Optimize judiciously

“ More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single reason—
including blind stupidity. > — William A. Wulf

“ We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. ” — Donald E. Knuth

» hash functions

» separate chaining
» linear probing

» applications

“ We follow two rules in the matter of optimization:
Rule 1: Don't do it.
Rule 2 (for experts only). Don't do it yet - that is, not until
you have a perfectly clear and unoptimized solution. ”

LA — M. A. Jackson
Algorithms in Java, Chapter 14

http://www.cs.princeton.edu/algs4/44hash

Reference: Effective Java by Joshua Bloch

Algorithms in Java, 4™ Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2008 - October 16, 2008 8:03:18 AM

ST implementations: summary Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

guarantee average case _ . . .
T l:;:;:s:) °Ziri:°:s Hash function. Method for computing array index from key. 0
. . . ? %
:
hash("it") = 3 R
sequential search 1
(linked list) N N N N/2 N N/2 no equals () \ 3 mign
binary search N N N N N/2 N/2 es compareTo () I :
(ordered array) 9 9 Y ssues. g
» Computing the hash function.
BST N N N 138IgN 138IgN ? yes compareTo ()
* Equality test: Method for checking whether two keys are equal.
red-black tree 2IgN 2IgN 2IgN 1001IgN 1001Ig N 1001IgN yes compareTo ()

Q. Can we do better?
A. Yes, but with different access to the data.

Hashing: basic plan
Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key. 0

1
hash("it") = 3 R

\ 3 wign
7?4
Issues. hash ("times") = 3 /

» Computing the hash function.

5

* Equality test: Method for checking whether two keys are equal.
* Collision resolution: Algorithm and data structure
to handle two keys that hash to the same array index.

Classic space-time tradeoff.

* No space limitation: trivial hash function with key as index.

* No time limitation: trivial collision resolution with sequential search.
* Limitations on both time and space: hashing (the real world).

Equality test

All Java classes have a method equais (), inherited from object.

Java requirements. For any references x, y and z:

¢ Reflexive: x.equals (x) iS true.

e Symmetric: x.equals(y) iff y.equals(x).

* Transitive: if x.equals(y) and y.equals(z), then x.equals(z).
¢ Non-null: x.equals (null) iS false.

do x and y refer to

the same object?
Default implementation (inherited from object). (x == y)
Customized implementations. Integer, Double, String, URI, Date, ...
User-defined implementations. Some care needed.

» hash functions

Implementing equals: phone numbers

Seems easy, but requires some care.

public class Record

{
private final String name;
private final int id;
private final double value;

public boolean equals(Record that)
{
return (this.id == that.id) &&
(this.value == that.value) && <«
(this.equals (that.name)) ;

check that all significant
fields are the same

Implementing equals: phone numbers

Seems easy, but requires some care.

no safe way fo use equals () with inheritance

public final class Record
{

private final String name;
private final int id; > must be Object.

private final double value; / Why? Experts still debate.

public boolean equals (Object y)
{

if (y == this) return true; <«—+— optimize for frue object equality
if (y == null) return false; <«<—t— check for null
if (y.getClass() != this.getClass())

<«—F— objects must be in the same class
return false;

Record that = (Record) y;

return (this.id == that.id) &&
(this.value == that.value) && <«—+— check that all significant
(this.equals (that.name)) ; fields are the same

Java's hash code conventions

All Java classes have a method hashcode (), which returns an int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).
Highly desirable. If 1x.equals(y), then (x.hashCode() '= y.hashCode()).
x y
| |
x.hashCode () y.hashCode ()

Default implementation (inherited from object). Memory address of x.

Customized implementations. Integer, Double, String, URI, Date, ...
User-defined types. Users are on their own.

Computing the hash function

Idealistic goal. Scramble the keys uniformly.
* Efficiently computable.
* Each table index equally likely for each key.

\ thoroughly researched problem,

still problematic in practical applications
Ex 1. Phone numbers.
* Bad: first three digits.
* Better: last three digits.

Ex 2. Social Security numbers. <—— 573 = california, 574 = Alaska
e Bad: first three dlngS (assigned in chronological order within geographic region)

* Better: last three digits.

Practical challenge. Need different approach for each key type.

Implementing hash code: integers and doubles

public final class Integer public final class Double
{ {

private final int value; private final double value;

public int hashCode () public int hashCode ()

{ return value; } {
} long bits = doubleTolLongBits (value) ;
return (int) (bits * (bits >>> 32));

2 |

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

Implementing hash code: strings

public final class String
{

private final char[] s;

public int hashCode ()

{
int hash = 0;

for (int i = 0; i < length(); i++)

hash = s[i] + (31 * hash);

return hash; \
}

ith character of s

* Horner's method to hash string of length L: L multiplies/adds.
* Equivalent to h=31-1-g0 + +312-gt3 + 311-gt2 + 310. 641

EX String s = "call";

int code = s.hashCode(); <«—— 3045982 = 99-313+97-31? + 108-31' + 108:31°

Implementing hash code: user-defined types

public final class Record
{
private String name;
private int id;
private double value;

public Record(String name, int id, double value)

{ /* as before */ }

public boolean equals (Object y)
{ /* as before */ }

public int hashCode ()

{ / nonzero constant

int hash = 17;

hash = 31*hash + name.hashCode() ;

hash = 31*hash + id;

hash = 31l*hash + Double.valueOf (value) .hashCode() ;

return hash;

} typically a small prime

=108 + 31- (108 + 31 - (97 + 31 (99)))

A poor hash code

Ex. Strings (in Java 1.1).
* For long strings: only examine 8-9 evenly spaced characters.
* Benefit: saves time in performing arithmetic.

public int hashCode ()
{
int hash = 0;
int skip = Math.max (1, length() / 8);
for (int i = 0; i < length(); i += skip)
hash = s[i] + (37 * hash);
return hash;

» Downside: great potential for bad collision patterns.

http://www.cs.princeton.edu/introcs/13loop/Hello.java
http://www.cs.princeton.edu/introcs/131loop/Hello.class
http://www.cs.princeton.edu/introcs/13loop/Hello.html
http://www.cs.princeton.edu/introcs/13loop/index.html
http://www.cs.princeton.edu/introcs/12type/index.html

Hash code design

"Standard" recipe for user-defined types.

» Combine each significant field using the 31x +y rule.
* If field is a primitive type, use built-in hash code.

* If field is an array, apply to each element.

 If field is an object, apply rule recursively.

In practice. Recipe works reasonably well; used in Java libraries.
In theory. Need a theorem for each type to ensure reliability.

Basic rule. Need to use the whole key to compute hash code;
consult an expert for state-of-the-art hash codes.

Hash functions

Hash code. An int between -23: and 23:-1.
Hash function. An int between o and M-1 (for use as array index).

typically a prime or power of 2

Bug. private int hash (Key key)
{ return key.hashCode() % M; }

{ return Math.abs (key.hashCode()) % M;

1-in-a billion bng private int hash(Key key) | 14 Separate Chaining
}

private int hash (Key key)

Correct.
{ return (key.hashCode() & Ox7ffffffff) % M; }

17 18
Helpful results from probability theory Collisions
Uniform hashing assumption. Each key is equally likely to hash to an integer Collision. Two distinct keys hashing to same index.
between 0 and M-1. * Birthday problem = can't avoid collisions unless you have

a ridiculous amount (quadratic) of memory.

* Coupon collector + load balancing = collisions will be evenly distributed.
Bins and balls. Throw balls uniformly at random into M bins.

Challenge. Deal with collisions efficiently.

| Lufa] | [3
[) []
[] [] ele [} L AN) [)
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
Birthday problem. Expect two balls in the same bin after ~1\/x M / 2 tosses. pashtien) =3 2
\ 3 wign
2?
Coupon collector. Expect every bin has = 1 ball after ~ M In M tosses. v
P P 4 hash ("times") = 3 /

Load balancing. After M fosses, expect most loaded bin has
O(log M / log log M) balls.

Collision resolution: separate chainhing

Separate chaining. [H. P. Luhn, IBM 1953]
Put keys that collide in a list associated with index.

key hash

S 2

st null

P

[L[={P[]
(R el R

mr- © T » X M I A R > m
o w w s~ O N O B~ B B O O

Hash table of size M = 5

Separate chaining ST: Java implementation

public class SeparateChainingST<Key, Value>
{

private int M = 8191;

private Node[] st = new Node[M];

private class Node
{
private Object key;
private Object val;
private Node next;
public Node (Key key, Value val, Node next)
{

this.key = key;
this.val = val;
this.next = next;

}

private int hash (Key key)
{ /* as before */)}

public void put(Key key, Value val)
{ /* see next slide */ }

public Value get (Key key)
{ /* see next slide */ }

array doubling
code omitted

ho generic array

creation in Java

23

Separate chaining ST

Use an array of M < N linked lists.

* Hash: map key to integer i between O and M-1.

e Insert: put at front of ith chain (if not already there).
* Search: only need to search it chain.

key hash
S 2

(Al el

st null

X {17

F T

[L{eT]
(o F=R [e R

m - 8 X » X mM I AR > m
o w w s~ ON O &~ A A O O

Hash table of size M = 5

Separate chaining ST: Java implementation (put and get)

public void put(Key key, Value val)

{
int i = hash(key);
for (Node x = st[i]; x != null; x = x.next)
if (key.equals(x.key))
{ x.val = val; return; }
st[i] = new Node (key, value, first);
} ~
public Value get (Key key) P
{
int i = hash(key);
for (Node x = st[i]; x !'= null; x = x.next)
if (key.equals(x.key))
return (Value) x.val;
return null;
}

22

\ identical to sequential search,

/ except hash to pick a list

24

Analysis of separate chaining

Proposition. Under uniform hashing assumption, probability that the number
of keys in each list is within a constant factor of N/M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

10,.12511...
_—(10,) 125

-0
| | | |

0 10 20 30
Binomial distribution (N = 104, M =103)

Consequence. Number of compares for search/insert is proportional to N/M.

* M too large = too many empty chains. T

* M too small = chains too long. A ilmes e
. . . sequential search

* Typical choice: M ~N/5 = constant-time ops.

25

Collision resolution: open addressing

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

st[0] jocularly
st[1] null
st[2] listen
st[3] suburban
null
st[30001] browsing

linear probing (M = 30001, N = 15000)

27

» linear probing

Linear probing

Use an array of size M > N.

* Hash: map key to integer i between O and M-1.
 Insert: put inslotiif free; if not try i+1, i+2, etc.
 Search: search slot i; if occupied but no match, try i+l, i+2, etc.

1
1
1
17}
]
1
1
>

8 9 10 il 12

Q

=

o
[]

1

8 9 10 11 12

8 9 10 11 12

26

insert I
hash(T) = 11

insert N
hash(N) = 8

28

Linear probing: trace of standard indexing client

key hash 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19
S 6 3
E 10 Lo E

entries in red 1

are new, \
A 4 s
s R
R 16 entries in gray 3
c L are untouched

c 5 entries in black 5

are probes ~
H 4 A C S };
E 10 (E)
X 15 X
A 4

M
M1 9
P 16 RLE
L 6 oML
E ~— keys[]
E 10 @ ~— vals[]
Linear probing hash table of size M = 20
Clustering

Cluster. A contiguous block of items.

Observation. New keys likely to hash into middle of big clusters.

Ooon B [DoEEEn mEn

29

Linear probing ST implementation

public class LinearProbingST<Key, Value>

{
private int M = 30001;
private Value[] vals = (Value[]) new Object[M];
private Key[] keys (Key[1) new Object[M];

private int hash(Key key) { /* as before */ }

public void put(Key key, Value val)
{

int i;
for (i = hash(key); keys[i] !'= null; i = (i+l) % M)
if (key.equals(keys[i]))

break;
vals[i] = val;
keys[i] = key;

}

public Value get(Key key)
{

for (int i = hash(key); keys[i] !'= null; i = (i+l) % M)

if (key.equals(keys[i]))
return vals[i];
return null;

Knuth's parking problem

array doubling
code omitted

Model. Cars arrive at one-way street with M parking spaces. Each desires a

random space i: if space i is taken, try i+1, i+2, ..

Q. What is mean displacement of a car?

Empty. With M/2 cars, mean displacement is ~ 3/2.

Full. With M cars, mean displacement is ~ /x M / 8

30

32

Analysis of linear probing

Proposition. Under uniform hashing assumption, the average number of
probes in a hash table of size M that contains N = o M keys is:

() ()

search hit search miss / insert

Pf. [Knuth 1962] A landmark in analysis of algorithms.

Parameters.

* M too large = too many empty array entries.

* M too small = search time blows up.

* Typical choice: o = N/M < 1/2 = constant-time ops.

Algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker.
A. Surprising situations: denial-of-service attacks.

Bucker
0
2 malicious adversary learns your hash function
2 (e.g., by reading Java APT) and causes a big pile-up
3 in single slot that grinds performance to a halt
4

[

Real-world exploits. [Crosby-Wallach 2003]

* Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

* Perl 5.8.0: insert carefully chosen strings into associative array.

e Linux 2.4.20 kernel: save files with carefully chosen names.

33

B35

ST implementations: summary

guarantee

sequential search

implementation iteration?
search insert delete | search hit insert delete
N N N N/2 N N/2

average case

ordered

operations
on keys

1
(linked list) ne equais
binary search
T
ey IgN N N IgN N/2 N/2 yes compareTo ()
BST N N N 138IgN 138IgN ? yes compareTo ()
red-black tree 2IgN 2IgN 2IgN 100IgN 100IgN 100IgN yes compareTo ()
hashing IgN* g N* Ig N* 3-5% 3-5% 3-5% no equals ()
* under uniform hashing assumption
Algorithmic complexity attack on Java
Goal. Find family of strings with the same hash code.
Solution. The base-31 hash code is part of Java's string APL.
key hashCode () key key hashCode ()
"Aa" "AahahaRa" -540425984 "BBAaRaRa" -540425984
"BB" "AaAaAaBB" -540425984 "BBAaAaBB" -540425984
"AahaBBAa" -540425984 "BBAaBBAa" -540425984
"AaAaBBBB" -540425984 "BBAaBBBB" -540425984
"AaBBAaRa" -540425984 "BBBBAaRa" -540425984
"AaBBAaBB" -540425984 "BBBBAaBB" -540425984
"AaBBBBAa" -540425984 "BBBBBBAa" -540425984
"AaBBBBBB" -540425984 "BBBBBBBB" -540425984

2N strings of length 2N that hash to same value!

34

36

Diversion: one-way hash functions

One-way hash function. Hard to find a key that will hash to a desired value,
or to find two keys that hash to same value.

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160.

known to be insecure

String password = args|[0];
MessageDigest shal = MessageDigest.getInstance ("SHAl") ;
byte[] bytes = shal.digest (password) ;

/* prints bytes as hex string */

Applications. Digital fingerprint, message digest, storing passwords.
Caveat. Too expensive for use in ST implementations.

37

Hashing: variations on the theme
Many improved versions have been studied.

Two-probe hashing. (separate chaining variant)
* Hash to two positions, put key in shorter of the two chains.
* Reduces average length of the longest chain to log log N.

Double hashing. (linear probing variant)

* Use linear probing, but skip a variable amount, not just 1 each time.
 Effectively eliminates clustering.

* Can allow table to become nearly full.

39

Separate chaining vs. linear probing

Separate chaining.

* Easier to implement delete.

* Performance degrades gracefully.

* Clustering less sensitive to poorly-designed hash function.

Linear probing.
* Less wasted space.
* Better cache performance.

38

Hashing vs. balanced frees

Hashing.

 Simpler to code.

* No effective alternative for unordered keys.

* Faster for simple keys (a few arithmetic ops versus log N compares).
* Better system support in Java for strings (e.g., cached hash code).

Balanced trees.

* Stronger performance guarantee.

» Support for ordered ST operations.

* Easier to implement compareTo () correctly than equals() and hashCode ().

Java system includes both.

* Red-black trees: java.util.TreeMap, java.util.TreeSet.

O Hashing: java.util.HashMap, java.util.IdentityHashMap.

40

Searching challenge 1

Problem. Index for a PC or the web.
Assumptions. 1 billion++ words to index.

Spotlight searching challenge

| Show All (200)

Top Hit [§ 10Hashing

Documents =] mobydick.txt
=] movies.txt
=) Papers/Abstracts
=) score.card.txt
2| Requests
Mail Messages */ Re: Draft of lecture on symb...

*/ SODA 07 Final Accepts
. SODA 07 Summary
*| Got-it

. . * No Subject
» applications
PDF Documents 7 08BinarySearchTrees.pdf

¥ 07SymbolTables.pdf

= 07SymbolTables.pdf

¥ 06PriorityQueues.pdf

= 06PriorityQueues.pdf
Presentations |g] 10Hashing

] 07SymbolTables

5] OBPriorityQueues

41

Index for a PC or the web Searching challenge 2
Solution. Symbol table with: Problem. Sparse matrix-vector multiplication.
* Key = query string. Assumptions. Matrix dimension is 10,000; average nonzeros per row ~ 10.

* Value = set of pointers to files.

ST<String, SET<File>> st = new ST<String, SET<File>>();

for (File file : filesystem) (e} [] e o [J
{ ™ e o o e
In in = new In(file); e Se b ° s
String[] words = in.readAll().split("\\s+"); : :
for (int i = 0; i < words.length; i++) [] [] e o o []
{ <—t— build index (e} o [} o
String s = words[i]; L ° .. LA : :
if (!st.contains(s)) [} [] [) []
st.put(s, new SET<File>()); [) e o o []

SET<File> files = st.get(s); a * x = b

files.add(file);

SET<File> files = st.get(query):; process lookup
for (File file : files) ... request

43

Vectors and matrices

Vector. Ordered sequence of N real numbers.
Matrix. N-by-N table of real numbers.

vector operations

a=[0315], b=[122]
a+b =[-1 5 17]
aob = 0-D+(3-2)+ 052 = 36

la| = ao a = +/0*+32+15% = 3426

matrix-vector multiplication

0o 1 1 -1
4 2l x |2 =|2
3 15 2 36

45

Vector representations

1D array representation.
* Constant time access to elements.
* Space proportional o N.

0 1 2 3 4
[0.0]0.0].36].36] .18]

Symbol table representation.
« Efficient access to elements.
* Space proportional fo humber of nonzeros.

key value

St‘ﬂ 2] 36 [3] .36 [4] .18 ‘

47

Sparse vectors and matrices

Sparse vector. An N-dimensional vector is sparse if it contains O(1) nonzeros.
Sparse matrix. An N-by-N matrix is sparse if it contains O(N) nonzeros.

Property. Large matrices that arise in practice are sparse.

[0 0 .36 .36 .18 |

0 .90 0 0 0
0 0 .36 .36 .18
0 0 0 .90 0
.90 0 0 0 0
A7 0 .47 0 0
46
Sparse vector data type
public class SparseVector
{
private int N; // length

private ST<Integer, Double> st; // the elements

public SparseVector (int N)
{ <«——F— all Os vector
this.N = N;
this.st = new ST<Integer, Double>();
}

public void put(int i, double value)
{

if (value == 0.0) st.remove(i); <«——+F a[i] = value
else st.put(i, value);

}

public double get(int i)
{
if (st.contains(i)) return st.get(i):; < L return a[i]
else return 0.0;

48

Sparse vector data type (cont) Matrix representations
2D array matrix representation.

public double dot(SparseVector that) * Constant time access to elements.

{
double sum = 0.0;
for (int i : this.st)
if (that.st.contains(i))
sum += this.get(i) * that.get(i);
return sum;
}

public double norm()
{ return Math.sqrt(this.dot(this)); }

public SparseVector plus(SparseVector that)
{
SparseVector c = new SparseVector (N);
for (int i : this.st)
c.put(i, this.get(i));
for (int i : that.st)
c.put(i, that.get(i) + c.get(i));
return c;

—— dot product

L 2-norm

—— vector sum

Sparse matrix data type

public class SparseMatrix

{

private final int N; // length

private SparseVector[] rows; // the elements

public SparseMatrix(int N)

{
this.N = N;
this.rows = new SparseVector[N];
for (int i = 0; i < N; i++)
this.rows[i] = new SparseVector(N);
}

public void put(int i, int j, double value)
{ rows[i].put(j, value); }

public double get(int i, int j)
{ return rows[i].get(j); }

public SparseVector times (SparseVector x)
{
SparseVector b = new SparseVector (N) ;
for (int i = 0; i < N; i++)
b.put(i, rows[i].dot(x));
return b;

49

—— all Os matrix

L a[i][j] = value

L return a[i] []]

—— matrix-vector

multiplication

51

* Space proportional o N2,

Sparse representation. Represent each row of matrix as a sparse vector!

» Efficient access to elements.

* Space proportional o humber of nonzeros.

array of double[Jobjects (dense representation)

0 1 2 3 4
[0.0[.90]0.0]0.0]0.0]

0 1 2 3 4
2/ «[0.0]0.0] .36] .36] .18 |

0 1 2 3 4
[0.0]0.0]0.0].90]0.0]

5w N RO

0 1 2 3 4
[.90]0.0]0.0[0.0][0.0]

0 1 2 3 4
[.45]0.0].45]0.0]0.0]

a[4112]

array of SparseVector objects (sparse representation)

™

"~ e] BLos] [4] .fs\”

key value

mdu/vmmvm
symbol-tab
objects

A w N RO

g
R

50

