Running time

Analysis of Algorithms

estimating running timemathematical analysis

input models

▶ measuring space

order-of-growth hypotheses

"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise—By what course of calculation can these results be arrived at by the machine in the shortest time? " — Charles Babbage

Charles Babbage (1864)

how many times do you have to turn the crank?

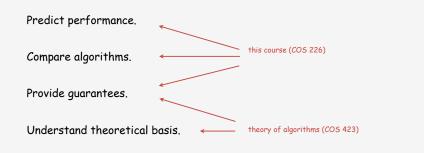
Analytic Engine

Reasons to analyze algorithms

Reference:

Algorithms in Java, Chapter 2 Intro to Programming in Java, Section 4.1

http://www.cs.princeton.edu/algs4



Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · September 16, 2008 9:02:56 AM

Primary practical reason: avoid performance bugs.

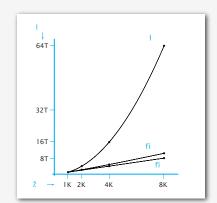
Some algorithmic successes

Discrete Fourier transform.

- Break down waveform of N samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N² steps.

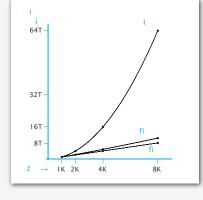
1805

• FFT algorithm: N log N steps, enables new technology.



N-body Simulation.

- Simulate gravitational interactions among N bodies.
- Brute force: N² steps.
- Barnes-Hut: N log N steps, enables new research.



estimating running time

- mathematical analysi
- order-of-growth hypotheses
- input models
- measuring space

Scientific analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

- Observe some feature of the universe.
- Hypothesize a model that is consistent with observation.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.

- Experiments must be reproducible.
- Hypotheses must be falsifiable.

Universe = computer itself.

Experimental algorithmics

Every time you run a program you are doing an experiment!

First step. Debug your program! Second step. Choose input model for experiments. Third step. Run and time the program for problems of increasing size.

Example: 3-sum

3-sum: brute-force algorithm

3-sum. Given N integers, find all triples that sum to exactly zero.

	% mo	ore i	input	18.tz	¢t			
	-	-30	-20	-10	40	0	10	5
	% ja	ava 1	Three	Sum	< :	inj	put	3.txt
l	4							
l	30	-30	0					
l	30	-20	-10					
l	-30	-10	40					
l	-10	0	10					

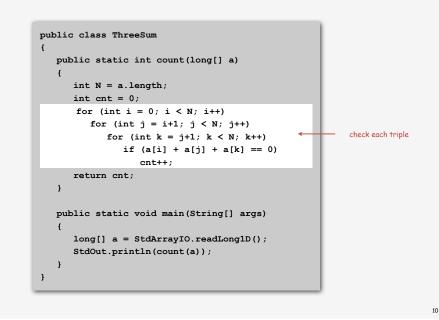
Context. Deeply related to problems in computational geometry.

Empirical analysis

Run the program for various input sizes and measure running time.

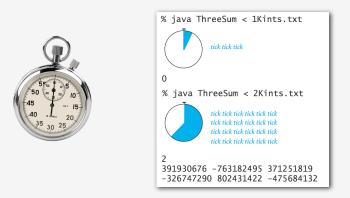
N	time (seconds) †		
1024	0.26		
2048	2.16		
4096	17.18		
8192	137.76		

† Running Linux on Sun-Fire-X4100



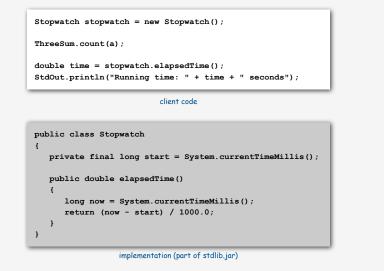
Measuring the running time

- Q. How to time a program?
- A. Manual.



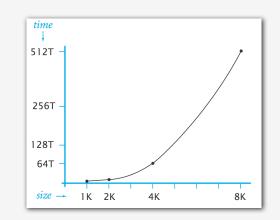
Q. How to time a program?

A. Automatic.



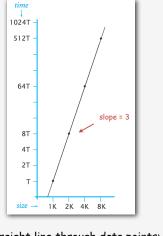
Data analysis

Plot plot running time as a function of input size N.



Data analysis

Log-log plot. Plot running time vs. input size N on log-log scale.



Regression. Fit straight line through data points: $a N^{b}$. Hypothesis. Running time grows cubically with input size: $a N^{3}$.

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power law hypothesis.

Run program, doubling the size of the input.

N	time (seconds) †	ratio	lg ratio
512	0.03	-	
1024	0.26	7.88	2.98
2048	2.16	8.43	3.08
4096	17.18	7.96	2.99
8192	137.76	7.96	2.99
			1

seems to converge to a constant b ≈ 3

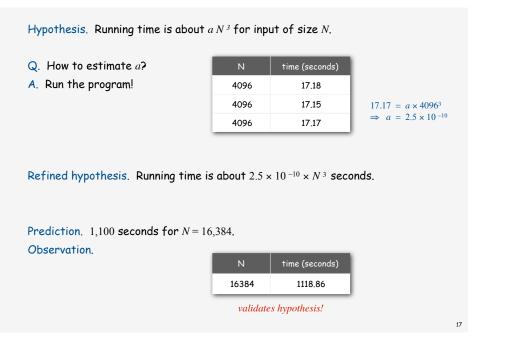
16

Hypothesis. Running time is about $a N^{b}$ with b = lg ratio.

power law

slope

Prediction and verification



Experimental algorithmics

Many obvious factors affect running time:

- Machine.
- Compiler.
- · Algorithm.
- Input data.

More factors (not so obvious):

- Caching.
- Garbage collection.
- Just-in-time compilation.
- CPU use by other applications.

Bad news. It is often difficult to get precise measurements. Good news. Easier than other sciences.

e.g., can run huge number of experiments

Imprecise measurements

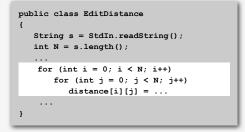
Statistics. Use statistics to ensure confidence in timing data.

pul	<pre>blic static void main(String[] args) { int N = Integer.parseInt(args[0]); // problem size int T = Integer.parseInt(args[1]); // repeat T times double[] time = new double[T]; // time for tth trial long[] a = new long[N];</pre>
	<pre>for (int t = 0; t < T; t++) { for (int i = 0; i < N; i++) a[i] = -500000 + StdRandom.uniform(1000000); Stopwatch timer = new Stopwatch(); int count = ThreeSum.count(a); time[t] = timer.elapsedTime(); }</pre>
}	<pre>System.out.println("mean = " + StdStats.mean(time)); System.out.println("stddev = " + StdStats.stddev(time));</pre>

Caveat. No confidence when stddev is bigger than mean!

War story (from COS 126)

Q. How long does this program take as a function of N?



		Time
_	1024	0.11
Jenny. ~ $c_1 N^2$ seconds.	2048	0.35
Kenny. ~ c2 N seconds.	4096	1.6
Kenny. C2 IN Seconds.		

N	time		N	time
1024	0.11		256	0.5
2048	0.35		512	1.1
4096	1.6		1024	1.9
9182	6.5		2048	3.9
Jenny				Kenny

mathematical analysis
 order-of-growth hypotheses input models

Mathematical models for running time

Total running time: sum of cost × frequency for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.

THE CLASSIC WORK	THE CLASSIC WORK	THE CLASSIC WORK	
NEWLY UPDATED AND REVISED	NEWLY UPDATED AND REVISED	NEWLY UPDATED AND REVISED	
The Art of	The Art of	The Art of	12
Computer	Computer	Computer	
Programming	Programming	Programming	
VOLUME 1	VOLUME 2	VOLUME 3	
Fundamental Algorithms	Seminumerical Algorithms	Sorting and Searching	
Third Edition	Third Edition	Second Edition	
DONALD E. KNUTH	DONALD E. KNUTH	DONALD E. KNUTH	Donald Knuth 1974 Turing Award

In principle, accurate mathematical models are available.

21

Cost of basic operations

operation	example	nanoseconds †
integer add	a + b	2.1
integer multiply	a * b	2.4
integer divide	a / b	5.4
floating point add	a + b	4.6
floating point multiply	a * b	4.2
floating point divide	a / b	13.5
sine	Math.sin(theta)	91.3
arctangent	Math.atan2(y, x)	129.0

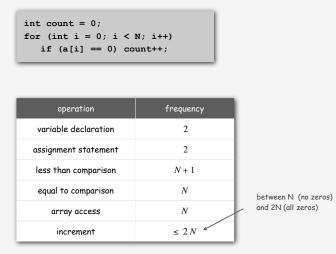
† Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Cost of basic operations

operation	example	nanoseconds †
variable declaration	int a	<i>c</i> ₁
assignment statement	a = b	C2
integer compare	a < b	C3
array element access	a[i]	C4
array length	a.length	C5
1D array allocation	new int[N]	$c_6 N$
2D array allocation	new int[N][N]	c7 N ²
string length	s.length()	C8
substring extraction	s.substring(N/2, N)	C9
string concatenation	s + t	$c_{10} N$

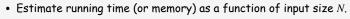
Novice mistake. Abusive string concatenation.

Q. How many instructions as a function of N?

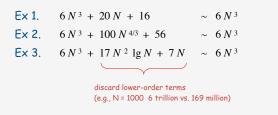


25

Tilde notation



- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care



Technical definition. $f(N) \sim g(N)$ means $\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$

Example: 2-sum

Q. How many instructions as a function of N?

int count = 0;for (int i = 0; i < N; i++) for (int j = i+1; j < N; j++) if (a[i] + a[j] == 0) count++;

operation	frequency	$0 + 1 + 2 + \ldots + (N - 1) = \frac{1}{2}$
variable declaration	<i>N</i> + 2	= (
assignment statement	<i>N</i> + 2	
less than comparison	1/2 (N + 1) (N + 2)	
equal to comparison	1/2 N (N-1)	tedious to count exactly
array access	N(N-1)	
increment	$\leq N^2$	IJ

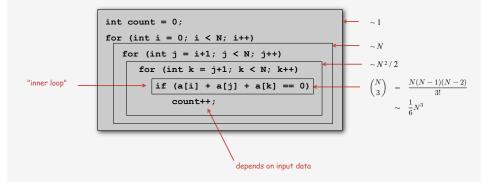
Example: 2-sum

Q. How long will it take as a function of N?

<pre>int count = 0;</pre>	
<pre>for (int i = 0; i < N; i++)</pre>	
for (int $j = i+1; j < N; j++$)	
if $(a[i] + a[j] == 0)$ count++;	 "inner loop"

operation	frequency	time per op	total time
variable declaration	$\sim N$	<i>c</i> ₁	$\sim c_1 N$
assignment statement	$\sim N$	<i>C</i> 2	$\sim c_2 N$
less than comparison			- 172
equal to comparison	$\sim 1/2~N^{2}$	<i>C</i> 3	$\sim c_3 N^2$
array access	$\sim N^2$	<i>C</i> 4	$\sim~c_4N^{2}$
increment	$\leq N^2$	C5	$\leq c_5 N^2$
total			$\sim~c~N^{2}$

Q. How many instructions as a function of N?



Remark. Focus on instructions in inner loop; ignore everything else!

29

mathematical analys

order-of-growth hypotheses

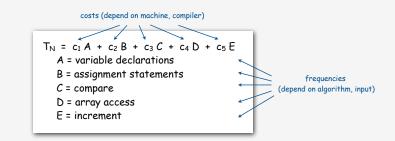
measuring space

Mathematical models for running time

In principle, accurate mathematical models are available.

In practice,

- Formulas can be complicated.
- Advanced mathematics might be required.
- Exact models best left for experts.



Bottom line. We use approximate models in this course: $T_N \sim c N^3$.

Common order-of-growth hypotheses

To determine order-of-growth:

- Assume a power law $T_N \sim a N^b$.
- Estimate exponent b with doubling hypothesis.
- Validate with mathematical analysis.

Ex. ThreeSumDeluxe.java

Food for precept. How is it implemented?

N	time (seconds) †		
1,000	0.43		
2,000	0.53		
4,000	1.01		
8,000	2.87		
16,000	11.00		
32,000	44.64		
64,000	177.48		
a barran a transformation and			

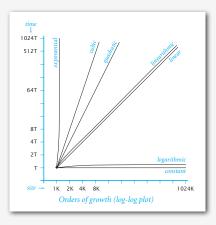
observations

Caveat. Can't identify logarithmic factors with doubling hypothesis.

Good news. the small set of functions

1, $\log N$, N, N $\log N$, N², N³, and 2^N

suffices to describe order-of-growth of typical algorithms.



name	T(2N) / T(N)
constant	1
logarithmic	~ 1
linear	2
linearithmic	~ 2
quadratic	4
cubic	8
exponential	T(N)
d	factor for oubling hypothesi
	logarithmic linear linearithmic quadratic cubic exponential

Common order-of-growth hypotheses

growth rate	name	typical code framework	description	example
1	constant	a = b + c;	statement	add two numbers
log N	logarithmic	<pre>while (N > 1) { N = N / 2; }</pre>	divide in half	binary search
Ν	linear	<pre>for (int i = 0; i < N; i++) { }</pre>	loop	find the maximum
N log N	linearithmic	[see lecture 5]	divide and conquer	mergesort
N ²	quadratic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }</pre>	double loop	check all pairs
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples
2 ^N	exponential	[see lecture 24]	exhaustive search	check all possibilities

Practical implications of order-of-growth

- Q. How many inputs can be processed in minutes?
- Ex. Customers lost patience waiting "minutes" in 1970s; they still do.
- Q. How long to process millions of inputs?
- Ex. Population of NYC was "millions" in 1970s; still is.

For back-of-envelope calculations, assume:

decade	processor speed	instructions per second
1970s	1 MHz	106
1980s	10 MHz	107
1990s	100 MHz	10 ⁸
2000s	1 GHz	109

, 3 111 a	
seconds	equivalent
1	1 second
10	10 seconds
10 ²	1.7 minutes
10 ³	17 minutes
10 ⁴	2.8 hours
105	1.1 days
10 ⁶	1.6 weeks
107	3.8 months
10 ⁸	3.1 years
10 ⁹	3.1 decades
10 ¹⁰	3.1 centuries
	forever
1017	age of universe

33

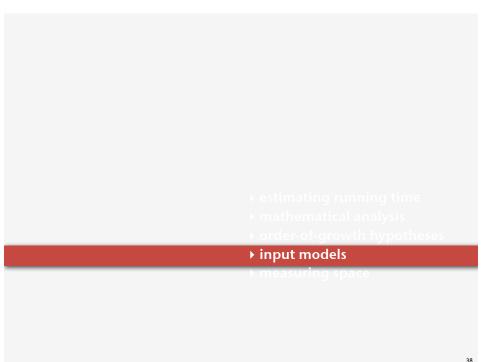
Practical implications of order-of-growth

growth	рі	roblem size so	lvable in minute	25	ti	me to process i	millions of inpu	its
rate	1970s	1980s	1990s	2000s	1970s	1980s	1990s	2000s
1	any	any	any	any	instant	instant	instant	instant
log N	any	any	any	any	instant	instant	instant	instant
N	millions	tens of millions	hundreds of millions	billions	minutes	seconds	second	instant
N log N	hundreds of thousands	millions	millions	hundreds of millions	hour	minutes	tens of seconds	seconds
N ²	hundreds	thousand	thousands	tens of thousands	decades	years	months	weeks
N ³	hundred	hundreds	thousand	thousands	never	never	never	millenni

36

Practical implications of order-of-growth

growth			effect on a p runs for a fe	
rate	name	description	time for 100x more data	size for 100x faster computer
1	constant	independent of input size	-	-
log N	logarithmic	nearly independent of input size	-	-
N	linear	optimal for N inputs	a few minutes	100×
N log N	linearithmic	nearly optimal for N inputs	a few minutes	100×
N ²	quadratic	not practical for large problems	several hours	10×
N ³	cubic	not practical for medium problems	several weeks	4-5x
2 ^N	exponential	useful only for tiny problems	forever	1x



37

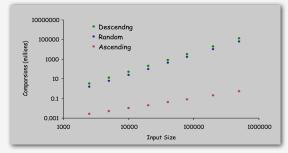
Types of analyses

Best case. Running time determined by easiest inputs. Ex. N-1 compares to insertion sort N elements in ascending order.

Worst case. Running time guarantee for all inputs. Ex. No more than $\frac{1}{2}N^2$ compares to insertion sort any N elements.

Average case. Expected running time for "random" input.

Ex. ~ $\frac{1}{4}$ N² compares on average to insertion sort N random elements.



Commonly-used notations

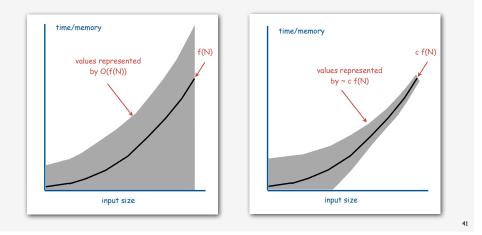
notation	provides	example	shorthand for	used to
Tilde	leading term	$\sim 10 N^2$	10 N2 10 N2 + 22 N log N 10 N2 + 2 N + 37	provide approximate model
Big Theta	asymptotic growth rate	$\Theta(N^2)$		classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	O(<i>N</i> ²)	$\frac{N^2}{100 N}$ $22 N \log N + 3 N$	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	9000 N^2 N^5 $N^3 + 22 N \log N + 3 N$	develop lower bounds

Common mistake. Using big-Oh when you mean big-Omega.

Tilde notation vs. big-Oh notation

We use tilde notation whenever possible.

- Big-Oh notation suppresses leading constant.
- Big-Oh notation only provides upper bound (not lower bound).



Examples

Ex 1. Our brute-force 3-sum algorithm takes $\Theta(N^3)$ time.

Ex 2. Conjecture: worst-case running time for any 3-sum algorithm is $\Omega(N^2)$.

Ex 3. Insertion sort uses $O(N^2)$ compares to sort any array of N elements; it uses ~ N compares in the best case (already sorted) and ~ $\frac{1}{2}N^2$ compares in the worst case (reverse sorted).

1

Ex 4. The worst-case height of a tree created with union find with path compression is $\Theta(N)$.

Ex 5. The height of a tree created with weighted quick union is $O(\log N)$.

base of logarithm absorbed by big-Oh

 $\log_a N = \frac{1}{\log_b a} \log_b N$

42

44

Typical memory requirements for primitive types in Java

Bit. 0 or 1. Byte. 8 bits. Megabyte (MB). 2²⁰ bytes ~ 1 million bytes. Gigabyte (GB). 2³⁰ bytes ~ 1 billion bytes.

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8

estimating running time

- mathematical analysis
- order-of-growth hypotheses

npu<u>t mode</u>

measuring space

Typical memory requirements for arrays in Java

Array overhead. 16 bytes.

type	bytes		type	bytes
char[]	2N + 16		char[][]	2N ² + 20N + 16
int[]	4N + 16		int[][]	4N ² + 20N + 16
louble[]	8N + 16	d	double[][]	8N ² + 20N + 16

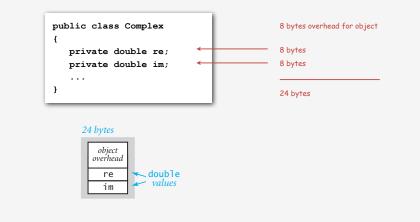
Q. What's the biggest double[][] array you can store on your computer?

typical computer in 2008 has about 2GB memory

Typical memory requirements for objects in Java

Object overhead. 8 bytes. Reference. 4 bytes.

Ex 1. A complex object consumes 24 bytes of memory.

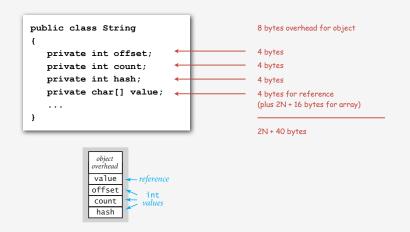


Typical memory requirements for objects in Java

Object overhead. 8 bytes. Reference. 4 bytes.

Α.

Ex 2. A virgin string of length N consumes 2N + 40 bytes.



Example 1

Q. How much memory does this data type use as a function of N?

Α.

public class QuickUWPC {
<pre>private int[] id; private int[] sz;</pre>
<pre>public QuickUnion(int N) {</pre>
<pre>id = new int[N]; sz = new int[N];</pre>
<pre>for (int i = 0; i < N; i++) id[i] = i; for (int i = 0; i < N; i++) sz[i] = 1; }</pre>
<pre>public boolean find(int p, int q) { }</pre>
<pre>public void unite(int p, int q) { } }</pre>

Example 2

- Q. How much memory does this code fragment use as a function of N?
- Α.

<pre>int N = Integer.parseInt(args[0]);</pre>
for (int $i = 0; i < N; i++$) {
<pre>int[] a = new int[N];</pre>
}

Remark. Java automatically reclaims memory when it is no longer in use.

49

Turning the crank: summary

In principle, accurate mathematical models are available. In practice, approximate mathematical models are easily achieved.

Timing may be flawed?

- Limits on experiments insignificant compared to other sciences.
- Mathematics might be difficult?
- Only a few functions seem to turn up.
- Doubling hypothesis cancels complicated constants.

Actual data might not match input model?

- Need to understand input to effectively process it.
- Approach 1: design for the worst case.
- Approach 2: randomize, depend on probabilistic guarantee.

Out of memory

Q. What if I run out of memory?

% java RandomWalk 10000
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

% java -Xmx 500m RandomWalk 10000
...

% java RandomWalk 30000 Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

% java -Xmx 4500m RandomWalk 30000 Invalid maximum heap size: -Xmx4500m The specified size exceeds the maximum representable size. Could not create the Java virtual machine.