Directed Graphs

- ▶ digraph API
- ▶ digraph search
- ▶ transitive closure
- ▶ topological sort
- strong components

References:

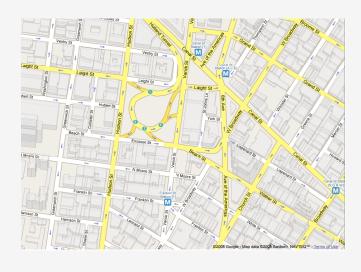
Algorithms in Java, Chapter 19

http://www.cs.princeton.edu/algs4/52directed

 $Algorithms in Java, 4^{th} \ Edition \quad \cdot \quad Robert \ Sedgewick \ and \ Kevin \ Wayne \quad \cdot \quad Copyright \ @ \ 2008 \quad \cdot \quad November \ 4, \ 2008 \ 1:41:59 \ AM$

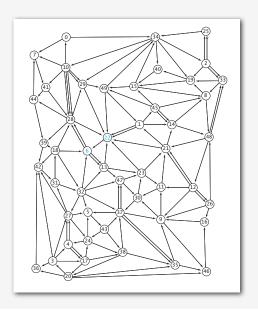
Directed graphs

Digraph. Set of vertices connected pairwise by oriented edges.



Web graph

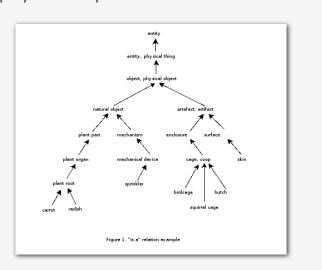
Vertex = web page. Edge = hyperlink.



WordNet graph

Vertex = synset.

Edge = hypernym relationship.



Digraph applications

graph	vertex	edge	
transportation	street intersection	one-way street	
web	web page	hyperlink	
WordNet	synset	hypernym	
scheduling	task precedence con		
financial	stock, currency	transaction	
food web	species	predator-prey relationship	
cell phone	person	placed call	
infectious disease	person	infection	
game	board position	legal move	
citation	journal article	citation	
object graph	object	pointer	
inheritance hierarchy	class	inherits from	
control flow	code block	jump	

Some digraph problems

Path. Is there a directed path from s to t?

Shortest path. What is the shortest directed path from s and t?

Strong connectivity. Are all vertices mutually reachable?

Transitive closure. For which vertices v and w is there a path from v to w?

Topological sort. Can you draw the digraph so that all edges point from left to right?

PERT/CPM. Given a set of tasks with precedence constraints, how can we best complete them all?

PageRank. What is the importance of a web page?

Digraph representations

Vertices.

- This lecture: use integers between 0 and V-1.
- Real world: convert between names and integers with symbol table.

Edges: four options. [same as undirected graph, but orientation matters]

- List of vertex pairs.
- · Adjacency matrix.
- · Adjacency lists.
- · Adjacency sets.

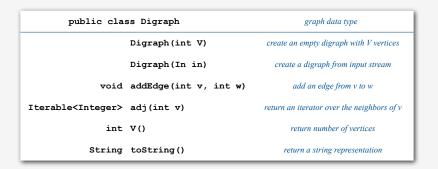
7 — 8 1 2 6 9 10 3 4 11 12

▶ digraph API

- digraph search
- transitive closure
- > topological sort
- strong components

7

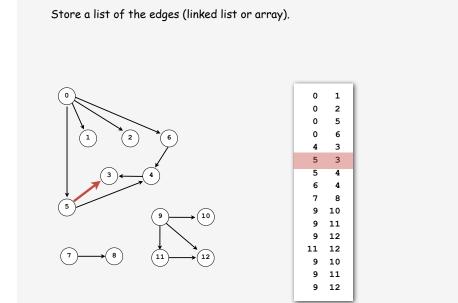
Digraph API



In in = new In();
Graph G = new Digraph(in);
StdOut.println(G);

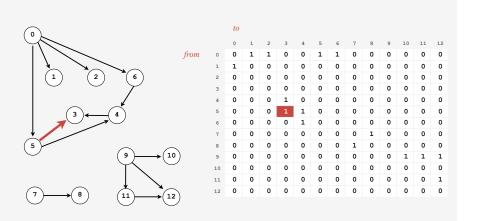
for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 /* process edge v → w */</pre>

Set of edges representation



Adjacency-matrix representation

Maintain a two-dimensional v-by-v boolean array; for each edge $v \rightarrow w$ in the digraph: adj[v][w] = true.



Adjacency-list representation

0: 5 • 2 • 1 • 6 •

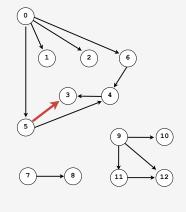
1: 2: same as undirected graph, but one entry for each edge

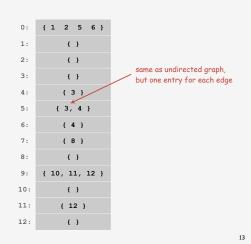
4: 3 • 6: 4 • 7: 8 • 8:

9: 10 • 11 • 12 • 12:

Adjacency-set representation

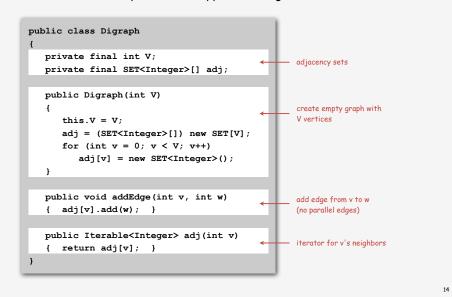
Maintain vertex-indexed array of sets.





Adjacency-set representation: Java implementation

Same as Graph, but only insert one copy of each edge.



Digraph representations

In practice. use adjacency-set (or adjacency-list) representation.

- Real-world digraphs tend to be sparse.
- Algorithms all based on iterating over edges incident to v.

representation	space	edge between v and w?	iterate over edges incident to v?
list of edges	Е	E	E
adjacency matrix	V ²	1	V
adjacency list	E + V	degree(v)	degree(v)
adjacency set	E + V	log (degree(v))	degree(v)

Typical digraph application: Google's PageRank algorithm

Goal. Determine which pages on web are important.

Solution. Ignore keywords and content, focus on hyperlink structure.

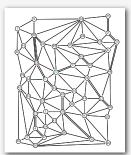
Random surfer model.

- Start at random page.
- With probability 0.85, randomly select a hyperlink to visit next; with probability 0.15, randomly select any page.
- PageRank = proportion of time random surfer spends on each page.

Solution 1. Simulate random surfer for a long time.

Solution 2. Compute ranks directly until they converge.

Solution 3. Compute eigenvalues of adjacency matrix!



None feasible without sparse digraph representation.

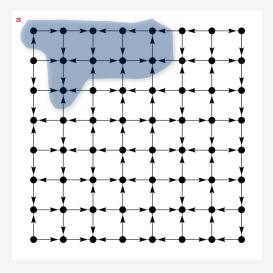
→ digraph search

- > transitive closure
- ▶ topological sort
- strong components

17

Reachability

Problem. Find all vertices reachable from s along a directed path.



Depth-first search in digraphs

Same method as for undirected graphs.

Every undirected graph is a digraph.

- Happens to have edges in both directions.
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked vertices w adjacent to v.

Depth-first search (single-source reachability)

Identical to undirected version (substitute Digraph for Graph).

```
public class DFSearcher

    true if connected to s

   private boolean[] marked;
   public DFSearcher(Digraph G, int s)

    constructor marks vertices

                                                        connected to s
      marked = new boolean[G.V()];
      dfs(G, s);
   private void dfs(Digraph G, int v)
                                                       recursive DFS does the work
      marked[v] = true;
      for (int w : G.adj(v))
          if (!marked[w]) dfs(G, w);
   public boolean isReachable(int v)
                                                        client can ask whether any
   { return marked[v]; }
                                                        vertex is reachable from s
```

Reachability application: program control-flow analysis

Every program is a digraph.

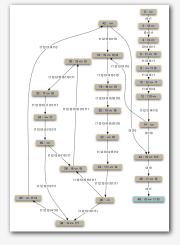
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead code elimination.

Find (and remove) unreachable code.

Infinite loop detection.

Determine whether exit is unreachable.



21

Reachability application: mark-sweep garbage collector

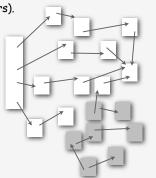
Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

 $\label{lem:conditional} \textbf{Reachable objects}. \ \ \textbf{Objects indirectly accessible by program}$

(starting at a root and following a chain of pointers).



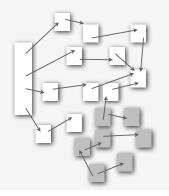
2

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage, so add to free list.

Memory cost. Uses 1 extra mark bit per object, plus DFS stack.



Depth-first search (DFS)

DFS enables direct solution of simple digraph problems.

- ✓ Reachability.
- · Cycle detection.
- Topological sort.
- Transitive closure.
- Is there a path from s to t?

Basis for solving difficult digraph problems.

- Directed Euler path.
- Strong connected components.

Breadth-first search in digraphs

Every undirected graph is a digraph.

- Happens to have edges in both directions.
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue.

Repeat until the queue is empty:

- remove the least recently added vertex v
- add each of v's unvisited neighbors to the queue and mark them as visited.



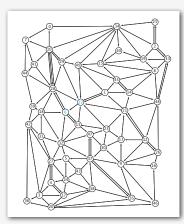
Property. Visits vertices in increasing distance from s.

Digraph BFS application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu. Solution. BFS with implicit graph.

BFS.

- Start at some root web page.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).



Q. Why not use DFS?

Web crawler: BFS-based Java implementation

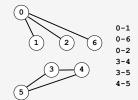
digraph API
 digraph search
 transitive closure
 topological sort
 strong components

Graph-processing challenge (revisited)

Problem. Is there an undirected path between v and w? Goals. Linear preprocessing time, constant query time.

How difficult?

- · Any COS 126 student could do it.
- ✓ Need to be a typical diligent COS 226 student.
 - Hire an expert.
- Intractable.
- No one knows.
- · Impossible.



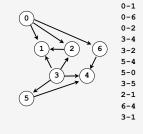
Digraph-processing challenge 1

Problem. Is there a directed path from v to w? Goals. Linear preprocessing time, constant query time.

How difficult?

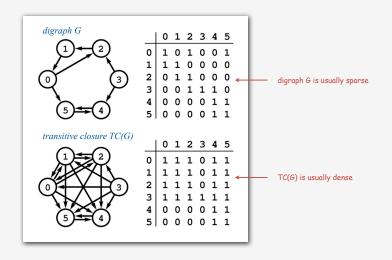
- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.
- Hire an expert.
- Intractable.
- No one knows.
- ✓ Impossible.

can't do better than V2 (reduction from boolean matrix multiplication)



Transitive closure

Def. The transitive closure of a digraph G is another digraph with a directed edge from v to w if there is a directed path from v to w in G.

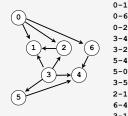


Digraph-processing challenge 1 (revised)

Problem. Is there a directed path from v to w? Goals. ~ V² preprocessing time, constant query time.

How difficult?

- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.
- Hire an expert.
- Intractable.
- ✓ No one knows. ← open research problem
- · Impossible.



0-6 0-2 3-2 2-1 6-4 3-1

Digraph-processing challenge 1 (revised again)

Problem. Is there a directed path from v to w?

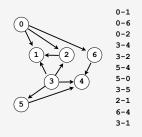
Goals. \sim V E preprocessing time, \sim V² space, constant query time.

How difficult?

- Any COS 126 student could do it.
- ✓ Need to be a typical diligent COS 226 student.
 - Hire an expert.
- Intractable.

Use DFS once for each vertex to compute rows of transitive closure

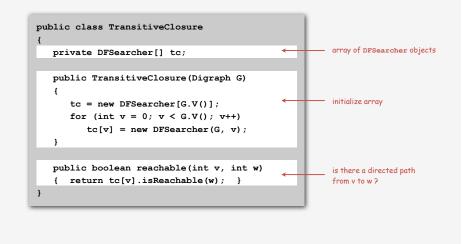
- · No one knows.
- · Impossible.



33

Transitive closure: Java implementation

Use an array of DFSearcher objects, one for each row of transitive closure.

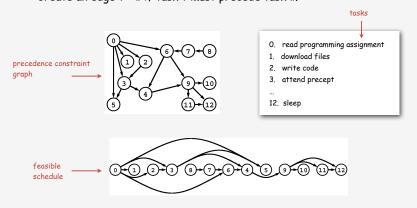


Digraph application: scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

Graph model.

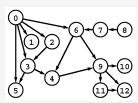
- Create a vertex v for each task.
- Create an edge v→w if task v must precede task w.



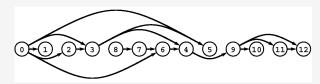
digraph API digraph search transitive closure topological sort strong components

Topological sort

DAG. Directed acyclic graph.



Topological sort. Redraw DAG so all edges point left to right.



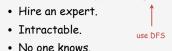
Fact. Digraph is a DAG iff no directed cycle.

Digraph-processing challenge 3

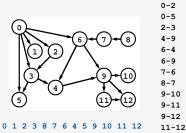
Problem. Check that a digraph is a DAG; if so, find a topological order. Goal. Linear time.

How difficult?

- · Any COS 126 student could do it.
- ✓ Need to be a typical diligent COS 226 student.



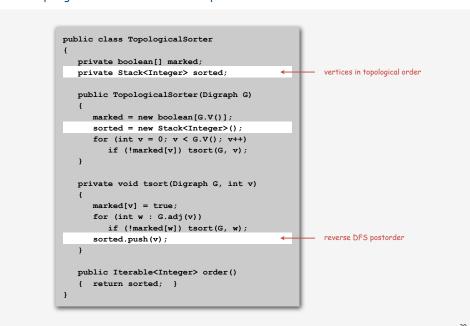
· Impossible.



0-1

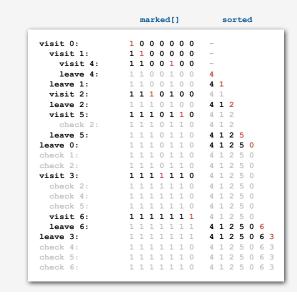
0-6

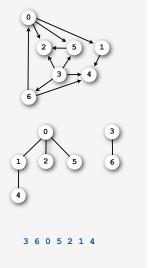
Topological sort in a DAG: Java implementation



Topological sort in a DAG: trace

Visit means call tsort() and leave means return from tsort().





Topological sort in a DAG: correctness proof

Proposition. If digraph is a DAG, algorithm yields a topological order.

Pf.

- Algorithm terminates in O(E + V) time since it's just a version of DFS.
- Consider any edge $v \rightarrow w$. When tsort(G, v) is called,
- Case 1: tsort(G, w) has already returned. Thus, w will appear after v in topological order.
- Case 2: tsort(G, w) has not yet been called, so it will get called directly or indirectly by tsort(G, v) and it will finish before tsort(G, v). Thus, w will appear after v in topological order.
- Case 3: tsort(G, w) has already been called, but not returned. Then the function call stack contains a directed path from w to v. Combining this path with the edge $v \rightarrow w$ yields a directed cycle, contradicting DAG.

Digraph-processing challenge 2

Problem. Given a digraph, is there a directed cycle? Goal. Linear time.

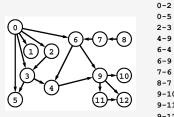
How difficult?

- · Any COS 126 student could do it.
- ✓ Need to be a typical diligent COS 226 student.

• Hire an expert. • Intractable. run DFS-based topological sort

algorithm; if it yields a topological No one knows. sort, no directed cycle

 Impossible. (can modify code to find cycle)



7-6 8-7 9-10 9-11 9-12

0-1

0-6

11-12

Cyclic inheritance

The Java compiler does cycle detection.

```
public class A extends B
```

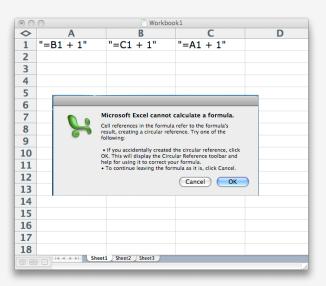
```
public class B extends C
```

```
public class C extends A
```

```
% javac A.java
A.java:1: cyclic inheritance
involving A
public class A extends B { }
1 error
```

Spreadsheet recalculation

Microsoft Excel does cycle checking (and has a circular reference toolbar!)



Symbolic links

The Linux file system does not do cycle detection.

```
% ln -s a.txt b.txt
% ln -s b.txt c.txt
% ln -s c.txt a.txt
% more a.txt
a.txt: Too many levels of symbolic links
```

Topological sort and cycle detection applications

- Causalities.
- Email loops.
- · Compilation units.
- · Class inheritance.
- Course prerequisites.
- Deadlocking detection.
- Temporal dependencies.
- Pipeline of computing jobs.
- · Check for symbolic link loop.
- Evaluate formula in spreadsheet.
- Program Evaluation and Review Technique / Critical Path Method.

45

Topological sort application (weighted DAG)

Precedence scheduling.

- Task v takes time[v] units of time.
- Can work on jobs in parallel.
- Precedence constraints: must finish task v before beginning task w.
- Goal: finish each task as soon as possible.

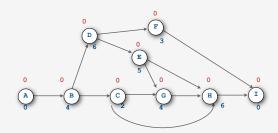
index	task	time	prereqs	
A	begin	0	-	
В	framing	4	A	
С	roofing	2	В	
D	siding	6	В	
E	windows	5	D	
F	plumbing	3 D		
G	electricity	4	C, E	
н	paint	6	C, E	
I	finish	0	F, H	

Ex.

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

- Compute topological order of vertices.
- Initialize fin[v] = 0 for all vertices v.
- Consider vertices v in topologically sorted order.
- for each edge $v \rightarrow w$, Set fin[w] = max(fin[w], fin[v] + time[w])

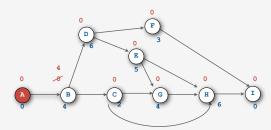


.

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

- Compute topological order of vertices.
- Initialize fin[v] = 0 for all vertices v.
- Consider vertices v in topologically sorted order.
 - for each edge $v \rightarrow w$, Set fin[w] = max(fin[w], fin[v] + time[w])

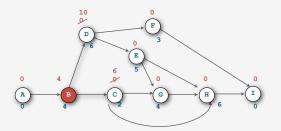


49

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

- Compute topological order of vertices.
- Initialize fin[v] = 0 for all vertices v.
- Consider vertices v in topologically sorted order.
- for each edge $v \rightarrow w$, Set fin[w] = max(fin[w], fin[v] + time[w])

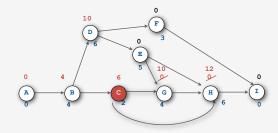


--

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

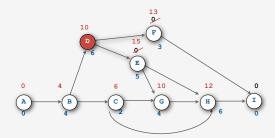
- Compute topological order of vertices.
- Initialize fin[v] = 0 for all vertices v.
- Consider vertices v in topologically sorted order.
- for each edge $v \rightarrow w$, Set fin[w] = max(fin[w], fin[v] + time[w])



Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

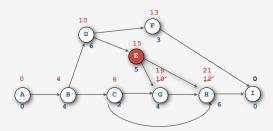
- Compute topological order of vertices.
- Initialize fin[v] = 0 for all vertices v.
- Consider vertices v in topologically sorted order.
- for each edge $v \rightarrow w$, Set fin[w] = max(fin[w], fin[v] + time[w])



Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

- Compute topological order of vertices.
- Initialize fin[v] = 0 for all vertices v.
- Consider vertices v in topologically sorted order.
 - for each edge $v \rightarrow w$, Set fin[w] = max(fin[w], fin[v] + time[w])

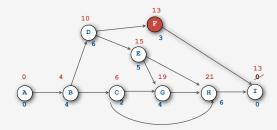


53

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

- Compute topological order of vertices.
- Initialize fin[v] = 0 for all vertices v.
- Consider vertices v in topologically sorted order.
- for each edge $v \rightarrow w$, Set fin[w] = max(fin[w], fin[v] + time[w])

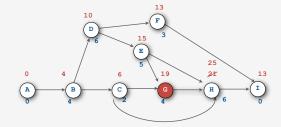


_

Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

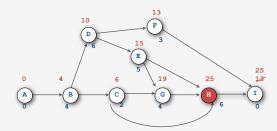
- Compute topological order of vertices.
- Initialize fin[v] = 0 for all vertices v.
- Consider vertices v in topologically sorted order.
- for each edge $v \rightarrow w$, Set fin[w] = max(fin[w], fin[v] + time[w])



Program Evaluation and Review Technique / Critical Path Method

PERT/CPM algorithm.

- Compute topological order of vertices.
- Initialize fin[v] = 0 for all vertices v.
- Consider vertices v in topologically sorted order.
- for each edge $v \rightarrow w$, Set fin[w] = max(fin[w], fin[v] + time[w])

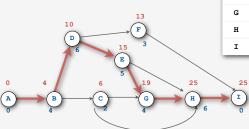


Program Evaluation and Review Technique / Critical Path Method

Critical path. Longest path from source to sink.

To compute:

- Remember vertex that set value (parent-link).
- Work backwards from sink.



time	preregs	finish
0	-	0
4	A	4
2	В	6

index	time	prereqs	finish
A	0	-	0
В	4	A	4
С	2	В	6
D	6	В	10
E	5	D	15
F	3	D	13
G	4	C, E	19
н	6	C, E	25
I	0	F. H	25

PERT/CPM: Java implementation

digraph of precedence constraints.

```
double[] fin = new double[G.V()];
for (int v = 0; v < G.V(); v++)
                                                               initialize finish times
   fin[v] = time[v];
TopologicalSorter ts = new TopologicalSorter(G);
for (int v : ts.order())
                                                                apply updates to vertices
   for (int w : G.adj(v))
                                                                in topological order
      fin[w] = Math.max(fin[w], fin[v] + time[w]);
```

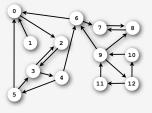
Digraph-processing challenge 3

Def. Vertices v and w are strongly connected if there is a directed path from v to w and from w to v.

Problem. Are v and w strongly connected? Goal. Linear preprocessing time, constant query time.

How difficult?

- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.



strong components

Digraph-processing challenge 3

Def. Vertices \mathbf{v} and \mathbf{w} are strongly connected if there is a directed path from \mathbf{v} to \mathbf{w} and from \mathbf{w} to \mathbf{v} .

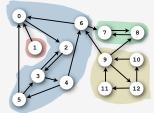
Problem. Are v and w strongly connected?

Goal. Linear preprocessing time, constant query time.

How difficult?

- Any COS 126 student could do it.
- ✓ Need to be a typical diligent COS 226 student.
- ✓ Hire an expert (or a COS 423 student).
 - Intractable.
- No one knows. correctness proof
- · Impossible.

implementation: use DFS twice (see textbook)



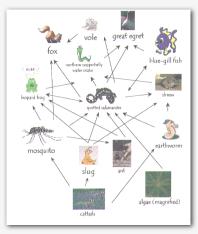
5 strongly connected components

...

Ecological food web graph

Vertex = species.

Edge: from producer to consumer.



Strong component. Subset of species with common energy flow.

62

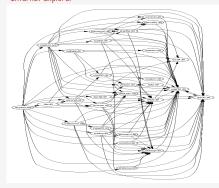
Software module dependency graph

Vertex = software module.

Edge: from module to dependency.

Firefox

Internet explorer



Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.

Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- · Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- · Classic algorithm.
- level of difficulty: CS226++.
- demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju).

- Forgot notes for teaching algorithms class; developed alg in order to teach it!
- Later found in Russian scientific literature (1972).

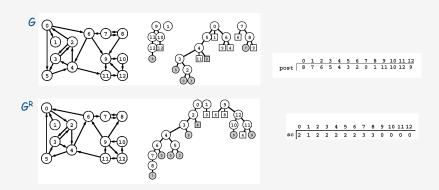
1990s: more easy linear-time algorithms (Gabow, Mehlhorn).

- · Gabow: fixed old OR algorithm.
- Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components

- Run DFS on G^{R} and compute postorder.
- Run DFS on G, considering vertices in reverse postorder.



Proposition. Trees in second DFS are strong components. (!)

Pf. [see COS 423]

45

Digraph-processing summary: algorithms of the day

single-source reachability		DFS
transitive closure	0-0 012345 0 011011 0 0 0 0 0 0	DFS (from each vertex)
topological sort (DAG)	00000000000000000000000000000000000000	DFS
strong components		Kosaraju DFS (twice)