Binary Search Trees

- binary search tree
- ordered operations
- deletion

References: Algorithms in Java, Chapter 12 http://www.cs.princeton.edu/algs4/42bst

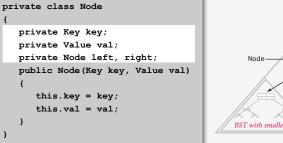
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · October 17, 2008 8:03:06 AM

BST representation in Java

A BST is a reference to a root node.

A Node is comprised of four fields:

- A key and a value.
- A reference to the left and right subtree.

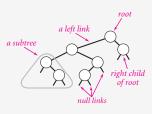


```
BST
Node
left
right
BST with smaller keys
```

Binary search trees

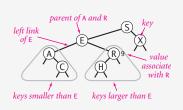
Def. A BST is a binary tree in symmetric order.

- A binary tree is either:
- Empty.
- A key-value pair and two disjoint binary trees.

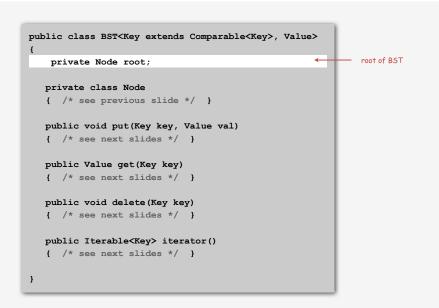


Symmetric order. Every node's key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.

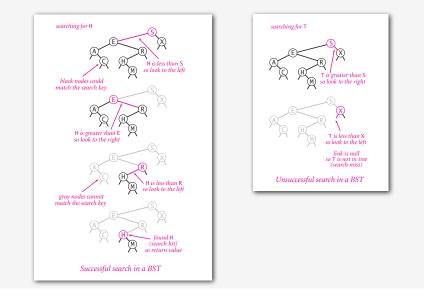


BST implementation (skeleton)



Key and Value are generic types; Key is Comparable

Get. Return value corresponding to given key, or null if no such key.



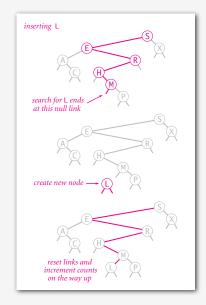
Get. Return value corresponding to given key, or null if no such key.

```
public Value get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return null;
}
```

Running time. Proportional to depth of node.

BST insert

Put. Associate value with key.



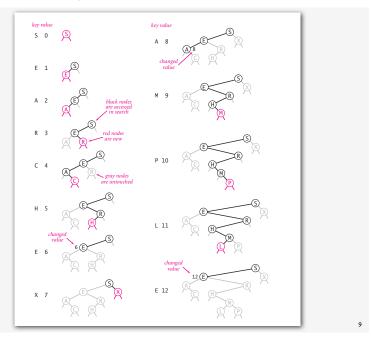
BST insert: Java implementation

Put. Associate value with key.

```
public void put(Key key, Value val)
{ root = put(root, key, val); }
private Node put(Node x, Key key, Value val)
{
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = put(x.left, key, val); ← concise, but tricky,
    else if (cmp > 0) x.right = put(x.right, key, val); ← concise, but tricky,
    recursive code;
    read carefully!
    return x;
}
```

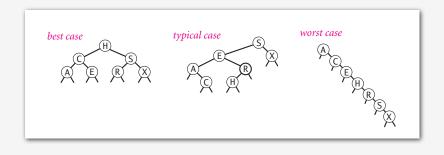
Running time. Proportional to depth of node.

BST trace: standard indexing client



Tree shape

- Many BSTs correspond to same set of keys.
- Cost of search/insert is proportional to depth of node.

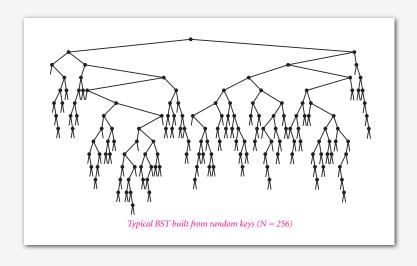


10

12

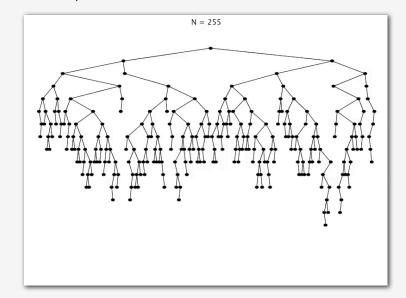
BST insertion: random order

Observation. If keys inserted in random order, tree stays flat.

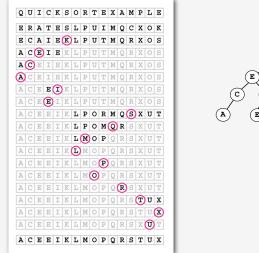


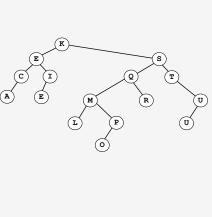
BST insertion: random order visualization

Ex. Insert keys in random order.



Correspondence between BSTs and quicksort partitioning





Remark. Correspondence is 1-1 if no duplicate keys.

13

BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of compares for a search/insert is ~ 2 ln N.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order, expected height of tree is ~ 4.311 ln N.

But... Worst-case for search/insert/height is N. (exponentially small chance when keys are inserted in random order)

ST implementations: summary

· · · · · ·	guarantee		averag	e case	ordered	operations	
implementation	search	insert	search hit	insert	ops?	on keys	
unordered array	Ν	Ν	N/2	N	no	equals()	
unordered list	Ν	Ν	N/2	N	no	equals()	
ordered array	lg N	Ν	lg N	N/2	yes	compareTo()	
ordered list	Ν	Ν	N/2	N/2	yes	compareTo()	
BST	Ν	Ν	1.39 lg N	1.39 lg N	?	compareTo()	

Next challenge. Ordered symbol tables ops.

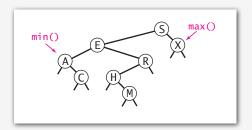
Ordered symbol table operations

Minimum. Smallest key in table. Maximum. Largest key in table. Floor. Largest key ≤ to a given key. Ceiling. Smallest key ≥ to a given key. Rank. Number of keys < than given key. Select. Key of given rank. Size. Number of keys in a given range. Iterator. All keys in order.

	keys	values
min()—	+09:00:00	Chicago
	09:00:03	Phoenix
	09:00:13	- Houston
get(09:00:13)-	09:00:59	Chicago
	09:01:10	Houston
floor(09:05:00)	+09:03:13	Chicago
	09:10:11	Seattle
select(7)-	÷09:10:25	
	09:14:25	
	09:19:32	Chicago
	09:19:46	Chicago
keys(09:15:00, 09:25:00)→	09:21:05	j-
	09:22:43	Seattle
	09:22:54	
	09:25:52	j-
ceiling(09:30:00)—	►09:35:21	Chicago
	09:36:14	Seattle
max()	≻ 09:37:44	Phoenix
<pre>size(09:15:00, 09:25:00) is rank(09:10:25) is 7</pre>	5	

Minimum and maximum

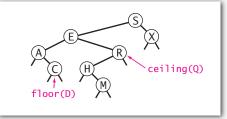
Minimum. Smallest key in table. Maximum. Largest key in table.



- Q. How to find the min / max.
- Α.

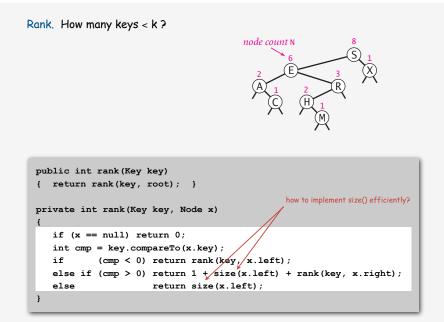
Floor and ceiling

Floor. Largest key ≤ to a given key. Ceiling. Smallest key ≥ to a given key.



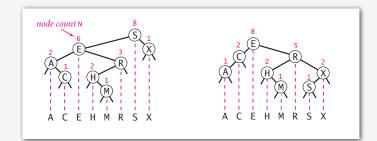
Q. How to find the floor /ceiling.

Rank



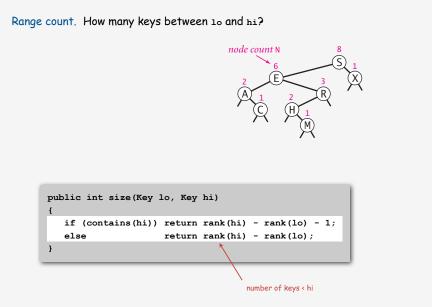
Subtree counts

In each node, we store the number of nodes in the subtree rooted at that node.

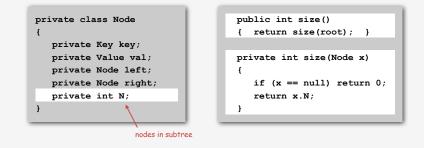


Remark. This facilitates efficient implementation of rank () and select ().

Range count



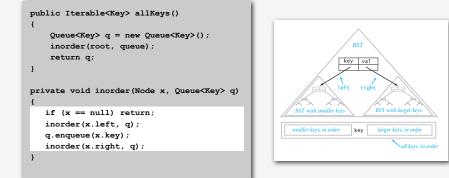
BST implementation: subtree counts



private Node put(Node x, Key key, Value val)
{
<pre>if (x == null) return new Node(key, val);</pre>
<pre>int cmp = key.compareTo(x.key);</pre>
<pre>if (cmp < 0) x.left = put(x.left, key, val);</pre>
<pre>else if (cmp > 0) x.right = put(x.right, key, val);</pre>
<pre>else if (cmp == 0) x.val = val;</pre>
<pre>x.N = 1 + size(x.left) + size(x.right);</pre>
return x;
}

Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

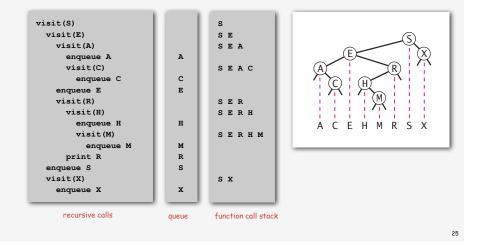


Property. Inorder traversal of a BST yields keys in ascending order.

21

Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.



ST implementations: summary

·····	guarantee			average case			ordered	operations
implementation	search	insert	delete	search hit	insert	delete	iteration?	on keys
sequential search (linked list)	N	Ν	N	N/2	Ν	N/2	no	equals()
binary search (ordered array)	lg N	Ν	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	?	yes	compareTo()

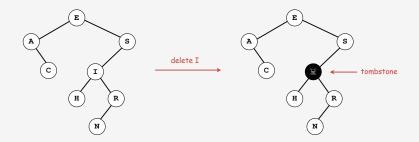
Next lecture. Can we guaranteed performance?

26

BST deletion: lazy approach

To remove a node with a given key:

- Set its value to null.
- Leave key in tree to guide searches (but don't consider it equal to search key).



Cost. O(log N') per insert, search, and delete (if keys in random order), where N' is the number of elements ever inserted in the BST.

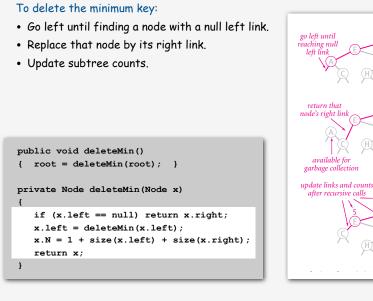
Unsatisfactory solution. Tombstone overload.

asic implementations

andomized BSTs

deletion in BSTs

Deleting the minimum

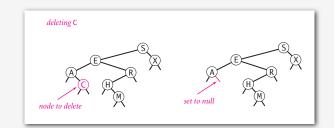


29

Hibbard deletion

To delete a node with key k: search for node t containing key k.

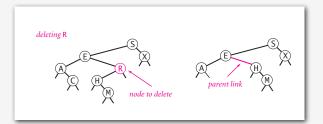
Case 0. [O children] Delete t by setting parent link to null.



Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

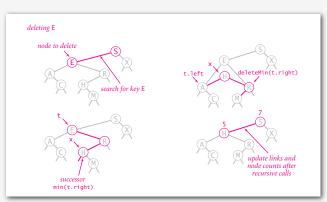


To delete a node with key k: search for node t containing key k.

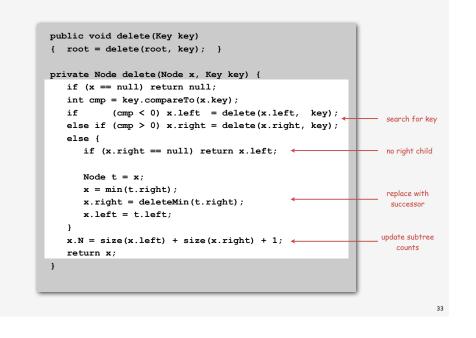
Case 2. [2 children]

- Find successor x of t.
- Delete the minimum in t's right subtree.
- x has no left child
- Put x in t's spot.

- still a BST

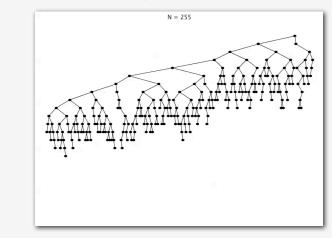


Hibbard deletion: Java implementation



Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.



Surprising consequence. Trees not random (!) \Rightarrow sqrt(N) per op. Longstanding open problem. Simple and efficient delete for BSTs.

34

ST implementations: summary

	guarantee			average case			ordered	operations
implementation	search	insert	delete	search hit	insert	delete	iteration?	on keys
sequential search (linked list)	N	N	Ν	N/2	Ν	N/2	no	equals()
binary search (ordered array)	lg N	N	Ν	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	√N	yes	compareTo()
other operations also become JN if deletions allowed								

Next lecture. Guarantee logarithmic performance for all operations.