Reductions

» designing algorithms

» establishing lower bounds
» establishing intractability
» classifying problems
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Bird's-eye view
Desiderata. Classify problems according to computational requirements.
Desiderata'.

Suppose we could (couldn't) solve problem X efficiently.
What else could (couldn't) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to

place it, and I shall move the world. ” — Archimedes

Bird's-eye view

Desiderata. Classify problems according to computational requirements.
* Linear: min/max, median, BWT, smallest enclosing circle, ...

* Linearithmic: sorting, convex hull, closest pair, furthest pair, ...

* Quadratic: ???

e Cubic: 2??

* Exponential: 22?

Frustrating news.
Huge number of fundamental problems have defied classification.

Reduction

Def. Problem X reduces o problem Y if you can use an algorithm that
solves Y to help solve X.

—>  Algorithm ——
—

fOl" % — > solution to T

instanceI — [~

(of X)

Algorithm for X

Cost of solving X = total cost of solving ¥ + cost of reduction.

! !

perhaps many calls to Y preprocessing and postprocessing
on problems of different sizes



Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

A —>  Algorithm —— ————> solution to T
instance I —— > — forY
(of X)

Algorithm for X

Ex 1. [element distinctness reduces to sorting]

To solve element distinctness on N integers:

e Sort N integers.

* Scan through adjacent pairs and check if any are equal.

cost of sorting
v cost of reduction

'
Cost of solving element distinctness. N log N + N.

» designing algorithms

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that
solves Y to help solve X.

. —>  Algorithm —— ———> solution to T
ms(f;n)cg I — — forY
0

Algorithm for X

Ex 2. [3-collinear reduces to sorting]
To solve 3-collinear instance on N points in the plane:
* For each point, sort other points by polar angle.
- scan through adjacent triples and check if they are collinear

cost of sorting
cost of reduction

< s
Cost of solving 3-collinear. N2 log N + N2,

Reduction: design algorithms

Def. Problem X reduces fo problem Y if you can use an algorithm that
solves Y to help solve X.

Design algorithm. Given algorithm for Y, can also solve X.

Ex.

* Element distinctness reduces to sorting.

¢ 3-collinear reduces to sorting.

* PERT reduces to topological sort. [see digraph lecture]

* h-v line intersection reduces to 1D range searching. [see geometry lecture]

Mentality. Since I know how to solve Y, can I use that algorithm to solve X?

T

programmer'’s version: I have code for Y. Can I use it for X?



Convex hull reduces to sorting
Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points
of the convex hull (in counter-clockwise order).
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convex hull sorting

Proposition. Convex hull reduces to sorting.
Pf. Graham scan algorithm.

cost of sorting
V4 cost of reduction

'
Cost of convex hull. NlogN + N.

Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to
directed shortest path.
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Pf. Replace each undirected edge by two directed edges.
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Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to
directed shortest path.
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Shortest path on graphs and digraphs

Proposition. Undirected shortest path (with nonnegative weights) reduces to
directed shortest path.
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Cost of undirected shortest path. ElogV + E.

NN

cost of shortest cost of reduction
path in digraph



Shortest path with negative weights

Caveat. Reduction is invalid in networks with negative weights
(even if no negative cycles).

K_7\/ - T

T

reduction creates
negative cycles

Remark. Can still solve shortest path problem in undirected graphs
(if no negative cycles), but need more sophisticated techniques.

\ reduces to weighted
non-bipartite matching (!)

Primality testing

PRIME. Given an integer x (represented in binary), is x prime?
COMPOSITE. Given an integer x, does x have a nontrivial factor?

Proposition. COMPOSITE reduces to PRIME.

public static boolean isComposite (BigInteger x)
{

if (isPrime(x)) return false;
else return true;

147573952589676412931

prime

147573952589676412927

composite

Primality testing

PRIME. Given an integer x (represented in binary), is x prime?
COMPOSITE. Given an integer x, does x have a nontrivial factor?

Proposition. PRIME reduces to COMPOSITE.

public static boolean isPrime (BigInteger x)
{

if (isComposite(x)) return false;

else return true;

147573952589676412931

prime

147573952589676412927

composite

Caveat

PRIME. Given an integer x (represented in binary), is x prime?
COMPOSITE. Given an integer x, does x have a nontrivial factor?

Proposition. COMPOSITE reduces to PRIME.
Proposition. PRIME reduces to COMPOSITE.

A possible real-world scenario.

» System designer specs the APIs for project.

* Programmer A implements iscomposite () USiNg isPrime().
* Programmer B implements ispPrime () USing isComposite().
¢ Infinite reduction loop!

* Who's fault?



Some more reductions

undirected shortest paths
(nonnegative)

fi urth.es b bipartite *
par matching shortest paths bit
\ (nonnegative) arburage

shortest paths
(no neg cycles)

element 3 sorting
distinctness
closest Euclidean
pair —> MST LP

N |

Delaunay

convex hull \ l
median /

maximum flow

LP (standard form)

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.
Ex. Q(N log N) lower bound for sorting.

1251432
2861534
3988818
4190745
13546464
89885444
43434213

argument must apply to
all conceivable algorithms

/

Bad news. Very difficult to establish lower bounds from scratch.

Good news. Can spread Q(N log N) lower bound to ¥ by reducing sorting to VY.

assuming cost of reduction
is not too high

» establishing lower bounds

Linear-time reductions

Def. Problem X linear-time reduces to problem Y if X can be solved with:
* Linear number of standard computational steps.
* Constant number of calls to Y.

Ex. Almost all of the reductions we've seen so far.
Q. Which one was not a linear-time reduction?

Establish lower bound:
o If X takes Q(N log N) steps, then so does Y.
* If X takes Q(N?) steps, then so does V.

Mentality.

o If I could easily solve Y, then I could easily solve X.
* I can't easily solve X.

* Therefore, I can't easily solve Y.

20



Lower bound for convex hull

Proposition. In quadratic decision tree model, any algorithm for sorting
N integers requires Q(N log N) steps. ™\

allows quadratic tests of the form:
Xi < Xjor (xj - xi) (xk - xi) - (xj ) (xj - xi)< 0

Proposition. Sorting linear-time reduces to convex hull.
Pf. [see next slide]

1251432 o« -
2861534 / o o
3988818
4190745 ;
13546464 . .
89885444

43434213 -t

sorting convex hull
a quadratic test

\

Implication. Any ccw-based convex hull algorithm requires Q(N log N) ccw's.

Lower bound for 3-COLLINEAR
3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct poinTs in the plane, <«— recall Assignment 3
are there 3 that all lie on the same line?

1251432 . .
-2861534
3988818 P
-4190745 . p
13546464 .
89885444 ’
-43434213

3-sum 3-collinear
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Sorting linear-time reduces to convex hull
Proposition. Sorting linear-time reduces to convex hull.

* Sorting instance: X={x1,%2 ..., XN}
e Convex hull instance:  P={ (xi,x12), (x2, 22 ), ..., (xn, xp? ) }

f)=x

Pf.

¢ Region {x : x2 = x} is convex = all points are on hull.

 Starting at point with most negative x, counter-clockwise order of hull
points yields integers in ascending order.

Lower bound for 3-COLLINEAR
3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane,
are there 3 that all lie on the same line?

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.
Pf. [see next 2 slide]

Conjecture. Any algorithm for 3-SUM requires Q(N?) steps.
Implication. No sub-quadratic algorithm for 3-COLLINEAR likely.

N

your N2 log N algorithm was pretty good



3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.
¢ 3-SUM instance: X={X1,X2, ... ,XN}
¢ 3-COLLINEAR instance: P={ (xi,xi3), (x2, %), ..., (xn, xp° ) }

f)=x

Lemma. If q, b, and ¢ are distinct, thena+b+c¢c=0

if and only if (a, a®), (b, b%), (c, ¢3) are collinear.

(3,27 B3+2+1=0
25
More reductions and lower bounds
element distinctness 3-sum
(N log N lower bound) (N? lower bound)
/ \ |
sorting closest pair 3-collinear dihedral
rotation
convex hull Euclidean MST min area triangle

N

Delaunay
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3-SUM linear-time reduces to 3-COLLINEAR
Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.
¢ 3-SUM instance: X={X1,X2 ..., XN}

¢ 3-COLLINEAR instance: P={(xi,x1?), (x2,x2), ..., (on, x3° ) }

Lemma. If a, b, and care distinct, thena+b+c=0
if and only if (a, a®), (b, b%), (c, c®) are collinear.

Pf. Three points (a, a®), (b, b3), (¢, c3) are collinear iff:

(@®-b3)/(a-b) = (b3-c3)/(b-c) slopes are equal
(a-b)a®+ab+b?)/(a-b) = (b-c)b?+bc+c?)/(b-c) factor numerators
(@@+ab+b%) = (b2+bc+c?) a—band b — ¢ are nonzero
a®+ab-bc-c? =0 collect terms
(a-c)a+b+c) =0 factor
a+b+c =0 a - c is nonzero

Establishing lower bounds: summary

Establishing lower bounds through reduction is an important tool
in guiding algorithm design efforts.

Q. How to convince yourself no linear-time convex hull algorithm exists?
A. [hard way] Long futile search for a linear-time algorithm.
A. [easy way] Reduction from sorting.

Q. How to convince yourself no sub-quadratic 3-COLLINEAR algorithm exists.
A. [hard way] Long futile search for a sub-quadratic algorithm.
A. [easy way] Reduction from 3-SUM.

28



Bird's-eye view
Desiderata. Prove that a problem can't be solved in poly-time.

input size = Ig k

EXPTIME-complete. /
* Given a constant-size program and input, does it halt in at most k steps?

* Given N-by-N checkers board position, can the first player force a win
(using forced capture rule)?

» establishing intractability Frustrating news. Extremely difficult and few successes.

29

3-satisfiability 3-satisfiability is intractable

Literal. A boolean variable or its negation. Xi or Tw; Q. How to solve an instance of 3-SAT with n variables?

A. Exhaustive search: try all 2" truth assignments.

Clause. An or of 3 distinct literals. Ci=(x1 VX2V x3)

Q. Can we do anything substantially more clever?
Conjunctive normal form. An and of clauses. D= (CiACynCsnCy)

3-SAT. Given a CNF formula @ consisting of k clauses over n literals,
does it have a satisfying truth assignment?

Congratilatiensy
€ only teok yeu
65299 secands

yes instance

(xrvxavx3)) AV X2 vas)A (Ve vos) A (T VX vV oxa) A (T VX3 Voxg)

T T FET CTVTVE)A(T v=T vE)A(T v=T v=F)A (T v=Tv T)a(~Tv FvT)

"intractable"

no instance

7

Conjecture (P 2 NP). No poly-time algorithm for 3-SAT.

(xrvxavxs)) AtV e vas)A(x v e vs) A (X VX2 Vo) A (T2 VX3 Vo)

Applications. Circuit design, program correctness, ... Good news. Can prove problems "intractable" via reduction from 3-SAT.



Polynomial-time reductions
Def. Problem X poly-time (Cook) reduces to problem Y if X can be solved with:

* Polynomial number of standard computational steps.
* Polynomial number of calls to V.

Establish tractability. If Y can se solved in poly-time, and X poly-time reduces
to Y, then X can be solved in poly-time.

Establish intractability. If 3-SAT poly-time reduces to Y, then Y is intractable.
Mentality.

* If T could solve Y in poly-time, then I could also solve 3-SAT.

e T can't solve 3-SAT.
* Therefore, I can't solve V.

33

Graph 3-colorability

3-COLOR. Given a graph, is there a way to color the vertices
red, green, and blue so that no adjacent vertices have the same color?

yes instance

B35

Integer linear programming

ILP. Minimize a linear objective function, subject to linear inequalities,
and integer variables.

Proposition. 3-SAT poly-time reduces to ILP.
Pf. [by example]

(w1 v vas) AV X2 Vas) A (X Ve Vo) A (TX VT X2 Vxg) A (T VoXs Vv oxa)

minimize Ci+ G2+ G+ Ci+Cs  «F——  CNF formula satisfiable iff min = 5
(1-x1) = C
. x2 <G <“<T— (l=1iff clause 1 is satisfied

subject

to the x3 < G
constraints

] add 3 inequalities for each clause
all; and C; = { 0,1}

Interpretation. Boolean variable x; is true iff integer variable x; = 1.

34

Graph 3-colorability

3-COLOR. Given a graph, is there a way to color the vertices
red, green, and blue so that no adjacent vertices have the same color?

no instance

Applications. Register allocation, Potts model in physics, ...



3-satisfiability reduces to graph 3-colorability 3-satisfiability reduces to graph 3-colorability

Proposition. 3-SAT poly-time reduces to 3-COLOR. Claim. If graph G is 3-colorable then @ is satisfiable.
Pf. Given 3-SAT instance ®, we construct an instance G of 3-COLOR Pf.

that is 3-colorable if and only if @ is satisfiable. * Consider assignment where G corresponds to false and a to true.

* (ii) [triangle] ensures each literal is green (true) or red (false).
Construction.

(i) Create one vertex for each literal (xi and —x;) and 3 vertices F, T, and N.
(ii) Connect F, T, and N in a triangle and connect each literal to N.
(iii) Connect each literal to its negation.

without loss of generality,
we assume F is red; T is green; and N is blue

false | F ———— T  true false true
N _ neither neither
X1 X1 X2 X2 X3 X3 s Xn Xn X1 X1 X2 X2 X3 3 s Xn
37

3-satisfiability reduces to graph 3-colorability 3-satisfiability reduces to graph 3-colorability

Claim. If graph G is 3-colorable then @ is satisfiable.
Pf.

* Consider assignment where G corresponds to false and G to frue.

Claim. If graph G is 3-colorable then @ is satisfiable.
Pf.

* Consider assignment where e corresponds to false and @ to true.
* (iii) ensures a literal and its negation are opposites.

* (iv) [gadget] ensures at least one literal in each clause is true.

Ci=(x1 v x2Vx3)
true

X1 X2

next slide

false

X3

neither

6-node gadget for C;

X1

39

—n true I e false




3-satisfiability reduces to graph 3-colorability

Claim. If graph G is 3-colorable then @ is satisfiable.
Pf.
* Consider assignment where a corresponds to false and @) to true.

* (iv) [gadget] ensures at least one literal in each clause is true.

1

next slide

Therefore, ® is satisfiable. =

Cr=(x1 v x2 Vv x3) if all literals in clause Ci are false,

then not 3-colorable (contradiction)
-—

I e false

41

3-satisfiability reduces to graph 3-colorability

Claim. If @ is satisfiable then graph G is 3-colorable.
Pf.

» Color vertex below one . vertex . , and vertex below that ‘ .

Cir=(x1 v ™x2VXx3)

43

3-satisfiability reduces to graph 3-colorability

Claim. If @ is satisfiable then graph G is 3-colorable. & e @re i aodh dlss
Pf. |

* Color vertices corresponding to false Iifer'als. and to true literals @ .

Ci=(x1v vy
( ) here, we assume @ sets
X1 = true, x2 = true, and x3 = false

—

42

3-satisfiability reduces to graph 3-colorability

Claim. If @ is satisfiable then graph G is 3-colorable.
Pf.

* Color remaining middle row vertices @@ .

Ci=(x1v xVx3)

44



3-satisfiability reduces to graph 3-colorability

Claim. If @ is satisfiable then graph G is 3-colorable.
Pf.

* Color remaining bottom ver"rices. or . as forced.
Works for all gadgets, so graph is 3-colorable. *

C1=(x1V X2V Xx3)

More poly-time reductions from 3-satisfiability

3-SAT
<
358 o O%
radﬂczs 0
3-COLOR 3DM VERTEX COVER Dick Karp
'85 Turing award
EXACT COVER PLANAR-3-COLOR CLIQUE HAM-CYCLE
SUBSET-SUM INDEPENDENT SET TSP HAM-PATH
PARTITION INTEGER PROGRAMMING
\ Conjecture: no poly-time algorithm for 3-SAT.
KNAPSACK BIN-PACKING

(and hence none of these problems)

45
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3-satisfiability reduces to graph 3-colorability
Proposition. 3-SAT poly-time reduces to 3-COLOR.

Pf. Given 3-SAT instance ®, we construct an instance G of 3-COLOR
that is 3-colorable if and only if ® is satisfiable.

Construction.

(i) Create one vertex for each literal (xi and —x;) and 3 vertices F, T, and N.
(ii) Connect F, T, and N in a triangle and connect each literal to N.

(iii) Connect each literal to its negation.

(iv) For each clause, attach a 6-vertex gadgeft.

Consequence. 3-COLOR is intractable.

Establishing intractability: summary

Establishing intractability through poly-time reduction is an important tool
in guiding algorithm design efforts.

Q. How to convince yourself that a new problem is intractable?

A. [hard way] Long futile search for an efficient algorithm (as for 3-SAT).
A. [easy way] Reduction from a know intractable problem (such as 3-SAT).

Caveat. Intricate reductions are common.

46
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Implications of poly-time reductions

AL LL L )

“T can’t find an efficient algorithm, but neither can ail these famous people.”
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Classify problems

Desiderata. Classify problems according to difficulty.
e Linear: can be solved in linear time.

e Linearithmic: can be solved in linearithmic time.

* Quadratic: can be solved in quadratic time.

 Intractable: seem to require exponential time.

Ex. Sorting and convex hull are in same complexity class.
¢ Sorting linear-time reduces to convex hull.

* Convex hull linear-time reduces to sorting.

* Moreover, we have N log N upper and lower bound.

51

» classifying problems

50

Classify problems

Desiderata. Classify problems according to difficulty.
* Linear: can be solved in linear time.

* Linearithmic: can be solved in linearithmic time.

* Quadratic: can be solved in quadratic time.

* Intractable: seem to require exponential time.

Ex. PRIME and COMPOSITE are in same complexity class.
* PRIME linear-time reduces to COMPOSITE.

o COMPOSITE linear-time reduces to PRIME.

* But nobody knows which (N algorithm known).

52



Classify problems

Desiderata. Classify problems according to difficulty.
* Linear: can be solved in linear time.

* Linearithmic: can be solved in linearithmic time.

* Quadratic: can be solved in quadratic time.

 Intractable: seem to require exponential time.

Ex. 3-SAT and 3-COLOR are in the same complexity class.

* 3-SAT poly-time reduces to 3-COLOR.

* 3-COLOR poly-time reduces to 3-SAT. <—— Cook's theorem (stay funed)
* Probably both exponential.
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Implications of Cook's theorem

3-COLOR B Stephen Cook
'82 Turing award

EXACT CLIQUE

SUBSET-SUM INDEPENDENT SET HAM-PATH

[~
PARTITIO) B PROGRAMMING

All of these problems (any many more)

KNAPSACK BIN-PACKING .
SAC poly-time reduce to 3-SAT.
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Cook's theorem

P. Set of problems solvable in poly-time.
Importance. What scientists and engineers can compute feasibly.

NP. Set of problems checkable in poly-time.
Importance. What scientists and engineers aspire to compute feasibly.

"NP-complete"

Cook's theorem. All problems in NP poly-time reduce to 3-SAT.

54

Implications of Karp + Cook

EXACT

all of these problems are NP-complete; they are

KNAPSACK «—>BIN-PACKIN . .
manifestations of the same really hard problem
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Summary

Reductions are important in theory to:

* Establish tractability.

* Establish intractability.

* Classify problems according to their computational requirements.

Reductions are important in practice to:
* Design algorithms.
* Design reusable software modules.
- stack, queue, sorting, priority queue, symbol table, set,
- graph, shortest path, regular expression, Delaunay triangulation
» Determine difficulty of your problem and choose the right tool.
- use exact algorithm for tractable problems
- use heuristics for intractable problems
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