COS 318: Operating Systems

/O Device and Drivers




Input and Output

A computer’s job is to process data
e Computation (CPU, cache, and memory)

® Move data into and out of a system (between |I/O devices
and memory)

Challenges with 1/O devices
e Different categories: storage, networking, displays, etc.
® | arge number of device drivers to support
® Device drivers run in kernel mode and can crash systems

Goals of the OS

® Provide a generic, consistent, convenient and reliable way to
access |/O devices

® As device-independent as possible

e Don’t hurt the performance capability of the 1/0O system too
much




Revisit Hardware

Compute hardware
e CPU and caches

® Chipset

® Memory

/O Hardware

® |/O bus or interconnect
® |/O controller or adaptor
® |/O device

Two types of I/O
® Programmed I/O (PIO)

Memory

I/O bus

« CPU does the work of moving data

® Direct Memory Access (DMA)

» CPU offloads the work of moving

data to DMA controller

O




Definitions and General Method

Overhead
¢ Time that the CPU is tied up B
initiating/ending an operation Initiate  Data transfer
—
Latency

® Time to transfer one byte

e Overhead + 1 byte reaches
destination

Bandwidth

e Rate of I/O transfer, once initiated
® Mbytes/sec

General method

® Higher level abstractions of byte
transfers

e Batch transfers into block I/O for
efficiency to amortize overhead
and latency over a large unit




Programmed Input Device

Device controller

e Status register
ready: tells if the host is done
busy: tells if the controller is done CPU
int: interrupt $

e Data registers

| _ Memory
A simple mouse design /0 bus

e Put (X, Y) in data registers on a _'—

move
® |Interrupt

Input on an interrupt

® Read values in X, Y registers
e Set ready bit

e \Wake up a process/thread or
execute a piece of code

Controller

rdy |busy|int|...|
Data (x)
Data (y)




Programmed Output Device

Device
e Status registers (ready, busy, ... )
e Data registers

Example
® A serial output device

Perform an output

Wait until ready bit is clear
Poll the busy bit

Writes the data to register(s)
Set ready bit

Controller sets busy bit and
transfers data

e Controller clears the ready bit and
busy bit

CPU

Memory

rdy |busy|int |...

Data

Data

/O bus

Serial

" /| controller




DMA controller or adaptor

e Status register
(ready, busy, interrupt, ...)

e DMA command register
e DMA register (address, size)
e DMA buffer
Host CPU initiates DMA
e Device driver call (kernel mode)
e Wait until DMA device is free

e [nitiate a DMA transaction
(command, memory address, size)

® Block
Controller performs DMA

e DMA data to device
(size--; address++)

® [nterrupt on completion (size == 0)
Interrupt handler (on completion)
e \Wakeup the blocked process

el |

Direct Memory Access (DMA)

Memory

1/0O bus

rdy |busy|int |...

DMA command

address size

Buffer




/0O Software Stack

User-Level I/O Software

Device-Independent
OS software

Device Drivers

Interrupt handlers

Hardware




Recall Interrupt Handling

®
Save context (registers that hw hasn't saved, PSW etc)

Mask interrupts if needed

Set up a context for interrupt service

Set up a stack for interrupt service

Acknowledge interrupt controller, perhaps enable it (huh?)
Save entire context to PCB

Run the interrupt service

Unmask interrupts if needed

Possibly change the priority of the process

Run the scheduler

Then OS will set up context for next process, load
registers and PSW, start running process ...




Device Drivers

. Device i Device f )
Device “ : :
controller | driver
°)) !
£
Device ? Device
Device . @ : Rest of the
controller T driver .
=L operating
>
- system
S Yy
. (e
Device — :
N Device . | Device | !
controller | driver i
Device " N J
. I/O System |

Manage the complexity and differences among specific types of
devices (disk/mouse, different types of disks ...)

Each handles one type of device or small class of them (eg SCSI)
10




Typical Device Driver Design

Operating system and driver communication
e Commands and data between OS and device drivers

Driver and hardware communication
® Commands and data between driver and hardware

Driver operations

Initialize devices

Interpreting commands from OS
Schedule multiple outstanding requests
Manage data transfers

Accept and process interrupts

o
®
[
o
o
e Maintain the integrity of driver and kernel data structures

11




Simplified Device Driver Behavior
®

Check input parameters for validity, and translate them to device-
specific language
Check if device is free (wait or block if not)

Issue commands to control device
e \Write them into device controller’s registers
® Check after each if device is ready for next (wait or block if not)

Block or wait for controller to finish work

Check for errors, and pass data to device-indept software
Return status information

Process next queued request, or block waitng for next

Challenges:
® Must be reentrant (can be called by an interrupt while running)
e Handle hot-pluggable devices and device removal while running
e Complex and many of them; bugs in them can crash system

12




Types of I/O Devices

Block devices
® Organize data in fixed-size blocks
® Transfers are in units of blocks

® Blocks have addresses and data are therefore addressable
® E.g. hard disks, USB disks, CD-ROMs

Character devices
® Delivers or accepts a stream of characters, no block structure
® Not addressable, no seeks
® Can read from stream or write to stream
® Printers, network interfaces, terminals
Like everything, not a perfect classification
e E . g. tape drives have blocks but not randomly accessed
® Clocks are I/O devices that just generate interrupts

13




Keyboard

Mouse

Compact Flash card
USB 2.0

52x CD-ROM
Scanner

96K modem
802.11g wireless net
Gigabit Ethernet
FireWire-1

SCSI Ultra-2 disk
SATA disk

PCI bus

Ultrium tape

Typical Device Speeds

10 B/s
100 B/s
40 MB/s
60 MB/s
7.8MB/s
400 KB/s
7 KB/s
6.75 MB/s
320 MB/s
50 MB/s

80 MB/s
300 MB/s
528 MB/s
320 MB/s

14




Device Driver Interface

Open( deviceNumber )

® |nitialization and allocate resources (buffers)
Close( deviceNumber )

e Cleanup, deallocate, and possibly turnoff
Device driver types

® Block: fixed sized block data transfer

® Character: variable sized data transfer

® Terminal: character driver with terminal control
e Network: streams for networking

Interfaces for block and character/stream oriented
devices (at least) are different

e | ike to preserve same interface within each category

15




Character and Block Device Interfaces

Character device interface
® read( deviceNumber, bufferAddr, size )
» Reads “size” bytes from a byte stream device to “bufferAddr”
e write( deviceNumber, bufferAddr, size )
« Write “size” bytes from “bufferAddr” to a byte stream device

Block device interface
e read( deviceNumber, deviceAddr, bufferAddr )
» Transfer a block of data from “deviceAddr” to “bufferAddr”
e write( deviceNumber, deviceAddr, bufferAddr )
* Transfer a block of data from “bufferAddr” to “deviceAddr”
® seek( deviceNumber, deviceAddress )

* Move the head to the correct position
« Usually not necessary

16




Unix Device Driver Interface Entry Points

init ()
® |nitialize hardware
start ()
® Boot time initialization (require system services)
open (dev, flag, id) and close(dev, flag, id)
® |[nitialization resources for read or write, and release afterwards
halt ()
e (Call before the system is shutdown
intr (vector)
e (Called by the kernel on a hardware interrupt
read(..) and write () calls
e Data transfer
poll (pri)
e (Called by the kernel 25 to 100 times a second
ioctl (dev, cmd, arg, mode)
® special request processing

17




Synchronous vs. Asynchronous |/O

Synchronous /O

e read() or write() will block a user process until its completion
® OS overlaps synchronous I/O with another process

Asynchronous 1/O
e read() or write() will not block a user process

® user process can do other things before |/O completion
® |/O completion will notify the user process

18




Detailed Steps of Blocked Read

A process issues a read call which executes a system call
System call code checks for correctness and buffer cache
If it needs to perform 1/O, it will issues a device driver call
Device driver allocates a buffer for read and schedules 1/O
Controller performs DMA data transfer

Block the current process and schedule a ready process
Device generates an interrupt on completion

Interrupt handler stores any data and notifies completion
Move data from kernel buffer to user buffer

Wakeup blocked process (make it ready)

User process continues when it is scheduled to run

19




Asynchronous |/O

API

® Non-blocking read() and write()

e Status checking call

e Notification call

e Different form the synchronous |I/O API
Implementation

e On a write
« Copy to a system buffer, initiate the write and return
* Interrupt on completion or check status

® On aread
« Copy data from a system buffer if the data are there
» Otherwise, return with a special status

20




Why Buffering?

Speed mismatch between the producer and consumer
e Character device and block device, for example
e Adapt different data transfer sizes (packets vs. streams)
Deal with address translation
® |/O devices see physical memory
® User programs use virtual memory
Caching
® Avoid I/O operations
User-level and kernel-level buffering
Spooling
® Avoid user processes holding up resources in multi-user
environment

21




Think About Performance

A terminal connects to computer via a serial line

® Type character and get characters back to display

e RS-232 is bit serial: start bit, character code, stop bit (9600
baud)

Do we have any cycles left?
® 10 users or 10 modems
® 900 interrupts/sec per user
e \What should the overhead of an interrupt be
Technique to minimize interrupt overhead
® Interrupt coalescing

22




Other Design Issues

Build device drivers
e Statically
* A new device driver requires reboot OS
® Dynamically
« Download a device driver without rebooting OS
* Almost every modern OS has this capability
How to down load device driver dynamically?
® | oad drivers into kernel memory
® |nstall entry points and maintain related data structures
® |nitialize the device drivers

23




Dynamic Binding: Indirection

/Open( 1, ...);

Indirect table

open(...) {

e 1nte/r1ace

| read(...) {

Interrupt

handlers

Other
Kernel
services

24




Issues with Device Drivers

Flexible for users, ISVs and |IHVs

e Users can download and install device drivers

® \/endors can work with open hardware platforms
Dangerous methods

® Device drivers run in kernel mode

® Bad device drivers can cause kernel crashes and introduce
security holes

Progress on making device driver more secure

® Checking device driver codes
e Build state machines for device drivers

25




Summary

Device controllers

® Programmed 1I/O is simple but inefficient
e DMA is efficient (asynchronous) and complex

Device drivers
® Dominate the code size of OS
® Dynamic binding is desirable for desktops or laptops
® Device drivers can introduce security holes

® Progress on secure code for device drivers but completely
removing device driver security is still an open problem

26




