
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · October 7, 2008 7:01:34 AM

Symbol Tables

‣ API
‣ sequential search
‣ binary search
‣ applications

2

Symbol tables

Key-value pair abstraction.

• Insert a value with specified key.

• Given a key, search for the corresponding value.

Ex.  DNS lookup.

• Insert URL with specified IP address.

• Given URL, find corresponding IP address.

key

URL IP address

www.cs.princeton.edu 128.112.136.11

www.princeton.edu 128.112.128.15

www.yale.edu 130.132.143.21

www.harvard.edu 128.103.060.55

www.simpsons.com 209.052.165.60

value

3

Symbol table applications

application purpose of search key value

dictionary look up word word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

financial account process transactions account number transaction details

web search find relevant web pages keyword list of page names

compiler find properties of variables variable name value and type

routing table route Internet packets destination best route

DNS find IP address given URL URL IP address

reverse DNS find URL given IP address IP address URL

genomics find markers DNA string known positions

file system find file on disk filename location on disk

4

Symbol table API

Associative array abstraction.  Associate one value with each key.

        public class *ST<Key, Value>

*ST() create a symbol table

void put(Key key, Value val) put key-value pair into the table

Value get(Key key) return value paired with key

boolean contains(Key key) is there a value paired with key?

void delete(Key key) delete key-value pair from table

Iterator<Key> iterator() iterator through keys in table

a[key] = val;

a[key]



5

Conventions

• Values are not null.

• Method get() returns null if key not present.

• Method put() overwrites old value with new value.

Intended consequences.

• Easy to implement contains().

• Can implement lazy version of delete().

 public boolean contains(Key key)
 {  return get(key) != null;  }

 public boolean delete(Key key)
 {  put(key, null);          }

6

Keys and values

Value type.  Any generic type.

Key type:  several natural assumptions.

• Assume keys are Comparable, use compareTo().

• Assume keys are any generic type, use equals() to test equality.

• Assume keys are any generic type, use equals() to test equality
and hashCode() to scramble key.

Best practices.  Use immutable types for symbol table keys. 

• Immutable in Java:  String, Integer, BigInteger, …

• Mutable in Java:  Date, GregorianCalendar, StringBuilder, ...

ST test client

Build ST by associating value i with ith command-line argument.

7

public static void main(String[] args) 
{ 
   ST<String, Integer> st = new ST<String, Integer>(); 
   for (int i = 0; i < args.length; i++) 
      st.put(args[i], i); 
   for (String s : st) 
      StdOut.println(s + " " + st.get(s));
}

Keys, values, and output for test client

STunordered output
(one possibility)

ST output

keys

values

S  E  A  R  C  H  E  X  A  M  P  L  E

0  1  2  3  4  5  6  7  8  9 10 11 12

L  11
P  10
M  9
X  7
H  5
C  4
R  3
A  8
E  12
S  0

A  8
C  4
E  12
H  5
L  9
M  11
P  10
R  3
S  0
X  7

Keys, values, and output for test client

STunordered output
(one possibility)

ST output

keys

values

S  E  A  R  C  H  E  X  A  M  P  L  E

0  1  2  3  4  5  6  7  8  9 10 11 12

L  11
P  10
M  9
X  7
H  5
C  4
R  3
A  8
E  12
S  0

A  8
C  4
E  12
H  5
L  9
M  11
P  10
R  3
S  0
X  7

8

‣ API
‣ sequential search
‣ binary search
‣ applications



Data structure.  Maintain an (unordered) linked list of key-value pairs.

Search.  Scan through all keys until find a match.
Insert.  Scan through all keys until find a match; if no match add to front.

9

Sequential search

Trace of linked-list ST implementation for standard indexing client 

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S  0

E  1

A  2

R  3

C  4

H  5

E  6

X  7

A  8

M  9

P 10

L 11

E 12

10

Elementary ST implementations:  summary

Challenge.  Efficient implementations of both search and insert.

ST implementation
worst case average case

ordered
iteration?

operations
on keys

search insert search hit insert

sequential search
(unordered list)

N N  N / 2  N no equals()

11

‣ API
‣ sequential search
‣ binary search
‣ applications

12

Binary search

Data structure.  Maintain an ordered array of key-value pairs.

Search.  Binary search.
Insert.  Binary search for key; if no match insert and shift larger keys.

Trace of binary search 

loop exits with lo > hi

entries in black 
are a[lo..hi]

entry in red is a[m]

successful search for Plo hi m

unsuccessful search for Qlo hi m

                      keys[]
           0  1  2  3  4  5  6  7  8  9
           A  C  E  H  L  M  P  R  S  X

0  9  4    A  C  E  H  L  M  P  R  S  X
5  9  7    A  C  E  H  L  M  P  R  S  X
5  6  5    A  C  E  H  L  M  P  R  S  X
6  6  6    A  C  E  H  L  M  P  R  S  X

0  9  4    A  C  E  H  L  M  P  R  S  X
5  9  7    A  C  E  H  L  M  P  R  S  X
5  6  5    A  C  E  H  L  M  P  R  S  X
7  6  6    A  C  E  H  L  M  P  R  S  X



13

Binary search:  Java implementation

  public Value get(Key key)
  {
     int i = bsearch(key);
     if (i == -1) return null;
     return vals[i];
  } 

  private int bsearch(Key key)
  {
     int lo = 0, hi = N-1;
     while (lo <= hi)
     {
         int m = lo + (hi - lo) / 2;
         int cmp = key.compareTo(keys[m]);
         if      (cmp  < 0) hi = m - 1;
         else if (cmp  > 0) lo = m + 1;
         else if (cmp == 0) return m;
    }
    return -1;
 }

symbol table method

helper binary search method

not found

14

Binary search:  mathematical analysis

Proposition.  Binary search uses ~ lg N compares to search any array of size N.

Def.  T(N)  ≡  number of compares to binary search in a sorted array of size N.
                  ≤   T(N / 2)    +   1

Binary search recurrence.  T(N)  ≤  T(N / 2)  +  1  for N > 1, with T(1) = 1.

• Not quite right for odd N.

• Same recurrence holds for many algorithms.

Solution.  T(N)  ~  lg N.

• For simplicity, we'll prove when N is a power of 2.

• True for all N.  [see COS 340]

left or right  half

Binary search recurrence.  T(N) ≤ T(N / 2) + 1  for N  >  1, with T(1) = 1.

Proposition.  If N is a power of 2, then T(N) ≤  lg N  + 1.
Pf. 

15

Binary search recurrence

    T(N)    ≤  T(N / 2)  +  1

                ≤  T(N / 4)  +  1  +  1

                ≤  T(N / 8)  +  1  +  1  +  1

              . . .

                ≤  T(N / N)  +  1  +  1  +  …  +  1

                =  lg N  +  1

given

apply recurrence to first term

apply recurrence to first term 

stop applying, T(1) = 1

Problem.  To insert, need to shift all greater keys over.

16

Binary search:  trace of standard indexing client

Trace of  ordered-array ST implementation for standard indexing client

                      keys[]                               vals[]
           0  1  2  3  4  5  6  7  8  9    N    0  1  2  3  4  5  6  7  8  9

 S   0     S                               1    0
 E   1     E  S                            2    1  0 
 A   2     A  E  S                         3    2  1  0 
 R   3     A  E  R  S                      4    2  1  3  0 
 C   4     A  C  E  R  S                   5    2  4  1  3  0
 H   5     A  C  E  H  R  S                6    2  4  1  5  3  0 
 E   6     A  C  E  H  R  S                6    2  4  6  5  3  0 
 X   7     A  C  E  H  R  S  X             7    2  4  6  5  3  0  7    
 A   8     A  C  E  H  R  S  X             7    8  4  6  5  3  0  7         
 M   9     A  C  E  H  M  R  S  X          8    8  4  6  5  9  3  0  7     
 P  10     A  C  E  H  M  P  R  S  X       9    8  4  6  5  9 10  3  0  7  
 L  11     A  C  E  H  L  M  P  R  S  X   10    8  4  6  5 11  9 10  3  0  7 
 E  12     A  C  E  H  L  M  P  R  S  X   10    8  4 12  5 11  9 10  3  0  7

           A  C  E  H  L  M  P  R  S  X         8  4 12  5 11  9 10  3  0  7

entries in gray 
did not move circled entries are

changed values

entries in black 
moved to the rightentries in red

were inserted

key value



17

Elementary ST implementations:  summary

Challenge.  Efficient implementations of both search and insert.

ST implementation
worst case average case

ordered
iteration?

operations
on keys

search insert search hit insert

sequential search
(unordered list)

N N  N / 2  N no equals()

binary search
(ordered array)

 log N N  log N  N / 2 yes compareTo()

18

‣ API
‣ sequential search
‣ binary search
‣ applications

Frequency counter

Goal.  Read a sequence of strings from standard input and print out the 
number of times each string appears.

19

% more tiny.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness

% java FrequencyCount < tiny.txt
2 age
1 best
1 foolishness
4 it
4 of
4 the
2 times
4 was
1 wisdom
1 worst

% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
...

% java FrequencyCount < tale.txt
2941 a
1 aback
1 abandon
10 abandoned
1 abandoning
1 abandonment
1 abashed
1 abate
1 abated
...

tiny example
24 words
10 distinct

real example
137177 words
9888 distinct

public class FrequencyCount
{
   public static void main(String[] args)
   {
      ST<String, Integer> st = new ST<String, Integer>();

      while (!StdIn.isEmpty())
      {
         String key = StdIn.readString();
         if (!st.contains(key)) st.put(key, 1);
         else                   st.put(key, st.get(key) + 1);
      }

      for (String s: st)
         StdOut.println(st.get(s) + " " + s);
   }
}

20

Frequency counter

read string and
update frequency

print all strings

create ST



21

Set API

Mathematical set.  A collection of distinct keys.

Q.  How to implement?

        public class SET<Key extends Comparable<Key>>

SET() create an empty set

void add(Key key) add the key to the set

boolean contains(Key key) is the key in the set?

void remove(Key key) remove the key from the set

int size() return the number of keys in the set

Iterator<Key> iterator() iterator through keys in the set

• Read in a list of words from one file.

• Print out all words from standard input that are in the list.

22

Exception filter

public class Whitelist
{
   public static void main(String[] args)
   {
      SET<String> set = new SET<String>();

      In in = new In(args[0]);
      while (!in.isEmpty())
         set.add(in.readString());

      while (!StdIn.isEmpty())
      {
         String word = StdIn.readString();
         if (set.contains(word))
            StdOut.println(word);
      }
   }
}

create empty set of strings

read in whitelist

print strings in list

23

Blacklist and whitelist applications

application purpose key in list

spell checker identify misspelled words word dictionary words

browser mark visited pages URL visited pages

parental controls block sites URL bad sites

chess detect draw board positions

spam filter eliminate spam IP address spam addresses

credit cards check for stolen cards number stolen cards


