
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · October 16, 2008 8:03:18 AM

Hashing

References:
 Algorithms in Java, Chapter 14
 http://www.cs.princeton.edu/algs4/44hash

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

2

Optimize judiciously

Reference: Effective Java by Joshua Bloch

“ More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single reason—
including blind stupidity. ” — William A. Wulf

“ We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. ” — Donald E. Knuth

“ We follow two rules in the matter of optimization:
 Rule 1: Don't do it.
 Rule 2 (for experts only). Don't do it yet - that is, not until
 you have a perfectly clear and unoptimized solution. ”
 — M. A. Jackson

ST implementations: summary

Q. Can we do better?
A. Yes, but with different access to the data.

3

implementation

guarantee average case
ordered

iteration?
operations

on keys
search insert delete search hit insert delete

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

4

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

Issues.

• Computing the hash function.

• Equality test: Method for checking whether two keys are equal.

hash("it") = 3

0

1

2

3 "it"

4

5

5

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

Issues.

• Computing the hash function.

• Equality test: Method for checking whether two keys are equal.

• Collision resolution: Algorithm and data structure
to handle two keys that hash to the same array index.

Classic space-time tradeoff.

• No space limitation: trivial hash function with key as index.

• No time limitation: trivial collision resolution with sequential search.

• Limitations on both time and space: hashing (the real world).

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

6

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

7

Equality test

All Java classes have a method equals(), inherited from Object.

Java requirements. For any references x, y and z:

• Reflexive: x.equals(x) is true.

• Symmetric: x.equals(y) iff y.equals(x).

• Transitive: if x.equals(y) and y.equals(z), then x.equals(z).

• Non-null: x.equals(null) is false.

Default implementation (inherited from Object). (x == y)
Customized implementations. Integer, Double, String, URI, Date, …
User-defined implementations. Some care needed.

do x and y refer to
the same object?

Seems easy, but requires some care.

public class Record
{
 private final String name;
 private final int id;
 private final double value;
 ...

 public boolean equals(Record that)
 {
 return (this.id == that.id) &&
 (this.value == that.value) &&
 (this.equals(that.name));
 }
}

Implementing equals: phone numbers

8

check that all significant
fields are the same

Seems easy, but requires some care.

public final class Record
{
 private final String name;
 private final int id;
 private final double value;
 ...

 public boolean equals(Object y)
 {
 if (y == this) return true;

 if (y == null) return false;

 if (y.getClass() != this.getClass())
 return false;

 Record that = (Record) y;
 return (this.id == that.id) &&
 (this.value == that.value) &&
 (this.equals(that.name));
 }
}

Implementing equals: phone numbers

9

check for null

optimize for true object equality

no safe way to use equals() with inheritance

must be Object.
Why? Experts still debate.

objects must be in the same class

check that all significant
fields are the same

10

Computing the hash function

Idealistic goal. Scramble the keys uniformly.

• Efficiently computable.

• Each table index equally likely for each key.

Ex 1. Phone numbers.

• Bad: first three digits.

• Better: last three digits.

Ex 2. Social Security numbers.

• Bad: first three digits.

• Better: last three digits.

Practical challenge. Need different approach for each key type.

573 = California, 574 = Alaska
(assigned in chronological order within geographic region)

thoroughly researched problem,
still problematic in practical applications

11

Java’s hash code conventions

All Java classes have a method hashCode(), which returns an int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable. If !x.equals(y), then (x.hashCode() != y.hashCode()).

Default implementation (inherited from Object). Memory address of x.
Customized implementations. Integer, Double, String, URI, Date, …
User-defined types. Users are on their own.

x.hashCode()

x

y.hashCode()

y

12

Implementing hash code: integers and doubles

public final class Integer
{
 private final int value;
 ...

 public int hashCode()
 { return value; }
}

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

public final class Double
{
 private final double value;
 ...

 public int hashCode()
 {
 long bits = doubleToLongBits(value);
 return (int)(bits ^ (bits >>> 32));
 }
}

• Horner's method to hash string of length L: L multiplies/adds.

• Equivalent to h = 31L-1 · s0 + … + 312 · sL-3 + 311 · sL-2 + 310 · sL-1.

Ex.

public final class String
{
 private final char[] s;
 ...

 public int hashCode()
 {
 int hash = 0;
 for (int i = 0; i < length(); i++)
 hash = s[i] + (31 * hash);
 return hash;
 }
}

13

Implementing hash code: strings

3045982 = 99·313 + 97·312 + 108·311 + 108·310

 = 108 + 31· (108 + 31 · (97 + 31 · (99)))

ith character of s

String s = "call";
int code = s.hashCode();

char Unicode

… …

'a' 97

'b' 98

'c' 99

… ...

Ex. Strings (in Java 1.1).

• For long strings: only examine 8-9 evenly spaced characters.

• Benefit: saves time in performing arithmetic.

• Downside: great potential for bad collision patterns.

14

A poor hash code

public int hashCode()
{
 int hash = 0;
 int skip = Math.max(1, length() / 8);
 for (int i = 0; i < length(); i += skip)
 hash = s[i] + (37 * hash);
 return hash;
}

http://www.cs.princeton.edu/introcs/13loop/Hello.java
http://www.cs.princeton.edu/introcs/13loop/Hello.class
http://www.cs.princeton.edu/introcs/13loop/Hello.html
http://www.cs.princeton.edu/introcs/13loop/index.html
http://www.cs.princeton.edu/introcs/12type/index.html

15

Implementing hash code: user-defined types

public final class Record
{
 private String name;
 private int id;
 private double value;

 public Record(String name, int id, double value)
 { /* as before */ }

 ...

 public boolean equals(Object y)
 { /* as before */ }

 public int hashCode()
 {
 int hash = 17;
 hash = 31*hash + name.hashCode();
 hash = 31*hash + id;
 hash = 31*hash + Double.valueOf(value).hashCode();
 return hash;
 }
} typically a small prime

nonzero constant

16

Hash code design

"Standard" recipe for user-defined types.

• Combine each significant field using the 31x + y rule.

• If field is a primitive type, use built-in hash code.

• If field is an array, apply to each element.

• If field is an object, apply rule recursively.

In practice. Recipe works reasonably well; used in Java libraries.
In theory. Need a theorem for each type to ensure reliability.

Basic rule. Need to use the whole key to compute hash code;
consult an expert for state-of-the-art hash codes.

Hash code. An int between -231 and 231-1.
Hash function. An int between 0 and M-1 (for use as array index).

Bug.

1-in-a billion bug.

Correct.

 private int hash(Key key)
 { return key.hashCode() % M; }

17

Hash functions

 private int hash(Key key)
 { return (key.hashCode() & 0x7ffffffff) % M; }

 private int hash(Key key)
 { return Math.abs(key.hashCode()) % M; }

typically a prime or power of 2

18

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

19

Helpful results from probability theory

Uniform hashing assumption. Each key is equally likely to hash to an integer
between 0 and M-1.

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after ~ π M / 2 tosses.

Coupon collector. Expect every bin has ≥ 1 ball after ~ M ln M tosses.

Load balancing. After M tosses, expect most loaded bin has
Θ(log M / log log M) balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

20

Collisions

Collision. Two distinct keys hashing to same index.

• Birthday problem ⇒ can't avoid collisions unless you have
a ridiculous amount (quadratic) of memory.

• Coupon collector + load balancing ⇒ collisions will be evenly distributed.

Challenge. Deal with collisions efficiently.

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

Separate chaining. [H. P. Luhn, IBM 1953]
Put keys that collide in a list associated with index.

21

Collision resolution: separate chaining

Hash table of size M = 5

st
0

1

2

3

4

S 0X 7

E 12A 8

P 10L 11

R 3C 4H 5M 9

key hash value

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

null

Use an array of M < N linked lists.

• Hash: map key to integer i between 0 and M-1.

• Insert: put at front of ith chain (if not already there).

• Search: only need to search ith chain.

22

Separate chaining ST

Hash table of size M = 5

st
0

1

2

3

4

S 0X 7

E 12A 8

P 10L 11

R 3C 4H 5M 9

key hash value

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

null

public class SeparateChainingST<Key, Value>
{
 private int M = 8191;
 private Node[] st = new Node[M];

 private class Node
 {
 private Object key;
 private Object val;
 private Node next;
 public Node(Key key, Value val, Node next)
 {
 this.key = key;
 this.val = val;
 this.next = next;
 }
 }

 private int hash(Key key)
 { /* as before */ }

 public void put(Key key, Value val)
 { /* see next slide */ }

 public Value get(Key key)
 { /* see next slide */ }
}

Separate chaining ST: Java implementation

23

no generic array
creation in Java

array doubling
code omitted

Separate chaining ST: Java implementation (put and get)

24

identical to sequential search,
except hash to pick a list

 public void put(Key key, Value val)
 {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next)
 if (key.equals(x.key))
 { x.val = val; return; }
 st[i] = new Node(key, value, first);
 }

 public Value get(Key key)
 {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next)
 if (key.equals(x.key))
 return (Value) x.val;
 return null;
 }

Proposition. Under uniform hashing assumption, probability that the number
of keys in each list is within a constant factor of N/M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

Consequence. Number of compares for search/insert is proportional to N/M.

• M too large ⇒ too many empty chains.

• M too small ⇒ chains too long.

• Typical choice: M ~ N/5 ⇒ constant-time ops.
25

Analysis of separate chaining

Binomial distribution (N = 104 , M = 103)

.125

0

0 10 20 30

(10, .12511...)

M times faster than
sequential search

26

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

27

Collision resolution: open addressing

null

null

linear probing (M = 30001, N = 15000)

jocularly

listen

suburban

browsing

st[0]

st[1]

st[2]

st[30001]

st[3]

28

Linear probing

Use an array of size M > N.

• Hash: map key to integer i between 0 and M-1.

• Insert: put in slot i if free; if not try i+1, i+2, etc.

• Search: search slot i; if occupied but no match, try i+1, i+2, etc.

- - - S H - - A C E R - -

0 1 2 3 4 5 6 7 8 9 10 11 12

insert I
hash(I) = 11

- - - S H - - A C E R I -

0 1 2 3 4 5 6 7 8 9 10 11 12

insert N
hash(N) = 8

- - - S H - - A C E R I N

0 1 2 3 4 5 6 7 8 9 10 11 12

29

Linear probing: trace of standard indexing client

0 1 2 3 4 5 6 7 8 9
 S
 0
 S E
 0 1
 A S E
 2 0 1
 A S E R
 2 0 1 3
 A C S E R
 2 5 0 1 3
 A C S H E R
 2 5 0 5 1 3
 A C S H E R
 2 5 0 5 6 3
 A C S H E X R
 2 5 0 5 6 7 3
 A C S H E X R
 8 5 0 5 6 7 3
 M A C S H E X R
 9 8 5 0 5 6 7 3
 M A C S H E X R P
 9 8 5 0 5 6 7 3
 M A C S H L E X R P
 9 8 5 0 5 6 7 3
 M A C S H L E X R P
 9 8 5 0 5 7 3

10 11 12 13 14 15 16 17 18 19

11 12

11 16

16

16

Linear probing hash table of size M = 20

entries in gray
are untouched

entries in red
are new

entries in black
are probes

key hash value

S 6 0

E 10 1

A 4 2

R 16 3

C 5 4

H 4 5

E 10 6

X 15 7

A 4 8

M 1 9

P 16 10

L 6 11

E 10 12 keys[]
vals[]

public class LinearProbingST<Key, Value>
{
 private int M = 30001;
 private Value[] vals = (Value[]) new Object[M];
 private Key[] keys = (Key[]) new Object[M];

 private int hash(Key key) { /* as before */ }

 public void put(Key key, Value val)
 {
 int i;
 for (i = hash(key); keys[i] != null; i = (i+1) % M)
 if (key.equals(keys[i]))
 break;
 vals[i] = val;
 keys[i] = key;
 }

 public Value get(Key key)
 {
 for (int i = hash(key); keys[i] != null; i = (i+1) % M)
 if (key.equals(keys[i]))
 return vals[i];
 return null;
 }
}

Linear probing ST implementation

30

array doubling
code omitted

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.

31

Clustering

Model. Cars arrive at one-way street with M parking spaces. Each desires a
random space i: if space i is taken, try i+1, i+2, …

Q. What is mean displacement of a car?

Empty. With M/2 cars, mean displacement is ~ 3/2.
Full. With M cars, mean displacement is ~ π M / 8

32

Knuth's parking problem

displacement =3

Proposition. Under uniform hashing assumption, the average number of
probes in a hash table of size M that contains N = α M keys is:

Pf. [Knuth 1962] A landmark in analysis of algorithms.

Parameters.

• M too large ⇒ too many empty array entries.

• M too small ⇒ search time blows up.

• Typical choice: α = N/M < 1/2 ⇒ constant-time ops.

33

Analysis of linear probing

∼ 1
2

(
1 +

1
1− α

)
∼ 1

2

(
1 +

1
(1− α)2

)
search hit search miss / insert

ST implementations: summary

34

implementation

guarantee average case
ordered

iteration?
operations

on keys
search insert delete search hit insert delete

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

hashing lg N* lg N* lg N* 3-5* 3-5* 3-5* no equals()

* under uniform hashing assumption

35

Algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker.
A. Surprising situations: denial-of-service attacks.

Real-world exploits. [Crosby-Wallach 2003]

• Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

• Perl 5.8.0: insert carefully chosen strings into associative array.

• Linux 2.4.20 kernel: save files with carefully chosen names.

malicious adversary learns your hash function
(e.g., by reading Java API) and causes a big pile-up

in single slot that grinds performance to a halt

Goal. Find family of strings with the same hash code.
Solution. The base-31 hash code is part of Java's string API.

36

Algorithmic complexity attack on Java

2N strings of length 2N that hash to same value!

key hashCode()

"AaAaAaAa" -540425984

"AaAaAaBB" -540425984

"AaAaBBAa" -540425984

"AaAaBBBB" -540425984

"AaBBAaAa" -540425984

"AaBBAaBB" -540425984

"AaBBBBAa" -540425984

"AaBBBBBB" -540425984

key hashCode()

"BBAaAaAa" -540425984

"BBAaAaBB" -540425984

"BBAaBBAa" -540425984

"BBAaBBBB" -540425984

"BBBBAaAa" -540425984

"BBBBAaBB" -540425984

"BBBBBBAa" -540425984

"BBBBBBBB" -540425984

key hashCode()

"Aa" 2112

"BB" 2112

37

Diversion: one-way hash functions

One-way hash function. Hard to find a key that will hash to a desired value,
or to find two keys that hash to same value.

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160.

Applications. Digital fingerprint, message digest, storing passwords.
Caveat. Too expensive for use in ST implementations.

known to be insecure

String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);

/* prints bytes as hex string */

Separate chaining vs. linear probing

Separate chaining.

• Easier to implement delete.

• Performance degrades gracefully.

• Clustering less sensitive to poorly-designed hash function.

Linear probing.

• Less wasted space.

• Better cache performance.

38

Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. (separate chaining variant)

• Hash to two positions, put key in shorter of the two chains.

• Reduces average length of the longest chain to log log N.

Double hashing. (linear probing variant)

• Use linear probing, but skip a variable amount, not just 1 each time.

• Effectively eliminates clustering.

• Can allow table to become nearly full.

39

Hashing vs. balanced trees

Hashing.

• Simpler to code.

• No effective alternative for unordered keys.

• Faster for simple keys (a few arithmetic ops versus log N compares).

• Better system support in Java for strings (e.g., cached hash code).

Balanced trees.

• Stronger performance guarantee.

• Support for ordered ST operations.

• Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.

• Red-black trees: java.util.TreeMap, java.util.TreeSet.

• Hashing: java.util.HashMap, java.util.IdentityHashMap.

40

41

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

Searching challenge 1

Problem. Index for a PC or the web.
Assumptions. 1 billion++ words to index.

42

Solution. Symbol table with:

• Key = query string.

• Value = set of pointers to files.

43

Index for a PC or the web

 ST<String, SET<File>> st = new ST<String, SET<File>>();
 for (File file : filesystem)
 {
 In in = new In(file);
 String[] words = in.readAll().split("\\s+");
 for (int i = 0; i < words.length; i++)
 {
 String s = words[i];
 if (!st.contains(s))
 st.put(s, new SET<File>());
 SET<File> files = st.get(s);
 files.add(file);
 }
 }

 SET<File> files = st.get(query);
 for (File file : files) ...

build index

process lookup
request

Problem. Sparse matrix-vector multiplication.
Assumptions. Matrix dimension is 10,000; average nonzeros per row ~ 10.

Searching challenge 2

44

 A * x = b

Vector. Ordered sequence of N real numbers.
Matrix. N-by-N table of real numbers.

€

0 1 1
2 4 −2
0 3 15

















 ×
−1
2
2

















=

4
2

36

















€

a = 0 3 15 [] , b = −1 2 2 []
a + b = −1 5 17 []
a o b = (0 ⋅ −1) + (3 ⋅ 2) + (15 ⋅ 2) = 36

a = a o a = 02 + 32 + 152 = 3 26

45

Vectors and matrices

vector operations

matrix-vector multiplication

Sparse vector. An N-dimensional vector is sparse if it contains O(1) nonzeros.
Sparse matrix. An N-by-N matrix is sparse if it contains O(N) nonzeros.

Property. Large matrices that arise in practice are sparse.

46

Sparse vectors and matrices


0 .90 0 0 0
0 0 .36 .36 .18
0 0 0 .90 0

.90 0 0 0 0

.47 0 .47 0 0



[
0 0 .36 .36 .18

]

1D array representation.

• Constant time access to elements.

• Space proportional to N.

Symbol table representation.

• Efficient access to elements.

• Space proportional to number of nonzeros.

47

Vector representations

Sparse matrix representations

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects (dense representation) array of SparseVector objects (sparse representation)

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

st
.363 .184.362

key value

48

Sparse vector data type

public class SparseVector
{
 private int N; // length
 private ST<Integer, Double> st; // the elements

 public SparseVector(int N)
 {
 this.N = N;
 this.st = new ST<Integer, Double>();
 }

 public void put(int i, double value)
 {
 if (value == 0.0) st.remove(i);
 else st.put(i, value);
 }

 public double get(int i)
 {
 if (st.contains(i)) return st.get(i);
 else return 0.0;
 }

 ...

all 0s vector

a[i] = value

return a[i]

49

Sparse vector data type (cont)

 public double dot(SparseVector that)
 {
 double sum = 0.0;
 for (int i : this.st)
 if (that.st.contains(i))
 sum += this.get(i) * that.get(i);
 return sum;
 }

 public double norm()
 { return Math.sqrt(this.dot(this)); }

 public SparseVector plus(SparseVector that)
 {
 SparseVector c = new SparseVector(N);
 for (int i : this.st)
 c.put(i, this.get(i));
 for (int i : that.st)
 c.put(i, that.get(i) + c.get(i));
 return c;
 }

}

dot product

2-norm

vector sum

50

Matrix representations

2D array matrix representation.

• Constant time access to elements.

• Space proportional to N2.

Sparse representation. Represent each row of matrix as a sparse vector!

• Efficient access to elements.

• Space proportional to number of nonzeros.

Sparse matrix representations

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects (dense representation) array of SparseVector objects (sparse representation)

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects (dense representation) array of SparseVector objects (sparse representation)

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

51

Sparse matrix data type

public class SparseMatrix
{
 private final int N; // length
 private SparseVector[] rows; // the elements

 public SparseMatrix(int N)
 {
 this.N = N;
 this.rows = new SparseVector[N];
 for (int i = 0; i < N; i++)
 this.rows[i] = new SparseVector(N);
 }

 public void put(int i, int j, double value)
 { rows[i].put(j, value); }

 public double get(int i, int j)
 { return rows[i].get(j); }

 public SparseVector times(SparseVector x)
 {
 SparseVector b = new SparseVector(N);
 for (int i = 0; i < N; i++)
 b.put(i, rows[i].dot(x));
 return b;
 }
}

all 0s matrix

a[i][j] = value

return a[i][j]

matrix-vector
multiplication

