations

2

Today’s Topics

! Virtual Memory
" Virtualization

" Protection

! Address Translation
" Base and bound

" Segmentation

" Paging

" Translation look-ahead buffer

3

The Big Picture

! DRAM is fast, but relatively expensive
" $25/GB

" 20-30ns latency

" 10-80GB’s/sec

! Disk is inexpensive, but slow
" $0.2-1/GB (100 less expensive)

" 5-10ms latency (200K-400K times slower)

" 40-80MB/sec per disk (1,000 times less)

! Our goals
" Run programs as efficiently as possible

" Make the system as safe as possible

CPU

Memory

Disk

4

Issues

! Many processes
" The more processes a system can handle, the better

! Address space size
" Many small processes whose total size may exceed memory

" Even one process may exceed the physical memory size

! Protection
" A user process should not crash the system

" A user process should not do bad things to other processes

5

Consider A Simple System

! Only physical memory
" Applications use physical

memory directly

! Run three processes
" emacs, pine, gcc

! What if
" gcc has an address error?

" emacs writes at x7050?

" pine needs to expand?

" emacs needs more memory
than is on the machine?

OS

pine

emacs

gcc

Free
x0000

x2500

x5000

x7000

x9000

6

Protection Issue

! Errors in one process should not affect others

! For each process, check each load and store instruction
to allow only legal memory references

CPU Check
Physical
memory

address

error

data

gc
c

7

Expansion or Transparency Issue

! A process should be able to run regardless of its
physical location or the physical memory size

! Give each process a large, static “fake” address space

! As a process runs, relocate each load and store to its
actual memory

CPU
 Check &
relocate

Physical
memory

address

data

pine

8

Virtual Memory

! Flexible
" Processes can move in memory as they execute, partially in

memory and partially on disk

! Simple
" Make applications very simple in terms of memory accesses

! Efficient
" 20/80 rule: 20% of memory gets 80% of references

" Keep the 20% in physical memory

! Design issues
" How is protection enforced?

" How are processes relocated?

" How is memory partitioned?

9

Address Mapping and Granularity

! Must have some “mapping” mechanism
" Virtual addresses map to

DRAM physical addresses or disk addresses

! Mapping must have some granularity
" Granularity determines flexibility

" Finer granularity requires more mapping information

! Extremes
" Any byte to any byte: mapping equals program size

" Map whole segments: larger segments problematic

10

Generic Address Translation

! Memory Management Unit
(MMU) translates virtual
address into physical address
for each load and store

! Software (privileged) controls
the translation

! CPU view
" Virtual addresses

! Each process has its own
memory space [0, high]
" Address space

! Memory or I/O device view
" Physical addresses

CPU

MMU

Physical
memory

I/O
device

Virtual address

Physical address

11

Goals of Translation

! Implicit translation for each
memory reference

! A hit should be very fast

! Trigger an exception on a
miss

! Protected from user’s faults

Registers

L1

Memory

Disk

2-3x

100-300x

20M-30Mx

Paging

L2-L3 10-20x

12

Base and Bound

! Built in Cray-1
! Each process has a pair

(base, bound)
! Protection

" A process can only access
physical memory in
[base, base+bound]

! On a context switch
" Save/restore base, bound

registers

! Pros
" Simple
" Flat and no paging

! Cons
" Arithmetic expensive

" Hard to share
" Fragmentation

virtual address

base

bound

error

+

>

physical address

13

Segmentation

! Each process has a table of
(seg, size)

! Treats (seg, size) as a fine-
grained (base, bound)

! Protection
" Each entry has

(nil, read, write, exec)

! On a context switch
" Save/restore the table and a

pointer to the table in kernel
memory

! Pros
" Efficient
" Easy to share

! Cons
" Complex management
" Fragmentation within a

segment
physical address

+

segment offset

Virtual address

seg size

...

>
error

14

Paging

! Use a fixed size unit called
page instead of segment

! Use a page table to
translate

! Various bits in each entry
! Context switch

" Similar to the segmentation

! What should be the page
size?

! Pros
" Simple allocation

" Easy to share

! Cons
" Big table
" How to deal with holes?

VPage # offset

Virtual address

...

>
error

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table

page table size

15

How Many PTEs Do We Need?

! Assume 4KB page
" Offset is low order 12 bits of VE for byte offset (0,4095)

" Page IDis high-order 20 bits

! Worst case for 32-bit address machine
" 220 maximum PTE’s

" At least 4 bytes per PTE

" 220 PTEs per page table per process (> 4MB), but there might
be 10K processes. They won’t fit in memory together

! What about 64-bit address machine?
" 252 possible pages

" 252 * 8 bytes = 36 PBytes

" A page table cannot fit in a disk

" Let alone when each process has own page table

16

Multiple-Level Page Tables

Directory .
.
.

pte

.

.

.

.

.

.

.

.

.

dir table offset

Virtual address

What does this buy us?

17

Inverted Page Tables

! Main idea
" One PTE for each

physical page frame

" Optimization: Hash
(Vpage, pid) to Ppage #

! Pros
" Small page table for

large address space

! Cons
" Lookup is difficult

" Overhead of managing
hash chains, etc

pid vpage offset

pid vpage

0

k

n-1

k offset

Virtual

address

Physical

address

Inverted page table

Comparison

18

Consideration Paging Segmentation

Programmer aware of
technique?

No Yes

How many linear address
spaces?

1 Many

Total address space exceed
physical memory?

Yes Yes

Procedures and data
distinguished and protected

separately?

No Yes

Easily accommodate tables
whose size fluctuates?

No Yes

Facilitates sharing of
procedures between users?

No Yes

Why was technique
invented?

Large linear address space
without more physical

memory

To break programs and data
into logical independent

address spaces and to aid
sharing and protection

19

Segmentation with Paging (MULTICS, Intel Pentium)

VPage # offset

Virtual address

...

>

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table
seg size

...

Vseg #

error

20

Virtual-To-Physical Lookups

! Programs only know virtual addresses
" Each program or process starts from 0 to high address

! Each virtual address must be translated
" May involve walking through the hierarchical page table

" Since the page table stored in memory, a program memory
access may requires several actual memory accesses

! Solution
" Cache “active” part of page table in a very fast memory

21

Translation Look-aside Buffer (TLB)

offset

Virtual address

.

.

.

PPage# ...

PPage# ...

PPage# ...

PPage # offset

Physical address

VPage #

TLB

Hit

Miss

Real

page

table

VPage#

VPage#

VPage#

22

Bits in a TLB Entry

! Common (necessary) bits
" Virtual page number: match with the virtual address

" Physical page number: translated address

" Valid

" Access bits: kernel and user (nil, read, write)

! Optional (useful) bits
" Process tag

" Reference

" Modify

" Cacheable

23

Hardware-Controlled TLB

! On a TLB miss
" Hardware loads the PTE into the TLB

• Write back and replace an entry if there is no free entry

• Always?

" Generate a fault if the page containing the PTE is invalid

" VM software performs fault handling

" Restart the CPU

! On a TLB hit, hardware checks the valid bit
" If valid, pointer to page frame in memory

" If invalid, the hardware generates a page fault

• Perform page fault handling

• Restart the faulting instruction

24

Software-Controlled TLB

! On a miss in TLB
" Write back if there is no free entry

" Check if the page containing the PTE is in memory

" If not, perform page fault handling

" Load the PTE into the TLB

" Restart the faulting instruction

! On a hit in TLB, the hardware checks valid bit
" If valid, pointer to page frame in memory

" If invalid, the hardware generates a page fault

• Perform page fault handling

• Restart the faulting instruction

25

Hardware vs. Software Controlled

! Hardware approach
" Efficient

" Inflexible

" Need more space for page table

! Software approach
" More expensive

" Flexible

• Software can do mappings by hashing

• PP# ! (Pid, VP#)

• (Pid, VP#) ! PP#

" Can deal with large virtual address space

26

Cache vs. TLB

! Similarities
" Cache a portion of memory
" Write back on a miss

! Differences
" Associativity
" Consistency

Vpage # offset

TLB

ppage # offset

Memory

Hit

Miss

Cache

Address Data

Hit

Memory

Miss

27

TLB Related Issues

! What TLB entry to be replaced?
" Random

" Pseudo LRU

• Why not “exact” LRU?

! What happens on a context switch?
" Process tag: change TLB registers and process register

" No process tag: Invalidate the entire TLB contents

! What happens when changing a page table entry?
" Change the entry in memory

" Invalidate the TLB entry

28

Consistency Issues

! “Snoopy” cache protocols (hardware)
" Maintain consistency with DRAM, even when DMA happens

! Consistency between DRAM and TLBs (software)
" You need to flush related TLBs whenever changing a page

table entry in memory

! TLB “shoot-down”
" On multiprocessors, when you modify a page table entry, you

need to flush all related TLB entries on all processors, why?

29

Summary

! Virtual Memory
" Virtualization makes software development easier and

enables memory resource utilization better

" Separate address spaces provide protection and isolate faults

! Address translation
" Base and bound: very simple but limited

" Segmentation: useful but complex

! Paging
" TLB: fast translation for paging

" VM needs to take care of TLB consistency issues

