Binary Search Trees

» binary search tree
» ordered operations

.
» deletion
References:
Algorithms in Java, Chapter 12
http://www.cs.princeton.edu/algsd/42bst
Algorithms in Java, 4™ Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2008 - October 17, 2008 8:03:06 AM

BST representation in Java
A BST is a reference to a root node.

A Node is comprised of four fields:
¢ A Key and a value.
* A reference to the left and right subtree.

smaller keys larger keys

private class Node

{
private Key key;

BST
private Value val;

private Node left, right; Node———[key [val |
public Node (Key key, Value val) Lo T S
{

this.key = key; Tleft right

this.val = val;

BST with smaller keys BST with larger keys

}

Key and Value are generic types; Key is Comparable

Binary search trees

Def. A BST is a binhary tree in symmetric order.

root

a left link
A binary tree is either: asubtree >
* Empty. Qp \
. . i isioint bi ight child
A key-value pair and two disjoint binary frees. i f’ﬂﬁni
null links
parent of A and R ey
Symmetric order. Every node's key is: lef f“E"k
* Larger than all keys in its left subtree. (A) QL b
* Smaller than all keys in its right subtree. (Q) (H) et

A
keys smaller than € keys larger than £

BST implementation (skeleton)

public class BST<Key extends Comparable<Key>, Value>
{

private Node root; <“<—fF— rootof BST

private class Node

{ /* see previous slide */ }

public void put(Key key, Value val)

{ /* see next slides */ }

public Value get (Key key)

{ /* see next slides */ }

public void delete (Key key)

{ /* see next slides */ }

public Iterable<Key> iterator()

{ /* see next slides */ }
}

BST search

Get. Return value corresponding to given key, or null if no such key.

searching for H

H is less than S
50 look to the left

black nodes could
match the search key

H is greater than E
s0 look to the right

/ 0 \ H is less than R
s0 look to the left
gray nodes cannot
match the search key

" foundH
(search hit)
so return value

Successful search in a BST

BST insert

Put. Associate value with key.

searching for T

T is greater than S
so look to the right

R
\

T is less than X
s0 look to the left
link is null
so Tis not in tree
(search miss)

Unsuccessful search in a BST

inserting L

search for L ends "

at this null link

create new node —» Q
reset links and 7

increment counts
on the way up

BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

public Value get (Key key)
{
Node x = root;
while (x '= null)
{
int cmp = key.compareTo (x.key) ;
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else ‘& (cmp == 0) return x.val;
}
return null;
}

Running time. Proportional to depth of node.

BST insert: Java implementation

Put. Associate value with key.

public void put(Key key, Value val)
{ root = put(root, key, val); }

private Node put(Node x, Key key, Value val)

{
if (x == null) return new Node (key, val);
int cmp = key.compareTo (x.key) ;
if (cmp < 0) x.left = put(x.left, key, val); «—
else if (cmp > 0) x.right = put(x.right, key, val); «——
else if (cop == 0) x.val = val;
return x;

}

Running time. Proportional to depth of node.

concise, but tricky,
recursive code;
read carefully!

BST trace: standard indexing client

Key value key value

s 0 S
A8 G,
ars
changed /
E o1 value
M9
A 2
R 3
P 10
[
@ sy nodes
@) are untouched
H s
L1

changed

valie
12

E 12

BST insertion: random order

Observation. If keys inserted in random order, tree stays flat.

Typical BST built from random keys (N = 256)

Tree shape

* Many BSTs correspond to same set of keys.
* Cost of search/insert is proportional to depth of node.

best case typical case worst case

(Q (S
w B R X

Remark. Tree shape depends on order of insertion.

BST insertion: random order visualization

Ex. Insert keys in random order.

N = 255

Correspondence between BSTs and quicksort partitioning BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of
QUICKSORTEXAMPLE

ERATESLPUIMOQCEXOK compares for a search/insert is ~ 2 In N.

ECAIEXLPUTMQRXOS

2(%@1 E Pf. 1-1 correspondence with quicksort partitioning.
®
@D
®
LPoRMQEXUT Proposition. [Reed, 2003] If keys are inserted in random order,
E(;)Z :@R expected height of tree is ~ 4.311 In N.
®
©®
® But.. Worst-case for search/insert/height is N.
@ é (exponentially small chance when keys are inserted in random order)
©

ACEEIKLMOPQRSTUX

Remark. Correspondence is 1-1 if no duplicate keys.

ST implementations: summary

guarantee average case .
: . ordered operations
implementation ops? on keys
unordered array N N N/2 N no equals ()
unordered list N N N/2 N no equals ()
ordered array IgN N Ig N N/2 yes compareTo ()
ordered list N N N/2 N/2 yes compareTo ()
BST N N 1391gN 1391gN ? compareTo () » ordered symbol table ops

Next challenge. Ordered symbol tables ops.

Ordered symbol table operations

Minimum. Smallest key in table.
Maximum. Largest key in table.
Floor. Largest key < to a given key.
Ceiling. Smallest key > to a given key.

Rank. Number of keys < than given key.

Select. Key of given rank.
Size. Number of keys in a given range.
Tterator. All keys in order.

Floor and ceiling

Floor. Largest key < to a given key.
Ceiling. Smallest key > to a given key.

t
floor(D)

keys
min()—>-09:00:00

09:00:03

09:00:

9et(09:00:13) 9:

09:
floor(09:05:00)—09:
09:

select(7)—09:

09:

09:

09:

keys(09:15:00, 09:25:00)—=|09:
09:

09:

09:
ceiling(09:30:00)— 09:
09:

max()—>-09:

size(09:15:00, 09:25:00) is 5
rank(09:10:25) is 7

159
01:
03:
10:
10:
14:
19:
19:
21:
22:
22:
25:
35:
36:
37:

10
13
11
25
25
32
46
05
43
54
52
21
14
44

values

Chicago
Phoenix
Houston
Chicago
Houston
Chicago
Seattle
Seattle
Phoenix
Chicago
Chicago
Chicago
Seattle
Seattle
Chicago
Chicago
Seattle
Phoenix

Q. How to find the floor /ceiling.
A.

Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max.
A.

Rank

Rank. How many keys < k ?

node count N

public int rank (Key key)
{ return rank(key, root); }

how to implement size() efficiently?

private int rank (Key key, Node x)
{

if (x == null) return 0;
int cmp = key.compareTo (x.key) ;

if (cmp < 0) return rank(x.left) ;
else if (cmp > 0) return 1 + /size(x.left) + rank(key, x.right);
else return size(x.left);

20

Subtree counts BST implementation: subtree counts

In each node, we store the number of nodes in the subtree rooted at that node. EEfvee dlass Weee

{ { return size(root); }
private Key key;
private Value val;
private Node left; {
private Node right; if (x == null) return 0;

public int size()

private int size (Node x)

node count N

private int N; return x.N;

} \\ }
\
nodes in subtree

private Node put(Node x, Key key, Value val)
{

Remark. This facilitates efficient implementation of rank () and select().

Range count

Range count. How many keys between 10 and hi?

node count N

public int size(Key lo, Key hi)

{
if (contains(hi)) return rank(hi) - rank(lo) - 1;
else return rank(hi) - rank(lo);

’ \
\

number of keys < hi

23

if (x == null) return new Node (key, val);

int cmp = key.compareTo (x.key) ;

if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else if (cop == 0) x.val = val;

x.N =1 + size(x.left) + size(x.right);

return x;

Inorder traversal

* Traverse left subtree.
 Enqueue key.
* Traverse right subtree.

public Iterable<Key> allKeys ()

{
Queue<Key> g = new Queue<Key>() ;
inorder (root, queue);
return q;

}

private void inorder (Node x, Queue<Key> q)
{

if (x == null) return;

inorder (x.left, q);

q.enqueue (x.key) ;

inorder (x.right, q);

Property. Inorder traversal of a BST yields keys in ascending order.

24

Inorder traversal

* Traverse left subtree.
* Enqueue key.
* Traverse right subtree.

visit(s)
visit(E)
visit(A)
enqueue A
visit(C)
enqueue C
enqueue E
visit(R)
visit (H)
enqueue H
visit (M)
enqueue M
print R
enqueue S
visit(X)
enqueue X

recursive calls

» deletion in BSTs

S
S E
SEA -
a L (%)
[(A
sEAC (A QONES
Cc 1 1 [S
1 1 1 1 1
E 1 1 1 1 1 1 1
S ER [N T [
1 1 1 1 1 1 1 1
SERH 1 1 1 1 1 1 1 1
H A CEHMRSX
SERHM
M
R
S
S X
X
queue function call stack

25

27

implementation

sequential search

ST implementations: summary

guarantee average case
ordered
- iteration?
delete hit delete
N
N

(linked list) N N N/2 N N/2 no
binary search Ig N N/2 N/2 es

(ordered array) 9 9 Y
BST N N N 1391gN 139IgN ? yes

operations
on keys

equals ()

compareTo ()

compareTo ()

Next lecture. Can we guaranteed performance?

BST deletion: lazy approach

To remove a node with a given key:
* Set its value 10 nuil.

* Leave key in free to guide searches (but don't consider it equal to search key).

Cost. O(log N') per insert, search, and delete (if keys in random order),

delete T

where N' is the number of elements ever inserted in the BST.

Unsatisfactory solution. Tombstone overload.

26

28

Deleting the minimum

To delete the minimum key:

* 6o left until finding a node with a null left link.
* Replace that node by its right link.
* Update subtree counts.

public void deleteMin()
{ root = deleteMin(root); }

private Node deleteMin (Node x)

{
if (x.left == null) return x.right;
x.left = deleteMin (x.left);
x.N =1 + size(x.left) + size(x.right);
return x;

Hibbard deletion

To delete a node with key k: search for node t containing key k.

go left until
reaching null

it Case 0. [0 children] Delete t by setting parent link to null.
\

return that o
node’s right /inkp/() deleting C

T

available for
garbage collection

update links and counts /

1 set to null
after recursive calls

node to delete
7

P

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

deleting R

parent link
node to delete

29

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

 Find successor x of t. <—— xhas no left child
* Delete the minimum in t's right subtree. <—— but don't garbage collect x
* Put x in t's spoft. <«—— stillaBsT

deleting E

node to delete

X

e X deleteMin(t.right)
N s
search for key E

t 7
N é/O
update links and

node counts after

recursive calls
successor

min(t.right)

30

32

Hibbard deletion: Java implementation Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

public void delete (Key key) N =255
{ root = delete(root, key); 1}

private Node delete(Node x, Key key) {

if (x == null) return null;
int cmp = key.compareTo (x.key) ;
if . (cmp < 0) x.léft = delete (x.léft, key) ; < e G by
else if (cmp > 0) x.right = delete(x.right, key);
else {
if (x.right == null) return x.left; <«——F—— norightchild
Node t = x;
x = min(t.right); replace with
x.right = deleteMin(t.right); Bl successor

x.left = t.left;
}

x.N = size(x.left) + size(x.right) + 1; «—— L updatesubiree

counts

return x;

} Surprising consequence. Trees not random (1) = sqrt(N) per op.

Longstanding open problem. Simple and efficient delete for BSTs.

33

ST implementations: summary

tee average case
implementation ordered operations
. : se: iteration? on keys
search | insert | delefe + insert delete
seq(l;iennk::I '?::‘)"Ch N N N N/2 N N/2 no equals ()
(:r:gz:z i::it) lgN N N lgN N/2 N/2 yes compareTo ()
BST N N N 1.39IgN 139IgN /N yes compareTo ()
~ \

other operations also become VN
if deletions allowed

Next lecture. Guarantee logarithmic performance for all operations.

B35

