
428 C H A P T E R F O U R

Section Section 4.3

THE BST ALGORITHMS IN THE PREVIOUS section work well for a wide variety of applications,
but they have poor worst-case performance. As we have noted, files already in order,
files in reverse order, files with alternating large and small keys, or files with any large
segment having such a structure all lead to linear insert and search times. We introduce
in this section a type of search tree where costs are guaranteed to be logarithmic, no
matter what sequence of keys is used to construct them.

Ideally, we would like keep our trees perfectly balanced, of height ~lg N, so that
we can guarantee that all searches in an N-node tree can be completed in ~lg N com-
pares, just as for binary search (see PROPOSITION B). Unfortunately, maintaining perfect
balance for dynamic insertions is too expensive. But we can relax the requirement to
have near-perfect balance, where the height is guaranteed to be no larger than a con-
stant times lg N, say 2 lg N. In this section, we consider a data structure that maintains
such a property and provides guaranteed logarithmic performance for the insert and
search operations in our symbol-table API. It also provides guaranteed logarithmic per-
formance for all of the other operations (except range search).

2-3 search trees The primary step to get the flexibility that we need to guarantee
balance in search trees is to allow the nodes in our trees to hold more than one key.
Specifically, we refer to the nodes in a standard BST as 2-nodes (they hold two links and
one key) and also allow 3-nodes, which hold three links and two keys. Every node has
one link for each of the intervals subtended by its keys.
As in BSTs, a 2-node has one link to a subtree containing
keys smaller than its key and one link to a subtree con-
taining keys larger than its key. A 3-node has one link to
a subtree containing keys smaller than both its keys, one
to a subtree containing keys in between its two keys, and
one to a subtree containing keys larger than both its keys.
Later, we shall see efficient ways to define and implement
the basic operations on these extended nodes; for now,
let us assume that we can manipulate them conveniently and see how they can be put
together to form trees.

4.3 Balanced Trees

E J

H L

Anatomy of a 2-3 search tree

2-node3-node

null link

M

R

P S XA C

429S Y M B O L TA B L E S

Balanced Trees

Definition A 2-3 search tree is a tree that either is empty or:
a 2-node, with one key and two links, a left link to a subtree with smaller keys,
and a right link to a subtree with larger keys;
a 3-node, with two keys and three links, a left link to a subtree with smaller keys,
a middle link to a subtree with keys between the node’s keys and a right link to a
subtree with larger keys.

As usual, we refer to a link to an empty tree as a null link.

A perfectly balanced 2-3 search tree is one whose null links are all the same distance
from the root. To be concise, we use the term 2-3 tree to refer to a perfectly balanced
2-3 search tree (the term denotes a more general structure in other contexts). Next, we
describe the use of 2-3 trees as the underlying data structure for a symbol table.

Search. The search algorithm for keys in a 2-3 tree directly generalizes the search al-
gorithm for BSTs. To determine whether a key is in the tree, we compare it against the
keys at the root: If it is equal to any of them, we have a search hit; otherwise, we follow
the link from the root to the subtree corresponding to the interval of key values that
could contain the search key, and then recursively search in that subtree.

successful search for H

found H so return value (search hit)

H is less than M so
look to the left

H is between E and L so
look in the middle

B is between A and C so look in the middle

B is less than M so
look to the left

B is less than C
so look to the left

Successful and unsuccessful search in a 2-3 tree

link is null so B is not in the tree (search miss)

unsuccessful search for B

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

430 C H A P T E R F O U R

Section Section 4.3

Insert into a 2-node. To insert a new node in a
2-3 tree, we might do an unsuccessful search and
then hook on the node at the bottom, as we did
with BSTs, but the new tree would not remain per-
fectly balanced. The primary reason that 2-3 trees
are useful is that we can do insertions and still
maintain perfect balance in the tree. It is easy to
accomplish this task if the node at which the search
terminates is a 2-node: We just replace the node
with a 3-node containing its key and the new key to
be inserted. If the node where the search terminates
is a 3-node, we have more work to do.

Insert into a tree consisting of a single 3-node. As a first warm-up before consider-
ing the general case, suppose that we want to insert into a tiny 2-3 tree consisting of just
a single 3-node. Such a tree has two keys, but no room for a new key in its one node. To
be able to perform the insertion, we temporarily put the new key into a 4-node, a natu-
ral extension of our node type that has three keys and four links. Creating the 4-node is

convenient because it is easy
to convert it into a 2-3 tree
made up of three 2-nodes,
one with the middle key
(at the root), one with the
smallest of the three keys
(pointed to by the left link
of the root), and one with
the largest of the three keys
(pointed to by the right link

of the root). Such a tree is a 3-node BST
and also a perfectly balanced 2-3 search
tree, with all the null links are at the same
distance from the root. Before the insertion,
the height of the tree is 1; after the inser-
tion, the height of the tree is 2. This case is
simple, but it is worth considering because
it illustrates height growth in 2-3 trees.

inserting K

search for K ends here

replace 2-node with
new 3-node containing K

Insert into a 2-node

E J

H L

M

R

P S XA C

E J

H

M

R

P S XK LA C

make a 4-node

inserting S

no room for S

split 4-node into
this 2-3 tree

Insert into a single 3-node

A E

 A E S

A

E

S

split 4-node into two 2-nodes
pass middle key to parent

replace 3-node with
temporary 4-node

containing Z

replace 2-node
with new 3-node

containing
middle key

S X Z

S Z

Insert into a 3-node whose parent is a 2-node

E J

H L

M

R

PA C

inserting Z

search for Z ends
at this 3-nodeE J

H L

M

R

P S XA C

E J

H

M

P

R X

K LA C

431S Y M B O L TA B L E S

Balanced Trees

Insert into a 3-node whose parent is a 2-node. As a second warm-up, suppose that
the search ends at a 3-node at the bottom whose parent is a 2-node. In this case, we can
still make room for the new key while maintaining perfect balance in the tree, by mak-
ing a temporary 4-node as just described, then splitting the 4-node as just described,
but then inserting the middle key in the node’s parent (instead of putting it in its own
2-node). You can think of the transformation as replacing the link to the old 3-node
in the parent by the middle key with links on either side
to the new 2-nodes. By our assumption, there is room
for doing so in the parent: the parent was a 2-node and
becomes a 3-node. Be certain that you understand this
transformation—it is the crux of 2-3 tree dynamics.
Insert into a 3-node whose parent is a 3-node. Now
suppose that the search ends at a node whose parent is
a 3-node. Again, we make a temporary 4-node as just

described, then split it
and insert its middle key
into the parent. The par-
ent was a 3-node, so we
replace it with a tempo-
rary new 4-node contain-
ing the middle key from
the 4-node split. Then,
we perform precisely the
same transformation on
that node. That is we split
the new 4-node and insert
its middle key into its par-
ent. Extending to the gen-
eral case is clear: we con-
tinue up the tree, splitting
4-nodes and inserting
their middle keys in their
parents until reaching a 2-node, which we replace with a
3-node that does not to be further split, or until reach-
ing a 3-node at the root. If we end up with a temporary
4-node at the root, we split it into three 2-nodes, increas-

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node

add middle key C to 3-node
to make temporary 4-node

add new key D to 3-node
to make temporary 4-node

A C D

A D

inserting D

search for D ends
at this 3-node E J

H L

M

R

P S XA C

E J

H L

M

R

P S X

C E J

H L

M

R

P S X

A D H L

C J R

P S X

E M

Insert into a 3-node whose parent is a 3-node
split 4-node into two 2-nodes

pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

Splitting the root

inserting D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

432 C H A P T E R F O U R

Section Section 4.3

ing the height of the tree by 1, in just the same way as when inserting into a tree consist-
ing of a single 3-node. Note that this transformation preserves perfect balance in the
tree only when it is performed at the root.

Local transformations. Splitting a temporary 4-node in a 2-3 tree involves one of
five transformations, summarized at the top of the next page. The 4-node may be the
left child or the right child of
a 2-node, or it may be the left
child, middle child, or right
child of a 3-node. The basis
of the algorithm is that all
of these transformations are
purely local: No part of the
tree needs to be examined or
modified other than the spec-
ified nodes. The number of
links changed for each trans-
formation is bounded by a
small constant. In particular,
the transformations are effec-
tive when we find the speci-
fied patterns anywhere in the
tree, not just at the bottom. Each of the transformations passes up one of the keys from
a 4-node to that node’s parent in the tree, and then restructures links accordingly.

Global properties. Moreover, these local transformations preserve the global proper-
ties that the tree is ordered and balanced. For reference, a complete diagram illustrating
this point for the case that the 4-node is the middle child of a 3-node is shown here. If
you are not fully convinced, you are encouraged to work EXERCISE 4.3.X, which asks you
to extend the diagrams for the other four cases at the top of the next page to illustrate
the same point. Before the split, if the height of the subtree rooted at any node in the
tree is h, then the height of the subtree rooted at its parent is h+1. Each transforma-
tion preserves this property, even while splitting the 4-node into two 2-nodes and while
changing the parent from a 2-node to a 3-node. or from a 3-node into a temporary
4-node, or when splitting the root into three 2-nodes and increasing the height of the
whole tree by 1. Understanding that every transformation preserves order and perfect
balance in the whole tree is the key to understanding the algorithm.

Splitting a 4-node is a local transformation

b c d

a e

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

b d

a c e

433S Y M B O L TA B L E S

Balanced Trees

UNLIKE STANDARD BSTS, WHICH GROW DOWN from the top, 2-3 trees grow up from the bot-
tom. If you take the time to carefully study the sequence of trees that are produced by
our standard indexing test client and the sequence of trees that are produced when the
same keys are inserted in increasing order, you will have a good understanding of the
way that 2-3 trees are built. Recall that in a BST, the increasing-order sequence for 10
keys results in a worst-case tree where a search might involve examining all the keys. In
the 2-3 trees, all keys can be found in every case by examining at most three nodes.

THE PRECEDING DESCRIPTION IS SUFFICIENT TO define a symbol-table implementation with
2-3 trees as the underlying data structure. Analyzing 2-3 trees is different from analyz-
ing BSTs because our primary interest is in worst-case performance, as opposed to aver-
age-case performance (where we analyze expected performance under an assumption
that key values come from some random source). In symbol-table implementations, we
normally have no control over the order in which clients insert keys into the table and
worst-case analysis is one way to provide performance guarantees.

Property F. Search and insert operations in 2-3 trees are guaranteed to complete in
logarithmic time.

Proof. The height of a N-node 2-3 tree is between log3 N = (lg N)/(lg 3) (if the tree is
all 3-nodes) and lg N (if the tree is all 2-nodes) (see EXERCISE 4.3.X). The amount of time
required at each node by each of the operations is bounded by a constant, and both
operations examine nodes on just one path.

Splitting a temporary 4-node in a 2-3 tree (summary)

 parent is a 3-node

right

middle

left parent is a 2-node

right

left

b db c d

a ca

a b c

d

ca

b d

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e

434 C H A P T E R F O U R

Section Section 4.3

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

2-3 tree construction traces

 standard indexing client same keys in increasing order

 insert S

E

A

R

C

H

X

M

P

L

 insert A

C

E

H

L

M

P

R

S

X

435S Y M B O L TA B L E S

Balanced Trees

Thus, we can guarantee good worst-case performance with 2-3 trees. As you can see
from examining the tree depicted at the bottom of this page, a perfectly balanced tree
strikes a remarkably flat posture. For example, the height of a 2-3 tree that contains
1 billion keys is between nineteen and thirty. It is quite remarkable that we can guar-
antee to perform arbitrary search and insertion operations among 1 billion keys by
examining less than thirty nodes.

However, we are only part of the way to an implementation. Although it would
be possible to write code that performs transformations on distinct data types repre-
senting 2- and 3-nodes, most of the tasks that we have described are inconvenient to
implement in this direct representation because there are numerous different cases to
be handled. We would need to maintain two different types of nodes, compare search
keys against each of the keys in the nodes, copy links and other information from one
type of node to another, convert nodes from one type to another, and so forth. Not only
is there a substantial amount of code involved, but the overhead incurred could make
the algorithms slower than standard BST search. The primary purpose of balancing is
to provide insurance against a bad worst case, but we would prefer the overhead cost for
that insurance to be low. Fortunately, as you will see, we can do the transformations in a
uniform way using little overhead beyond the costs incurred by standard BST search.

Typical 2-3 tree built from random keys

436 C H A P T E R F O U R

Section Section 4.3

Red–Black Trees The insertion algorithm for 2-3 trees just described is not dif-
ficult to understand; now, we will see that it is also not difficult to implement. We will
consider a simple representation known as red-black trees that leads to a natural imple-
mentation. In the end, not much code is required, but understanding how and why the
code gets the job done requires a careful look.

Encoding 3-nodes The basic idea behind red-
black trees is to encode 2-3 trees by starting with
standard BSTs, which are made up of 2-nodes,
and adding extra information to encode 3-nodes.
We think of the links as being of two different
types: red links, which bind together small bina-
ry trees that represent 3-nodes, and black links,
which bind together the 2-3 tree. Specifically, we
represent 3-nodes as two 2-nodes connected by a
single red link. To define a 1-1 correspondence,
we require that red links are always left links. One
advantage of using such a representation is that it

allows us to
use our get() code for standard BST search with-
out modification., while we never fully specified
the search process within 3-nodes for 2-3 trees.
Given any 2-3 tree, we can immediately derive a
corresponding BST, just by converting each node
as specified. We refer to BSTs that represent 2-3
trees in this way as (balanced) red–black BSTs.

An equivalent definition Another way to pro-
ceed is to define red–black BSTs as BSTs having
red and black links and satisfying the following
three restrictions:

Red links lean left.
No node has two red links connected to it.
The tree has perfect black balance : every

path from the root to a null link has the same
number of black links.

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b
3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

437S Y M B O L TA B L E S

Balanced Trees

There is a 1-1 correspondence between red-black BSTs defined in this way and 2-3
trees: if we draw the red links horizontally in a red–black BST, all of the null links are
the same distance from the root, and if we then collapse together the nodes connected
by red links, the result is a 2-3 tree. For convenience, we define the black height of a
red–black BST as the number of black links on the path from the root to every null
link (the height of the corresponding 2-3 tree). Whichever way we choose to define
them, red–black BSTs are both BSTs and 2-3 trees. Thus, if we can implement the bal-
anced 2-3 tree insertion algorithm by maintaining
the 1-1 correspondence, then we get the best of both
worlds: the simple and efficient search method from
standard BSTs and the efficient insertion–balancing
method from 2-3 trees.

Representation For convenience, since each node
is pointed to by precisely one link (from its parent),
we encode the color of links in nodes (not links), by
adding a boolean instance variable color to our
Node data type, which is true if the (left) link from
the parent is red and false if the link from the par-
ent to the node is black (not red). For clarity in our
code, we define constants RED and BLACK for use in
setting and testing this variable. For reasons that will
later become more clear, new nodes are always RED.
We use a private method isRed() to test node col-
or (instead of having an instance method in Node)
to avoid having to test for null in client code.

Rotations When you saw the definition of red–
black BSTs, you may have asked yourself why the red
links should all lean to the left. Why not allow some

A red-black tree with horizontal red links is a 2-3 tree

private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node
{
 Key key; // key
 Value val; // associated data
 Node left, right; // subtrees
 int N; // # nodes in this subtree
 boolean color; // color of link from
 // parent to this node

 Node(Key key, Value val, int N, boolean color)
 {
 this.key = key;
 this.val = val;
 this.N = 1;
 this.color = RED;
 }
}

private boolean isRed(Node x)
{
 if (x == null) return false;
 return x.color == RED;
}

J
G

E

A D
C

Node representation for red−black trees

h
h.left.color

is RED
h.right.color

is BLACK

438 C H A P T E R F O U R

Section Section 4.3

of them to lean to the right? This is a reasonable question that is addressed in the Q&A
at the end of this section. Indeed, the standard implementation of red–black BSTs that
has been in use for decades allows for right-leaning red links (see Exercise 4.3.TODO).

In the implementation that we will consider, we also allow temporary
right-leaning red links during an operation, but always make them lean
to the left before the operation completes. Next, we consider the code
that we need to switch orientation of red links. This code is crucial: by
changing links in the trees, it brings them into better balance. First,
suppose that we have a right-leaning red link that needs to be rotated
to lean to the left (see the diagram at left). This operation is called a left
rotation. We organize the computation as a method that takes a link to
a red-black BST as argument, and assuming that link to be to a Node h
whose right link is red, makes the necessary adjustments and returns
a link to a node that is the root of a red–black BST for the same set of
keys whose left link is red. If you think of the corresponding 3-node as
you check each of the lines of code against
the before/after drawings in the diagram,
you will find this operation is easy to un-
derstand: we are switching from having
the smaller of the two keys at the root to
having the larger of the two keys at the
root. Implementing a right rotation that
converts a left-leaning red link to a right-
leaning one amounts to the same code,
with left and right interchanged. Whether
left or right, every rotation leaves us with

a link. Note that this link may be red or black—both ro-
tateLeft() and rotateRight() take care to preserve its
color by setting x.color to h.color. One implication of
this decision is that our algorithms might temporarily al-
low two red links in a row to occur within the tree. Indeed,
we use rotations precisely to correct this condition when it
arises. In our algorithms, we always use the link returned
by rotateRight() or rotateLeft() to reset the appro-
priate link in the parent (or the root of the tree). That may

Left rotate (right link of h)

Node rotateLeft(Node h)
{
 x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

h

x

x

h

E

S

between
E and S

less
than E

greater
than S

E
S

between
E and S

could be right or left,
red or black

less
than E

greater
than S

Right rotate (left link of h)

Node rotateRight(Node h)
{
 x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

x

h

h

x

E

S

between
S and E

less
than E

greater
than S

E
S

between
S and E

less
than E

greater
than S

439S Y M B O L TA B L E S

Balanced Trees

be a right or a left link, but we can always use the returned link to reset the argument
link. For example, the code

h = rotateLeft(h);

rotates left a right-leaning red link that is to the left of node h, setting h to point to the
root of the resulting subtree (which contains all the same nodes as the subtree pointed
to by h before the rotation, but a different root). The ease of writing this type of code
is the primary reason we use recursive implementations of BST methods, as it makes
doing rotations an easy addition to normal search, as you will see. The reason
that we can use rotations to help maintain the 1-1 correspondence between
2-3 trees and red–black BSTs as new keys are inserted is that they preserve a
very important property: they preserve order and perfect black balance. That
is, we can use rotations on a red–black BST without have to worry about los-
ing its order and its perfect black balance. As just mentioned, our approach
is to use rotation to eliminate connected red links. As before, we warm up
with some easy cases.

Insert into a single 2-node A red-black tree with 1 key is just a single
2-node. Inserting the second key immediately shows the need for having a
rotation operation. If the new key is smaller than the key in the tree, we just
make a new (red) node with the new key and we are done: we have a red-

black tree that is equivalent to a single 3-node. But if
the new key is larger than the key in the tree, then at-
taching a new (red) node gives a right-leaning red link,
and the code root = rotateLeft(root); completes
the insertion by rotating the red link to the left and up-
dating the tree root link. The result in both cases is the
red-black representation of a single 3-node, with two
keys, one left-leaning red link and black height 1.

Insert into a 2-node at the bottom We insert keys
into a red-black tree as usual into a BST, adding a new node at the
bottom (respecting the order), but always connected to its par-
ent with a red link. If the parent is a 2-node, then the same two
cases just discussed are effective. If the new node is attached to
the left link, the parent simply becomes a 3-node; if it is attached
to a right link, we have a 3-node leaning the wrong way, but a left
rotation finishes the job.

Insert into a single
2-node (two cases)

right

search ends
at this null link

left

red link to
 new node

containing a
converts 2-node

to 3-node

search ends
at this null link

attached new node
with red link

rotated left
to make a

legal 3-node

a

b

a

a

b

b

a

b

root

root

root

root
E

A

Insert into a 2-node
at the bottom

 insert C

E

R
S

R
S

A
C

E

R
S

C
A

add new
node here

right link red
so rotate left

440 C H A P T E R F O U R

Section Section 4.3

Insert into a tree with 2 keys (in a 3-node) This case reduces to three subcases,
depending on whether the new key is less than both keys in the tree, between them, or
greater than both of them. Each of the cases introduces a node with two red links con-
nected to it: our goal is to correct this condition. The simplest of the three cases is when
the new key is larger than the two in the tree and is therefore attached on the right-

most link of the 3-node, making a
balanced tree with the middle key at
the root, connected with red links to
nodes containing smaller and a larger
key. If we flip the colors of those two
links from red to black, then we have
a three-node balanced tree, of height
2, exactly what we need to maintain
our 1-1 correspondence to 2-3 trees.
The other two cases eventually re-
duce to this case. If the new key is
smaller than the keys in the tree and
goes on the left link, then we have two
red links in a row, both leaning to the
left, which we can reduce to the pre-
vious case by rotating the top link to
the right. If the new key goes in the
middle, we again have two red links
in a row, a right-leaning one below a
left leaning one,which we can reduce
to the previous case by rotating left

the bottom link. In summary, we achieve the desired result by doing zero, one, or two
rotations followed by flipping the colors of the two children of the root. As with 2-3
trees, be certain that you understand these transformations, as they are the key to red-
black tree dynamics.

Flipping colors To flip the colors of the children of a node, we use a method flip-
Colors(), shown at right. In addition to flipping the colors of the children from red to
black, we also flip the color of the parent from black to red. (In the case just considered,
this will color the root red—by convention, we color the root black after each insertion,
which increases the black height of the tree by 1 if it was red.) A critically important

smaller

search ends
at this null link

larger
search ends

at this
null linksearch ends

at this null link

attached new
node with
red link

attached new
node with
red link

a

c
b

Insert into a single 3-node (three cases)

between

attached new
node with
red link

rotated left

rotated
right

rotated
right

colors flipped
to black

colors flipped
to black

colors flipped
to black

a

c
b

b

c

a

b

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

441S Y M B O L TA B L E S

Balanced Trees

characteristic of this operation is that, like rotations, it is a lo-
cal transformation that preserves perfect black balance in the
tree. Moreover, this convention immediately leads us to a full
implementation, as we describe next.

Insert into a 3-node at the bottom Now suppose that we
add a new node at the bottom that is connected to a 3-node.
The same three cases just discussed arise. Either the new link

is connected to the left link
of the 3-node (in which case
we need to rotate the top link
right and flip colors) or to the
right link of the 3-node (in
which case we just flip colors)
or to the middle link of the
3-node (in which case we ro-
tate left the bottom link, then
rotate right the top link, then
flip colors). Flipping the col-
ors makes the link to the mid-
dle node red, which amounts
to passing it up to its parent, putting us back in the same
situation with respect to the parent, which we can fix by
moving up the tree.

Passing a red link up the tree The 2-3 insertion algo-
rithm calls for us to split the 3-node, passing the middle
key up to be inserted into its parent, continuing until en-
countering a 2-node or the root. In every case we have
considered, we precisely accomplish this objective: af-
ter doing any necessary rotations, we flip colors, which
turns the middle node to red. From the point of view
of the parent of that node, that link becoming red can
be handled in precisely the same manner as if the red
link came from attaching a new node: we pass up a red
link to the middle node. The three cases summarized in
the diagram on the next page precisely capture the op-

H

Insert into a 3-node
at the bottom

 insert H
E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

Flipping colors to split a 4-node

void flipColors(Node h)
{
 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
}

h

A

E

between
A and E

less
than A

S

between
E and S

could be left
or right link

red link attaches
middle node

to parent

black links split
to 2-nodes

greater
than S

A

E

between
A and E

less
than A

S

between
E and S

greater
than S

442 C H A P T E R F O U R

Section Section 4.3

erations necessary in a red-black tree to
implement the key operation in 2-3 tree
insertion: to insert into a 3-node, create
a temporary 4-node, split it, and pass a
red link to the middle key up to its par-
ent. Continuing the same process, we
pass a red link up the tree until reaching a
2-node or the root.

IN SUMMARY, WE CAN MAINTAIN OUR 1-1 cor-
respondence between 2-3 trees and red–
black trees during insertion by judicious
use of three simple operations: left rotate,
right rotate, and color flip. we can accom-
plish the insertion by performing the fol-
lowing operations, one after the other, on each node as we pass up the tree from the
point of insertion:

If the right child is red and the left child is not red, rotate left.
If both the left child and its left child are red, rotate right.
If both children are red, flip colors.

It certainly is worth your while to check that this sequence handles each of the cases
just described. Note that the first operation handles both the rotation necessary to lean
the 3-node to the left when the parent is a 2-node and the rotation necessary to lean the
bottom link to the left when the new red link is the middle link in a 3-node.

Implementation Since the balancing operations are to be performed on the way
up the tree from the point of insertion, implementing them is easy in our standard
recursive implementation: we just do them after the recursive calls, as shown in ALGO-
RITHM 4.4. The three operations listed in the previous paragraph are encapsulated in a
method fixUp(). Even though it involves a small amount of code, this implementation
would be quite difficult to understand without the two layers of abstraction that we
have developed (2-3 trees and red-black trees) to implement it. At a cost of testing three
to five link colors (and perhaps doing a rotation or two or flipping colors when a test
succeeds), we get trees that have nearly perfect balance.

The traces for our standard indexing client and for the same keys inserted in
increasing order is given on the facing page. Considering these examples simply in

Passing a red link up a red-black tree

flip
colors

right
rotate

left
rotate

443S Y M B O L TA B L E S

Balanced Trees

Algorithm 4.4 Insert for red–black BSTs

public class RedBlackBST<Key extends Comparable<Key>, Value>
{
 private class Node
 // Standard BST Node with color bit added -- see text.

 private boolean isRed(Node h)
 private Node rotateLeft(Node h)
 private Node rotateRight(Node h)
 private void flipColors(Node h)
 // See text for implementations of these methods.

 private Node fixUp(Node h)
 {
 if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
 if (isRed(h.left) && isRed(h.right)) flipColors(h);

 h.N = size(h.left) + size(h.right) + 1;
 return h;
 }

 public void put(Key key, Value val)
 { root = put(root, key, val); }

 private Node put(Node h, Key key, Value val)
 {
 if (h == null)
 return new Node(key, val, 1, RED);

 int cmp = key.compareTo(h.key);
 if (cmp < 0) h.left = insert(h.left, key, val);
 else if (cmp > 0) h.right = insert(h.right, key, val);
 else h.val = val;

 return fixUp(h);
 }
}

The code for the recursive put() for red-black BSTs is identical to put() in elementary BSTs except
for the fixUp() method, which uses a color bit in Node to provide near-perfect balance in the tree by
maintaining a 1-1 correspondence with 2-3 trees.

444 C H A P T E R F O U R

Section Section 4.3

S

E

A S

E

A

PA

H

C M

E L

A

H

C M

E L

red-black tree construction traces
 standard indexing client same keys in increasing order

 insert S

E

A

R

C

H

X

M

P

L

 insert A

C

E

H

L

M

P

R

S

X

E

R
S

L
M

P
R

S
X

A

H

C

E

R
S

C

A
E

H

A
C

E
S

A

C

A E

A
C

S
X

M

R

E

A H
C

S
X

R

E

A
C H

P
R

S
X

M

E

A
C H

P
R

SH
X

M

E

A
C L

S

R

E

A
C H

L

H

C
A E

S

R

M
L P

A

H

C

E

R

M
L P

H

C
A E

445S Y M B O L TA B L E S

Balanced Trees

terms of our three operations on red–black trees, as we have been doing, is an instruc-
tive exercise. Another instructive exercise is to check the correspondence with 2-3 trees
that the algorithm maintains (using the figure for the same keys given earlier in this
section). In both cases, you can test your understanding of the algorithm by consider-
ing the transformations (two color flips and two rotations) that are needed when P is
inserted into the tree.

