
428 C H A P T E R  F O U R

Section Section 4.3

THE BST ALGORITHMS IN THE PREVIOUS section work well for a wide variety of applications, 
but they have poor worst-case performance.  As we have noted, files already in order, 
files in reverse order, files with alternating large and small keys, or files with any large 
segment having such a structure all lead to linear insert and search times. We introduce 
in this section a type of search tree where costs are guaranteed to be logarithmic, no 
matter what sequence of keys is used to construct them.

Ideally, we would like keep our trees perfectly balanced, of height ~lg N, so that 
we can guarantee that all searches in an N-node tree can be completed in ~lg N com-
pares, just as for binary search (see PROPOSITION B). Unfortunately, maintaining perfect 
balance for dynamic insertions is too expensive. But we can relax the requirement to 
have near-perfect balance, where the height is guaranteed to be no larger than a con-
stant times lg N, say 2 lg N. In this section, we consider a data structure that maintains 
such a property and provides guaranteed logarithmic performance for the insert and 
search operations in our symbol-table API. It also provides guaranteed logarithmic per-
formance for all of the other operations (except range search).

2-3 search trees The primary step to get the flexibility that we need to guarantee 
balance in search trees is to allow the nodes in our trees to hold more than one key.  
Specifically, we refer to the nodes in a standard BST as 2-nodes (they hold two links and 
one key) and also allow 3-nodes, which hold three links and two keys. Every node has 
one link for each of the intervals subtended by its keys. 
As in BSTs, a 2-node has one link to a subtree containing 
keys smaller than its key and one link to a subtree con-
taining keys larger than its key. A 3-node has one link to 
a subtree containing keys smaller than both its keys, one 
to a subtree containing keys in between its two keys, and 
one to a subtree containing keys larger than both its keys. 
Later, we shall see efficient ways to define and implement 
the basic operations on these extended nodes; for now, 
let us assume that we can manipulate them conveniently and see how they can be put 
together to form trees.

4.3 Balanced Trees
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Definition A 2-3 search tree is a tree that either is empty or: 
a 2-node, with one key and two links, a left link to a subtree with smaller keys, 
and a right link to a subtree with larger keys; 
a 3-node, with two keys and three links, a left link to a subtree with smaller keys, 
a middle link to a subtree with keys between the node’s keys and a right link to a 
subtree with larger keys.

As usual, we refer to a link to an empty tree as a null link.

A perfectly balanced 2-3 search tree is one whose null links are all the same distance 
from the root. To be concise, we use the term 2-3 tree to refer to a perfectly balanced 
2-3 search tree (the term denotes a more general structure in other contexts). Next, we 
describe the use of 2-3 trees as the underlying data structure for a symbol table.

Search. The search algorithm for keys in a 2-3 tree directly generalizes the search al-
gorithm for BSTs.  To determine whether a key is in the tree, we compare it against the 
keys at the root: If it is equal to any of them, we have a search hit; otherwise, we follow 
the link from the root to the subtree corresponding to the interval of key values that 
could contain the search key, and then recursively search in that subtree. 

successful search for H

found H so return value (search hit)

H is less than M so
look to the left

H is between E and L so
look in the middle

B is between A and C so look in the middle

B is less than M so
look to the left

B is less than C
so look to the left

Successful and unsuccessful search in a 2-3 tree

link is null so B is not in the tree (search miss)

unsuccessful search for B
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Insert into a 2-node. To insert a new node in a 
2-3 tree, we might do an unsuccessful search and 
then hook on the node at the bottom, as we did 
with BSTs, but the new tree would not remain per-
fectly balanced.  The primary reason that 2-3 trees 
are useful is that we can do insertions and still 
maintain perfect balance in the tree. It is easy to 
accomplish this task if the node at which the search 
terminates is a 2-node: We just replace the node 
with a 3-node containing its key and the new key to 
be inserted. If the node where the search terminates 
is a 3-node, we have more work to do. 

Insert into a tree consisting of a single 3-node. As a first warm-up before consider-
ing the general case, suppose that we want to insert into a tiny 2-3 tree consisting of just 
a single 3-node. Such a tree has two keys, but no room for a new key in its one node. To 
be able to perform the insertion, we temporarily put the new key into a 4-node, a natu-
ral extension of our node type that has three keys and four links. Creating the 4-node is 

convenient because it is easy 
to convert it into a 2-3 tree 
made up of three 2-nodes, 
one with the middle key 
(at the root), one with the 
smallest of the three keys 
(pointed to by the left link 
of the root), and one with 
the largest of the three keys 
(pointed to by the right link 

of the root). Such a tree is a 3-node BST 
and also a perfectly balanced 2-3 search 
tree, with all the null links are at the same 
distance from the root. Before the insertion, 
the height of the tree is 1; after the inser-
tion, the height of the tree is 2. This case is 
simple, but it is worth considering because 
it illustrates height growth in 2-3 trees.
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Insert into a 3-node whose parent is a 2-node. As a second warm-up, suppose that 
the search ends at a 3-node at the bottom whose parent is a 2-node. In this case, we can 
still make room for the new key while maintaining perfect balance in the tree, by mak-
ing a temporary 4-node as just described, then splitting the 4-node as just described, 
but then inserting the middle key in the node’s parent (instead of putting it in its own 
2-node). You can think of the transformation as replacing the link to the old 3-node 
in the parent by the middle key with links on either side 
to the new 2-nodes. By our assumption, there is room 
for doing so in the parent: the parent was a 2-node and 
becomes a 3-node. Be certain that you understand this 
transformation—it is the crux of 2-3 tree dynamics.  
Insert into a 3-node whose parent is a 3-node. Now 
suppose that the search ends at a node whose parent is 
a 3-node. Again, we make a temporary 4-node as just 

described, then split it 
and insert its middle key 
into the parent. The par-
ent was a 3-node, so we 
replace it with a tempo-
rary new 4-node contain-
ing the middle key from 
the 4-node split. Then, 
we perform precisely the 
same transformation on 
that node. That is we split 
the new 4-node and insert 
its middle key into its par-
ent. Extending to the gen-
eral case is clear: we con-
tinue up the tree, splitting 
4-nodes and inserting 
their middle keys in their 
parents until reaching a 2-node, which we replace with a 
3-node that does not to be further split, or until reach-
ing a 3-node at the root. If we end up with a temporary 
4-node at the root, we split it into three 2-nodes, increas-
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ing the height of the tree by 1, in just the same way as when inserting into a tree consist-
ing of a single 3-node. Note that this transformation preserves perfect balance in the 
tree only when it is performed at the root.

Local transformations. Splitting a temporary 4-node in a 2-3 tree involves one of 
five transformations, summarized at the top of the next page. The 4-node may be the 
left child or the right child of 
a 2-node, or it may be the left 
child, middle child, or right 
child of a 3-node. The basis 
of the algorithm is that all 
of these transformations are 
purely local: No part of the 
tree needs to be examined or 
modified other than the spec-
ified nodes. The number of 
links changed for each trans-
formation is bounded by a 
small constant. In particular, 
the transformations are effec-
tive when we find the speci-
fied patterns anywhere in the 
tree, not just at the bottom. Each of the transformations passes up one of the keys from 
a 4-node to that node’s parent in the tree, and then restructures links accordingly.

Global properties. Moreover, these local transformations preserve the global proper-
ties that the tree is ordered and balanced. For reference, a complete diagram illustrating 
this point for the case that the 4-node is the middle child of a 3-node is shown here. If 
you are not fully convinced, you are encouraged to work EXERCISE 4.3.X, which asks you 
to extend the diagrams for the other four cases at the top of the next page to illustrate 
the same point. Before the split, if the height of the subtree rooted at any node in the 
tree is h, then the height of the subtree rooted at its parent is h+1. Each transforma-
tion preserves this property, even while splitting the 4-node into two 2-nodes and while 
changing the parent from a 2-node to a 3-node. or from a 3-node into a temporary 
4-node, or when splitting the root into three 2-nodes and increasing the height of the 
whole tree by 1. Understanding that every transformation preserves order and perfect 
balance in the whole tree is the key to understanding the algorithm.  

Splitting a 4-node is a local transformation
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UNLIKE STANDARD BSTS, WHICH GROW DOWN from the top, 2-3 trees grow up from the bot-
tom. If you take the time to carefully study the sequence of trees that are produced by 
our standard indexing test client and the sequence of trees that are produced when the 
same keys are inserted in increasing order, you will have a good understanding of the 
way that 2-3 trees are built. Recall that in a BST, the increasing-order sequence for 10 
keys results in a worst-case tree where a search might involve examining all the keys. In 
the 2-3 trees, all keys can be found in every case by examining at most three nodes. 

THE PRECEDING DESCRIPTION IS SUFFICIENT TO define a symbol-table implementation with 
2-3 trees as the underlying data structure. Analyzing 2-3 trees is different from analyz-
ing BSTs because our primary interest is in worst-case performance, as opposed to aver-
age-case performance (where we analyze expected performance under an assumption 
that key values come from some random source). In symbol-table implementations, we 
normally have no control over the order in which clients insert keys into the table and 
worst-case analysis is one way to provide performance guarantees. 

Property F. Search and insert operations in 2-3 trees are guaranteed to complete in 
logarithmic time.

Proof. The height of a N-node 2-3 tree is between log3 N = (lg N)/(lg 3) (if the tree is 
all 3-nodes) and lg N (if the tree is all 2-nodes) (see EXERCISE 4.3.X). The amount of time 
required at each node by each of the operations is bounded by a constant, and both 
operations examine nodes on just one path.   

Splitting a temporary 4-node in a 2-3 tree (summary)
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Thus, we can guarantee good worst-case performance with 2-3 trees. As you can see 
from examining the tree depicted at the bottom of this page, a perfectly balanced tree 
strikes a remarkably flat posture. For example, the height of a 2-3 tree that contains 
1 billion keys is between nineteen and thirty. It is quite remarkable that we can guar-
antee to perform arbitrary search and insertion operations among 1 billion keys by 
examining less than thirty nodes.

However, we are only part of the way to an implementation.  Although it would 
be possible to write code that performs transformations on distinct data types repre-
senting 2- and 3-nodes, most of the tasks that we have described are inconvenient to 
implement in this direct representation because there are numerous different cases to 
be handled. We would need to maintain two different types of nodes, compare search 
keys against each of the keys in the nodes, copy links and other information from one 
type of node to another, convert nodes from one type to another, and so forth.  Not only 
is there a substantial amount of code involved, but the overhead incurred could make 
the algorithms slower than standard BST search.  The primary purpose of balancing is 
to provide insurance against a bad worst case, but we would prefer the overhead cost for 
that insurance to be low. Fortunately, as you will see, we can do the transformations in a 
uniform way using little overhead beyond the costs incurred by standard BST search. 

Typical 2-3 tree built from random keys
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Red–Black Trees The insertion algorithm for 2-3 trees just described is not dif-
ficult to understand; now, we will see that it is also not difficult to implement. We will 
consider a simple representation known as red-black trees that leads to a natural imple-
mentation. In the end, not much code is required, but understanding how and why the 
code gets the job done requires a careful look.

Encoding 3-nodes The basic idea behind red-
black trees is to encode 2-3 trees by starting with 
standard BSTs, which are made up of 2-nodes, 
and adding extra information to encode 3-nodes. 
We think of the links as being of two different 
types: red links, which bind together small bina-
ry trees that represent 3-nodes, and black links, 
which bind together the 2-3 tree.  Specifically, we 
represent 3-nodes as two 2-nodes connected by a 
single red link. To define a 1-1 correspondence, 
we require that red links are always left links. One 
advantage of using such a representation is that it 

allows us to 
use our get() code for standard BST search with-
out modification., while we never fully specified 
the search process within 3-nodes for 2-3 trees. 
Given any 2-3 tree, we can immediately derive a 
corresponding BST, just by converting each node 
as specified. We refer to BSTs that represent 2-3 
trees in this way as (balanced) red–black BSTs. 

An equivalent definition Another way to pro-
ceed is to define red–black BSTs as BSTs having 
red and black links and satisfying the following 
three restrictions:

Red links lean left.
No node has two red links connected to it.
The tree has perfect black balance : every 

path from the root to a null link has the same 
number of black links.

1−1 correspondence between red-black and 2-3 trees
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There is a 1-1 correspondence between red-black BSTs defined in this way and 2-3 
trees: if we draw the red links horizontally in a red–black BST, all of the null links are 
the same distance from the root, and if we then collapse together the nodes connected 
by red links, the result is a 2-3 tree. For convenience, we define the black height of a 
red–black BST as the number of black links on the path from the root to every null 
link (the height of the corresponding 2-3 tree). Whichever way we choose to define 
them, red–black BSTs are both BSTs and 2-3 trees. Thus, if we can implement the bal-
anced 2-3 tree insertion algorithm by maintaining 
the 1-1 correspondence, then we get the best of both 
worlds: the simple and efficient search method from 
standard BSTs and the efficient insertion–balancing 
method from 2-3 trees. 

Representation For convenience, since each node 
is pointed to by precisely one link (from its parent), 
we encode the color of links in nodes (not links), by 
adding a boolean instance variable color to our 
Node data type, which is true if the (left) link from 
the parent is red and false if the link from the par-
ent to the node is black (not red). For clarity in our 
code, we define constants RED and BLACK for use in 
setting and testing this variable. For reasons that will 
later become more clear, new nodes are always RED. 
We use a private method isRed() to test node col-
or (instead of having an instance method in Node) 
to avoid having to test for null in client code.

Rotations When you saw the definition of red–
black BSTs, you may have asked yourself why the red 
links should all lean to the left. Why not allow some 

A red-black tree with horizontal red links is a 2-3 tree

private static final boolean RED   = true;
private static final boolean BLACK = false;

private class Node
{
   Key key;          // key
   Value val;        // associated data
   Node left, right; // subtrees
   int N;            // # nodes in this subtree
   boolean color;    // color of link from
                     //   parent to this node

   Node(Key key, Value val, int N, boolean color)
   {
      this.key   = key;
      this.val   = val;
      this.N     = 1;
      this.color = RED;
   }
}

private boolean isRed(Node x)
{
   if (x == null) return false;
   return x.color == RED;
}

J
G
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A D
C

Node representation for red−black trees

h
h.left.color

is RED
h.right.color

is BLACK
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of them to lean to the right? This is a reasonable question that is addressed in the Q&A 
at the end of this section. Indeed, the standard implementation of red–black BSTs that 
has been in use for decades allows for right-leaning red links (see Exercise 4.3.TODO). 

In the implementation that we will consider, we also allow temporary 
right-leaning red links during an operation, but always make them lean 
to the left before the operation completes. Next, we consider the code 
that we need to switch orientation of red links. This code is crucial: by 
changing links in the trees, it brings them into better balance. First, 
suppose that we have a right-leaning red link that needs to be rotated 
to lean to the left (see the diagram at left). This operation is called a left 
rotation. We organize the computation as a method that takes a link to 
a red-black BST as argument, and assuming that link to be to a Node h 
whose right link is red, makes the necessary adjustments and returns 
a link to a node that is the root of a red–black BST for the same set of 
keys whose left link is red. If you think of the corresponding 3-node as 
you check each of the lines of code against 
the before/after drawings in the diagram, 
you will find this operation is easy to un-
derstand: we are switching from having 
the smaller of the two keys at the root to 
having the larger of the two keys at the 
root. Implementing a right rotation that 
converts a left-leaning red link to a right-
leaning one amounts to the same code, 
with left and right interchanged. Whether 
left or right, every rotation leaves us with 

a link. Note that this link may be red or black—both ro-
tateLeft() and rotateRight() take care to preserve its 
color by setting x.color to h.color. One implication of 
this decision is that our algorithms might temporarily al-
low two red links in a row to occur within the tree. Indeed, 
we use rotations precisely to correct this condition when it 
arises. In our algorithms, we always use the link returned 
by rotateRight() or rotateLeft() to reset the appro-
priate link in the parent (or the root of the tree). That may 

Left rotate (right link of h)

Node rotateLeft(Node h)
{
   x = h.right;
   h.right = x.left;
   x.left = h;
   x.color = h.color;
   h.color = RED;
   x.N = h.N;
   h.N = 1 + size(h.left)
           + size(h.right);
   return x;
}
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Right rotate (left link of h)

Node rotateRight(Node h)
{
   x = h.left;
   h.left = x.right;
   x.right = h;
   x.color = h.color;
   h.color = RED;
   x.N = h.N;
   h.N = 1 + size(h.left)
           + size(h.right);
   return x;
}
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be a right or a left link, but we can always use the returned link to reset the argument 
link. For example, the code

h = rotateLeft(h);

rotates left a right-leaning red link that is to the left of node h, setting h to point to the 
root of the resulting subtree (which contains all the same nodes as the subtree pointed 
to by h before the rotation, but a different root). The ease of writing this type of code 
is the primary reason we use recursive implementations of BST methods, as it makes 
doing rotations an easy addition to normal search, as you will see. The reason 
that we can use rotations to help maintain the 1-1 correspondence between 
2-3 trees and red–black BSTs as new keys are inserted is that they preserve a 
very important property: they preserve order and perfect black balance. That 
is, we can use rotations on a red–black BST without have to worry about los-
ing its order and its perfect black balance. As just mentioned, our approach 
is to use rotation to eliminate connected red links. As before, we warm up 
with some easy cases.

Insert into a single 2-node A red-black tree with 1 key is just a single 
2-node. Inserting the second key immediately shows the need for having a 
rotation operation. If the new key is smaller than the key in the tree, we just 
make a new (red) node with the new key and we are done: we have a red-

black tree that is equivalent to a single 3-node. But if 
the new key is larger than the key in the tree, then at-
taching a new (red) node gives a right-leaning red link, 
and the code root = rotateLeft(root); completes 
the insertion by rotating the red link to the left and up-
dating the tree root link. The result in both cases is the 
red-black representation of a single 3-node, with two 
keys, one left-leaning red link and black height 1.

Insert into a 2-node at the bottom We insert keys 
into a red-black tree as usual into a BST, adding a new node at the 
bottom (respecting the order), but always connected to its par-
ent with a red link. If the parent is a 2-node, then the same two 
cases just discussed are effective. If the new node is attached to 
the left link, the parent simply becomes a 3-node; if it is attached 
to a right link, we have a 3-node leaning the wrong way, but a left 
rotation finishes the job.

Insert into a single
2-node (two cases)
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Insert into a tree with 2 keys (in a 3-node) This case reduces to three subcases, 
depending on whether the new key is less than both keys in the tree, between them, or 
greater than both of them. Each of the cases introduces a node with two red links con-
nected to it: our goal is to correct this condition. The simplest of the three cases is when 
the new key is larger than the two in the tree and is therefore attached on the right-

most link of the 3-node, making a 
balanced tree with the middle key at 
the root, connected with red links to 
nodes containing smaller and a larger 
key. If we flip the colors of those two 
links from red to black, then we have 
a three-node balanced tree, of height 
2, exactly what we need to maintain 
our 1-1 correspondence to 2-3 trees. 
The other two cases eventually re-
duce to this case. If the new key is 
smaller than the keys in the tree and 
goes on the left link, then we have two 
red links in a row, both leaning to the 
left, which we can reduce to the pre-
vious case by rotating the top link to 
the right. If the new key goes in the 
middle, we again have two red links 
in a row, a right-leaning one below a 
left leaning one,which we can reduce 
to the previous case by rotating left 

the bottom link. In summary, we achieve the desired result by doing zero, one, or two 
rotations followed by flipping the colors of the two children of the root.  As with 2-3 
trees, be certain that you understand these transformations, as they are the key to red-
black tree dynamics.

Flipping colors To flip the colors of the children of a node, we use a method flip-
Colors(), shown at right. In addition to flipping the colors of the children from red to 
black, we also flip the color of the parent from black to red. (In the case just considered, 
this will color the root red—by convention, we color the root black after each insertion, 
which increases the black height of the tree by 1 if it was red.) A critically important 
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characteristic of this operation is that, like rotations, it is a lo-
cal transformation that preserves perfect black balance in the 
tree. Moreover, this convention immediately leads us to a full 
implementation, as we describe next.

Insert into a 3-node at the bottom Now suppose that we 
add a new node at the bottom that is connected to a 3-node. 
The same three cases just discussed arise. Either the new link 

is connected to the left link 
of the 3-node (in which case 
we need to rotate the top link 
right and flip colors) or to the 
right link of the 3-node (in 
which case we just flip colors) 
or to the middle link of the 
3-node (in which case we ro-
tate left the bottom link, then 
rotate right the top link, then 
flip colors). Flipping the col-
ors makes the link to the mid-
dle node red, which amounts 
to passing it up to its parent, putting us back in the same 
situation with respect to the parent, which we can fix by 
moving up the tree.

Passing a red link up the tree The 2-3 insertion algo-
rithm calls for us to split the 3-node, passing the middle 
key up to be inserted into its parent, continuing until en-
countering a 2-node or the root. In every case we have 
considered, we precisely accomplish this objective: af-
ter doing any necessary rotations, we flip colors, which 
turns the middle node to red. From the point of view 
of the parent of that node, that link becoming red can 
be handled in precisely the same manner as if the red 
link came from attaching a new node: we pass up a red 
link to the middle node.  The three cases summarized in 
the diagram on the next page precisely capture the op-
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{
   h.color = RED;
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erations necessary in a red-black tree to 
implement the key operation in 2-3 tree 
insertion: to insert into a 3-node, create 
a temporary 4-node, split it, and pass a 
red link to the middle key up to its par-
ent. Continuing the same process, we 
pass a red link up the tree until reaching a 
2-node or the root. 

IN SUMMARY, WE CAN MAINTAIN OUR 1-1 cor-
respondence between 2-3 trees and red–
black trees during insertion by judicious 
use of three simple operations: left rotate, 
right rotate, and color flip. we can accom-
plish the insertion by performing the fol-
lowing operations, one after the other, on each node as we pass up the tree from the 
point of insertion:

If the right child is red and the left child is not red, rotate left.
If both the left child and its left child are red, rotate right.
If both children are red, flip colors.

It certainly is worth your while to check that this sequence handles each of the cases 
just described. Note that the first operation handles both the rotation necessary to lean 
the 3-node to the left when the parent is a 2-node and the rotation necessary to lean the 
bottom link to the left when the new red link is the middle link in a 3-node. 

Implementation Since the balancing operations are to be performed on the way 
up the tree from the point of insertion, implementing them is easy in our standard 
recursive implementation: we just do them after the recursive calls, as shown in ALGO-
RITHM 4.4. The three operations listed in the previous paragraph are encapsulated in a 
method fixUp(). Even though it involves a small amount of code, this implementation 
would be quite difficult to understand without the two layers of abstraction that we 
have developed (2-3 trees and red-black trees) to implement it. At a cost of testing three 
to five link colors (and perhaps doing a rotation or two or flipping colors when a test 
succeeds), we get trees that have nearly perfect balance. 

The traces for our standard indexing client and for the same keys inserted in 
increasing order is given on the facing page. Considering these examples simply in 

Passing a red link up a red-black tree

flip
colors

right
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Algorithm 4.4 Insert for red–black BSTs

public class RedBlackBST<Key extends Comparable<Key>, Value> 
{ 
   private class Node 
   // Standard BST Node with color bit added -- see text. 

   private boolean isRed(Node h) 
   private Node rotateLeft(Node h) 
   private Node rotateRight(Node h) 
   private void flipColors(Node h) 
   // See text for implementations of these methods. 

   private Node fixUp(Node h) 
   { 
      if (isRed(h.right) && !isRed(h.left))    h = rotateLeft(h); 
      if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); 
      if (isRed(h.left) && isRed(h.right))     flipColors(h); 
 
      h.N = size(h.left) + size(h.right) + 1; 
      return h; 
   }

   public void put(Key key, Value val) 
   {  root = put(root, key, val);  }

   private Node put(Node h, Key key, Value val) 
   { 
      if (h == null) 
         return new Node(key, val, 1, RED);

      int cmp = key.compareTo(h.key); 
      if      (cmp < 0) h.left  = insert(h.left,  key, val); 
      else if (cmp > 0) h.right = insert(h.right, key, val); 
      else h.val = val;

      return fixUp(h); 
   } 
}

The code for the recursive put() for red-black BSTs is identical to put() in elementary BSTs except 
for the fixUp() method, which uses a color bit in Node to provide near-perfect balance in the tree by 
maintaining a 1-1 correspondence with 2-3 trees.  
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terms of our three operations on red–black trees, as we have been doing, is an instruc-
tive exercise. Another instructive exercise is to check the correspondence with 2-3 trees 
that the algorithm maintains (using the figure for the same keys given earlier in this 
section). In both cases, you can test your understanding of the algorithm by consider-
ing the transformations (two color flips and two rotations) that are needed when P is 
inserted into the tree.


