Geometric Search

» range search
» space partitioning trees
» intersection search

References:
Algorithms in C (2nd edition), Chapters 26-27
http://www.cs.princeton.edu/algs4/73range
http://www.cs.princeton.edu/algs4/74intersection

Algorithms in Java, 4™ Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2008 - December 4, 2008 9:03:37 AM

» range search

Overview

Geometric objects. Points, lines, intervals, circles, rectangles, polygons, ...

This lecture. Intersection among N objects.

Example problems.
* 1D range search.
* 2D range search.

* Find all intersections among h-v line segments.
* Find all intersections among h-v rectangles.

1D range search

Extension of ordered symbol table.
¢ Insert key-value pair.

* Search for key k.

* Rank: how many keys less than k?

* Range count: how many keys between ki and kz?
* Range search: find all keys between ki and ka.

Application. Database queries.

Geometric interpretation.
* Keys are point on a line.
* How many points in a given interval?

insert
insert
insert
insert
insert

insert

™WomMom H P U W

insert
count G to K

B
B
A
A
A
A
A
2
search G to K H

L]

DI

DHI
DFHTI
DFHIP

1D range search: implementations

Ordered array. Slow insert, binary search for 10 and ni to find range.

Hash table. No reasonable algorithm (key order lost in hash).

data structure range count range search
N

ordered array log N log N R+logN
hash table 1 N N N
BST log N log N log N R+logN
N = # keys

R = # keys that match

BST. All operations fast.

1D range count: BST implementation

Rank. How many keys < k ?
public int rank(Key key) ”ad"'w&i‘"
{ return rank(key, root); }

private int rank (Key key, Node x)
{

if (x == null) return O0;

int cmp = key.compareTo (x.key) ;

if (cmp < 0) return rank(key, x.left);
else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);

Range count. How many keys between 10 and hi?

public int rangeCount(Key lo, Key hi)

{
if (contains(hi)) return rank(hi) - rank(lo) - 1;
else return rank(hi) - rank(lo);

1D range search: BST implementation

Range search. Find all keys between 10 and hi?

* Recursively find all keys in left subtree (if any could fall in range).
* Check key in current node.

* Recursively find all keys in right subtree (if any could fall in range).

searching in range [F. .T]

red keys are used in compares
but are not in the range

o G black keys are

in the range

Worst-case running time. R +log N (assuming BST is balanced).

2D orthogonal range search

Extension of ordered symbol-table to 2D keys.
 Insert a 2D key.

* Search for a 2D key.

* Range count: how many keys lie in a 2D range?

* Range search: find all keys that lie in a 2D range?

Applications. Networking, circuit design, databases.

Geometric interpretation.
* Keys are point in the plane.
* How many points in a given h-v rectangle. . o

!

rectangle is axis-aligned M o

2D orthogonal range search: grid implementation 2D orthogonal range search: grid implementation costs

6rid implementation. [Sedgewick 3.18] Space-time tradeoff.

* Divide space into M-by-M grid of squares. * Space: M?+N.

* Create list of points contained in each square. e Time: 1 + N/ M2 per square examined, on average.
* Use 2D array to directly index relevant square.

 Insert: add (x,y) to list for corresponding square. Choose grid square size to tune performance.

* Range search: examine only those squares that intersect 2D range query. * Too small: wastes space.

* Too large: too many points per square.
* Rule of thumb: /N-by-/N grid.

v Running time. [if points are evenly distributed]
. o RT . . .
1T a * Initialize: O(N).
. — M= /N .
. . o = e Insert: O(l) / s °
ol ‘ * Range: O(1) per point in range. o
¥ ¥
LB LB
9
Clustering Clustering
6rid implementation. Fast, simple solution for well-distributed points. Grid implementation. Fast, simple solution for well-distributed points.
Problem. Clustering a well-known phenomenon in geometric data. Problem. Clustering a well-known phenomenon in geometric data.
Ex. USA map data.
”””””” 13,000 points, 1000 grid squares
.......... --llllll'IIIIIIII
Lists are too long, even though average length is short. —3
Need data structure that gracefully adapts to data. el 3 S (e iy half the points are

in 10% of the squares

» space partitioning trees

Space-partitioning trees: applications

Applications.

Ray tracing.

Flight simulators.

N-body simulation.

Collision detection.

Astronomical databases.

Adaptive mesh generation.

Accelerate rendering in Doom.

Hidden surface removal and shadow casting.

Grid Quadtree 2D tree

BSP tree

Space-partitioning trees
Use a free to represent a recursive subdivision of 2D space.
Quadtree. Recursively divide space into four quadrants.

2D tree. Recursively divide space into two halfplanes.
BSP tree. Recursively divide space into two regions.

-

Grid Quadtree 2D tree BSP tree

Quadtree

Idea. Recursively divide space into 4 quadrants.
Implementation. 4-way tree (actually a trie).

HCAE T ”’;g””ﬁ — N ~
| i a h
o - ‘
I . :
i °d I
! 1
0 i d e £ g
|
T
|
1 :
L3 1 .
| . 1 S
I £ !
! . Y ;
e I g,,””,,””j public class QuadTree

(01.., 00..) {
private Quad quad;
private Value val;
private QuadTree NW, NE, SW, SE;
}

Benefit. Good performance in the presence of clustering.
Drawback. Arbitrary depth!

Quadtree: larger example Quadtree: 2D range search

f: i Io(? I.p 5T H”' Range search. Find all keys in a given 2D range.
e eK u & o u * Recursively find all keys in NE quad (if any could fall in range).
* Recursively find all keys in NW quad (if any could fall in range).
gf,,_q__‘,[,_ o] o -h{ [. . Recursive:y :ind a:: ::eys in SE quad (iffany COUIT f:llnin range).
* Recursively find all keys in SW quad (if any could fall in range).
: o| 9 o i OYE'_] 7 y quad (if any ge)

°b

Og

LT Seetp e : |
° P —T; | » |
] 1ol mH e 1 1.
it] _%F ® || off i Typical running time. R +log N.
http://en.wikipedia.org/wiki/Image:Point_quadtree.svg o
N-body simulation Subquadratic N-body simulation
Goal. Simulate the motion of N particles, mutually affected by gravity. Key idea. Suppose particle is far, far away from cluster of particles.

* Treat cluster of particles as a single aggregate particle.
* Compute force between particle and center of mass of aggregate particle.

Brute force. For each pair of particles, compute force. F= GL;”LZ
=

Barnes-Hut algorithm

Algorithm.
* Build quadtree with N particles as external nodes.
* Store center-of-mass of subtree in each internal node.

* To compute total force acting on a particle, traverse tree, but stop as soon

as distance from particle to quad is sufficiently large.

N
w

. 3 pa
Q
S 3% &3 e
(@
100km | S0km 25 km
“bvc “b'c '/ll'c
557 km ¢ 7.”}/ o Ll 4
a COM a a
“e e e
2D free

Recursively partition plane into two halfplanes.

e 15 17
: 12 s e
Py
6 16
9
3
° 11
1 14 g 19
s Py
Py
® 7 2
18 10
Py
®
13

23

Curse of dimensionality

Range search / nearest neighbor in k dimensions?
Main application. Multi-dimensional databases.

3D space. Octrees: recursively divide 3D space into 8 octants.

100D space. Centrees: recursively divide 100D space into 21% centrants???

Raytracing with octrees
http://graphics.cs.ucdavis.edu/~gregorsk/graphics/275.html

2D tree

Recursively partition plane into two halfplanes.

Implementation. BST, but alternate using x- and y-coordinates as key.

* Search gives rectangle containing point.

* Insert further subdivides the plane.

S
. P
points points
left of p rightofp 1 | |
even levels
q —
.
R
points points :
below q aboveq TS

odd levels

24

2D tree: 2D range search

Range search. Find all keys in a given 2D range.

* Check if point in node lies in given range.

* Recursively find all keys in left/+op subdivision (if any could fall in range).

* Recursively find all keys in right/bottom subdivision (if any could fall in range).

AT TRy

Worst case (assuming tree is balanced). R + /N.
Typical case. R +log N

25

Summary

Basis of many geometric algorithms. Search in a planar subdivision.

grid 2D tree Voronoi diagram | intersecting lines

basis VN h-v lines N points N points VN lines

2D array of N

representation N-node BST N-node multilist ~N-node BST

lists
cells ~N squares N rectangles N polygons ~N triangles
search cost 1 log N log N log N
cells too use (k-1)D
extends to kD too many cells easy complicated hyperplane

picture

27

kD Tree
kD free. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2D trees.

level = i (mod k)
points points
whose i" whose i
coordinate _ coordinate)
is less than p s is greater than p’s

Efficient, simple data structure for processing k-dimensional data.
* Widely used.

* Discovered by an undergrad in an algorithms class!

* Adapts well to high-dimensional and clustered data.

26

» intersection search

28

Search for intersections

Problem. Find all intersecting pairs among N geometric objects.
Applications. CAD, games, movies, virtual reality.

Simple version. 2D, all objects are horizontal or vertical line segments.

LT
—o— | || ——
STl

Brute force. Test all ©(N?) pairs of line segments for intersection.

29

Orthogonal segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.

* x-coordinates define events.

 Left endpoint of h-segment: insert y-coordinate into ST.

* Right endpoint of h-segment: remove y-coordinate from ST.

T
I
I
l
I
l
!
I — °
i
I
I
l
I
I
3 —e 5 |
I
— |
2 L
i
~— |
I
!
|
(] I
1 l []
i
I
l

y-coordinates 31

Orthogonal segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.
* x-coordinates define events.
* Left endpoint of h-segment: insert y-coordinate into ST.

—1e

Orthogonal segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.
* x-coordinates define events.
* Left endpoint of h-segment: insert y-coordinate into ST.

* Right endpoint of h-segment: remove y-coordinate from ST.

* v-segment: range search for interval of y endpoints.

—1e

y-coordinates 30

range

/ search

y-coordinates 32

Orthogonal segment intersection search: sweep-line algorithm
Reduces 2D orthogonal segment intersection search to 1D range search!

Running time of sweep line algorithm.

¢ Put x-coordinates on a PQ (or sort). O(N log N) N = # line segments
« Insert y-coordinate into ST. O(N log N) R = # intersections
* Delete y-coordinate from ST. O(N log N)

* Range search. O(R + N log N)

Efficiency relies on judicious use of data structures.

Remark. Sweep-line solution extends to 3D and more general shapes.

Sweep-line event subclass

private class Event implements Comparable<Event>
{
private int time;
private SegmentHV segment;
public Event(int time, SegmentHV segment)
{
this.time = time;
this.segment = segment;
}
public int compareTo (Event that)
{ return this.time - that.time; }
}

Immutable h-v segment data type

public final class SegmentHV implements Comparable<SegmentHV>
{

public final int x1, yl1;

public final int x2, y2;

public SegmentHV(int x1, int yl, int x2, int y2)

—
{ ... 1}

public boolean isHorizontal ()

{ ... 1} —
public boolean isVertical()

t ... 1

public int compareTo (SegmentHV b) N

t ... 1}

<« (x, y2)
—

f f

x1, y) x2, y) B

horizontal segment vertical segment

33

Sweep-line algorithm: initialize events

constructor

is segment horizontal?
is segment vertical?

compare by x-coordinate;
break ties by y-coordinate

MinPQ<Event> pq = new MinPQ<Event>() ; < initidlize PQ
for (int i = 0; i < N; i++)
{

if (segments[i].isVertical())

{ <L vertficd
Event e = new Event(segments[i].x1l, segments[i]); segment
Pg.insert(e);

}

else

{

Event el = new Event(segments[i].x1l, segments[i]); horizontal
Event e2 = new Event(segments[i].x2, segments[i]); - segment
pg.insert(el);
pg.insert(e2) ;
}
}

B35

34

36

Sweep-line algorithm: simulate the sweep line

int INF = Integer.MAX VALUE;

SET<SegmentHV> set = new SET<SegmentHV>() ;

while (!'pq.isEmpty())

{

Event event = pg.delMin();
int sweep = event.time;
SegmentHV segment = event.segment;

if (segment.isVertical())

{

}

SegmentHV segl, seg2;

segl = new SegmentHV (-INF, segment.yl, -INF, segment.yl);

seg2 = new SegmentHV (+INF, segment.y2, +INF, segment.y2);

for (SegmentHV seg : set.range(segl, seg2))
StdOut.println(segment + " intersects " + seg);

else if (sweep == segment.xl) set.add(segment);
else if (sweep == segment.x2) set.remove (segment) ;

Rectangle intersection search

Goal. Find all intersections among h-v rectangles.

L]

— 7 UEDL

Application. Design-rule checking in VLSI circuits.

» VLSI rules check

37 38

Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.
* Very Large Scale Integration (VLSI).
» Computer-Aided Desigh (CAD).

Design-rule checking.

* Certain wires cannot intersect.

* Certain spacing needed between different types of wires.
* Debugging = rectangle intersection search.

25
s

T ———
b, a
1

wm
L=
=
wm
D
as ® o 4
FRR
i
=
o i

RRRRRRERE SR

39 40

Algorithms and Moore's law

“Moore's law." Processing power doubles every 18 months.
* 197x: need to check N rectangles.
* 197(x+1.5): need to check 2N rectangles on a 2x-faster computer.

Bootstrapping. We get to use the faster computer for bigger circuits.

But bootstrapping is not enough if using a quadratic algorithm:
* 197x: takes M days.

* 197(x+1.5): takes (4M)/2 = 2M days. (1)

quadratic / \ 2x-faster

algorithm computer

Bottom line. Linearithmic CAD algorithm is necessary to sustain Moore's Law.

41

Interval search trees

) interval search best
operation brute .
tree in theory
1

insert interval log N log N

delete interval N log N log N
find an interval that
intersects (lo, hi) N logN logN
find all intervals that
. . Rl R+1
intersects (lo, hi) N og N +logN
T N = # intervals
augmented red-black tree R = # intersections
(7, 10) (20, 22)
— o
(5, 11) (17, 19)
*r—

—

(4, 8) (15, 18)
> —

43

Rectangle intersection search

Sweep vertical line from left to right.

+ x-coordinates of rectangles define events.

* Maintain set of y-intervals intersecting sweep line.

o Left endpoint: search set for y-interval; insert y-interval.
* Right endpoint: delete y-interval.

— 1 |JEOU

42

Rectangle intersection search: costs summary
Reduces 2D orthogonal rectangle intersection search to 1D interval search!

Running time of sweep line algorithm.

* Put x-coordinates on a PQ (or sort). O(N log N) N = # rectangles
» Insert y-interval into ST. O(N log N) R = # intersections
* Delete y-interval from ST. O(N log N)

 Interval search. O(R + N log N)

Efficiency relies on judicious use of data structures.

44

Geomeftric search summary: algorithms of the day

1D range search

kD range search

1D interval
intersection search

2D orthogonal line
intersection search

2D orthogonal rectangle
intersection search

—e -
——o _ oo
—o oo

/M

O0a00

BST

kD tree

interval search tree

sweep line reduces to
1D range search

sweep line reduces to
1D interval intersection search

45

