COS 226 course overview

What is COS 226?

* Intermediate-level survey course.

* Programming and problem solving with applications.
* Algorithm: method for solving a problem.

* Data sfructure: method to store information.

Algorithms and Data Structures

. . . data types stack, queue, union-find, priority queue
Princeton University P prievy
sorting quicksort, mergesort, heapsort, radix sorts
Fall 2008 4
searching hash table, BST, red-black tree
graphs BFS, DFS, Prim, Kruskal, Dijkstra
KeV' n Wayne strings KMP, Regular expressions, TST, Huffman, LZW
geometry Graham scan, k-d tree, Voronoi diagram
Why study algorithms? Why study algorithms?
Their impact is broad and far-reaching. Old roots, new opportunities.
300 BC
* Study of algorithms dates at least to Euclid
Internet. Web search, packet routing, distributed file sharing, ... * Some important algorithms were
Biology. Human genome project, protein folding, ... discovered by undergraduates!

Computers. Circuit layout, file system, compilers, ...
Computer graphics. Movies, video games, virtual reality, ...
Security. Cell phones, e-commerce, voting machines, ...
Multimedia. €D player, DVD, MP3, JPG, DivX, HDTV, ...
Transportation. Airline crew scheduling, map routing, ...

Physics. N-body simulation, particle collision simulation, ... 19205

1940s
1950s
1960s
1970s
1980s
1990s
2000s

Why study algorithms? Why study algorithms?

To solve problems that could not otherwise be addressed. For intellectual stimulation.

Ex. Network connectivity. [stay funed]
“ For me, great algorithms are the poetry of computation. Just like

verse, they can be terse, allusive, dense, and even mysterious. But
once unlocked, they cast a brilliant new light on some aspect of

computing. ” — Francis Sullivan

— D. E. Knuth

“ An algorithm must be seen to be believed. ”

Why study algorithms? Why study algorithms?

For fun and profit.

They may unlock the secrets of life and of the universe. -
A |
Adobe

Computational models are replacing mathematical models in scientific enquiry

for (double t = 0.0; true; t = t + dt)

2
E = mc 5 Gmm, for (int i = 0; i < N; i++)
= = T2 t
F = ma r? bodies[i].resetForce() ;
for (int j = 0; j < N; j++)
if (i 1= 3)

bodies[i] .addForce (bodies[]j]) ;

[-ﬂVHV(r)] W(r) = E W(r)
2m

21st century science
(algorithm based)

20th century science
(formula based)

Morgan Stanley m-l
[[0 £ 02T
b

“ Algorithms: a common language for nature, human, and computer. ” — Avi Wigderson YA}m’
' P I XA R|

Why study algorithms?

* Their impact is broad and far-reaching.

Old roots, new opportunities.

* To solve problems that could not otherwise be addressed.
For intellectual stimulation.

* They may unlock the secrets of life and of the universe.

* For fun and profit.

Why study anything else?

Coursework and grading
8 programming assignments. 45%
* Electronic submission.

* Due 11:55pm, starting Wednesday 9/17.

Exercises. 15%

* Due in lecture, starting Tuesday 9/16.
Programs

Exercises
Exams.

* Closed-book with cheatsheet.
e Midterm. 15%
* Final. 25%

Staff discretion. To adjust borderline cases.

N

everyone needs to meet me (at least) oncel!

The usual suspects
Lectures. Introduce new material, answer questions.

Precepts. Answer questions, solve problems, discuss programming assignment.
~~ first precept meets today!

Lo1 T Th 11-12:20 Bowen 222 Kevin Wayne
PO1 Th 12:30 Friend 109 Boaz Barak
P02 Th 3:30 Friend 108 Boaz Barak

- - - Connelly Barnes

Resources (web)

Course content.) P

Universiy Algorithms and Data Structures
Spring 2008

» Course info. e

COURSE INFORMATION

» Exercises. =

° LeCTUr‘e Shdes' http://www.princeton.edu/~cos226

* Programming assignments.

Course administration.
* Check grades.
* Submit assignments.

Booksites.
* Brief summary of content.
* Download code from lecture.

http://www.cs.princeton.edu/IntroProgramming
http://www.cs.princeton.edu/algs4

Resources (books)

Algor‘i‘l’hms in Java, 3rd edition Algorithms [l Algorithms
NJava NJava

* Parts 1-4. [sorting, searching]
* Part 5. [graph algorithms]

Introduction to Programming in Java
* Basic programming model.
* Elementary AofA and data structures.

Algorithms

Algorithms in Pascal(l)/C/C++, 2nd edition .
e Strings. | V%

.

* Geometric algorithms.

Algorithms in Java 4th edition [in preparation]

Union-Find Algorithms

» dynamic connectivity
» quick find

» quick union

» improvements

» applications

Algorithms in Java, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2008 - September 11, 2008 12:25:08 PM

Questions
Not registered? You can't submit assignments until register in SCORE.

Change precept? Make the precept change in SCORE yourself;
see Donna O'Leary (CS 410) for serious conflicts.

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.
* Model the problem.

* Find an algorithm to solve it.

* Fast enough? Fits in memory?

* If not, figure out why.

* Find a way to address the problem.

* Iterate until satisfied.

The scientific method.

Mathematical analysis.

Dynamic connectivity

Given a set of objects
* Union: connect two objects.
* Find: is there a path connecting the two objects?

union (3, 4)

union (8, 0)

union (2, 3)

» dynamic connectivity union(5, 6)

f£ind (0, 2) no
find (2, 4) yes

union (5, 1)
union (7, 3)
union(1l, 6)

union (4, 8)

find (0, 2) yes
find (2, 4) yes
3
Network connectivity: larger example Modeling the objects

Dynamic connectivity applications involve manipulating objects of all types.

* Variable name aliases.
* Pixels in a digital photo.

» Computers in a network.
* Web pages on the Internet.

* Transistors in a computer chip.

* Metallic sites in a composite system.

When programming, convenient to hame objects O to N-1.

* Use integers as array index.

* Suppress details not relevant to union-find.

N

can use symbol table to translate from
q object names to integers (stay tuned)

Modeling the connections Implementing the operations

Transitivity. If pis connected to qand qis connected to r,

Find query. Check if two objects are in the same seft.
then p is connected to r.

Union command. Replace sets containing two objects with their union.
Connected components. Maximal set of objects that are mutually connected.

{1561} {2347} {OB}I
X A 4

(156){2347}(08}' {1561} {023478}
X 4 =

connected components connected components

Union-find data type

Goal. Design efficient data structure for union-find.

* Number of objects N can be huge.

* Number of operations M can be huge.

* Find queries and union commands may be intermixed.

public class UnionFind

UnionFind (int N) create un'mn—ﬁnd data Structu're with
N objects and no connections

» quick find

boolean find(int p, int q) arep andq in the same set?

void unite(int p, int q) replace sefts con-tazm-ngp and q
with their union

Quick-find [eager approach]

Data structure.
* Integer array id[] of size N.
 Interpretation: p and qare connected if they have the same id.

i 01 2 3 4 5 6 7 8 9 5 and 6 are connected
id[iJ] 0 1 9 9 9 6 6 7 8 9 2,3,4,and 9 are connected

O) ®

Quick-find [eager approach]

Data structure.
* Integer array id[] of size w.
* Interpretation: p and qare connected if they have the same id.

i 0 1 2 3 4 5 6 7 8 9 5 and 6 are connected

idf[ij] o 1 9 9 9 6 6 7 8 9 2,3,4,and 9 are connected

Find. Check if p and q have the same id. id[3]=9; id[6]= 6
3 and 6 not connected

Union. To merge sets containing p and g, change all entries with id[p] to idIq].

i 01 2 3 4 5 6 7 8 9 union of 3 and 6
id[i] 0 1 6 6 6 6 6 7 8 6 2,3,4,5,6,and 9 are connected
S S V.

\

problem: many values can change

Quick-find [eager approach]

Data structure.
» Integer array id[] of size N.
 Interpretation: p and q are connected if they have the same id.

i 0 1 2 3 4 5 6 7 8 9
id[iJ 0 1 9 9 9 6 6 7 8 9

5 and 6 are connected
2, 3,4, and 9 are connected

Find. Check if p and q have the same id. id[3]= 9 id[6]= 6
3 and 6 not connected

Quick-find example

@@@8@@@@

@@@@@@
®

8-0 01299567009 D0 f OO
2-3 01999567009 ®= [CXGROXO)
@O0O

5-6 01999667009 (Dz ®® 0O
090
5-9 0199999709 [©) (9) QRO

7-3 01999999009 10) ®
TS D@ O

4-8 0100000000 @ A
OT® G ® VOO

6-1 1111111111 A
CTTH © O

~./

problem: many values can change

Quick-find: Java implementation

public class QuickFind
{

private int[] id;

public QuickFind (int N)
{
id = new int[N];
for (int i = 0; i < N; i++) set id of each object to itself
id[i] . (N operations)
id[i] = i;

}

public boolean find(int p, int q)
{

check if p and q have same id

return id[p] == id[ql; I (1 operation)

}

public void unite(int p, int q)
{
int pid = id[p];
for (int i = 0; i < id.length; i++) T
if (id[i] == pid) id[i] = id[q];

change all entries with id[p] to id[q]
(N operations)

Quadratic algorithms do not scale

Rough standard (for now).

* 10° operations per second.

+ 10° words of maih memory. e
* Touch all words in approximately 1 second.

a truism (roughly) since 1950 !

Ex. Huge problem for quick-find.

+ 10° union commands on 10° objects.

* Quick-find takes more than 10 operations.
+ 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.
* New computer may be 10x as fast.

* But, has 10x as much memory so problem may be 10x bigger.

* With quadratic algorithm, takes 10x as long!

Quick-find is too slow

Quick-find defect.
* Union too expensive (N operations).
* Trees are flat, but too expensive to keep them flat.

quick-find N 1

Ex. May take N2 operations to process N union commands on N objects.

Quick-union [lazy approach]

Data structure.

* Integer array id[] of size N.
. . keep going until it doesn't change
o Interpretation: id[i] is parent of i.

e Root of i is id[id[id[...id[i]...]1]1].

i 0 1 2 3 4 5 6 7 8 9
id[fij 0 1 9 4 9 6 6 7 8 9

@O ® ® ®
® ©®O -

r @

3'srootis 9; 5's root is 6

Quick-union [lazy approach]

Data structure.

* Integer array id[] of size N.
keep going until it doesn't change

ONORO) i@
® ® O -

3's root is 9; 5's root is 6
3 and 5 are not connected

©06 ﬁ @
T I ®@ ®6
only one value changes 3 é é a

+ Interpretation: id[i] is parent of i. e
e Root of i is id[id[id[...id[i]...]]].

i 0 1 2 3 4 5 6 7 8 9
id[ijJ] 0 1 9 4 9 6 6 7 8 9

Find. Check if p and q have the same root.

Union. To merge subsets containing p and q,
set the id of q's root to the id of p's root.

i 0 1 2 3 4 5 6 7 8 9
idfij o 1 9 4 9 6 9 7 8 9

21

Quick-union [lazy approach]

Data structure.

 Integer array id[] of size N.

o Interpretation: id[i] is parent of i.

e Root of i is id[id[id[...id[i]...]]1].

i 0 1 2 3 4 5 6 7 8 9

id[iJ] 0 1 9 4 9 6 6 7

keep going until it doesn't change

©0O® @ ®

Find. Check if p and q have the same root

Quick-union example

® ®O -

r @&

3'srootis 9; 5's root is 6
3 and 5 are not connected

@@@@@@@

@@@%@@@
@@@@@
® ®
®
@ ﬂ‘ @@@
@® ®
®
(OO CXGXO)
®

"oy
TOB ®
@0

®

3
@B O®O
@®
@ O]
0@ 50 ® problem:
©JO, // trees can get tall
D
®
s ®
@® OO

Quick-union: Java implementation Quick-union is also too slow

uick-find defect.
public class QuickUnion Q ! . f' f X .
{ * Union too expensive (N operations).

rivate int[] id; A
private = : * Trees are flat, but too expensive to keep them flat.
public QuickUnion (int N)
{

id = new int[N]; set id of each object to itself Quick-union defec’r

for (int i = 0; i < N; i++) id[i] = i; (N operations) :
} * Trees can get tall.
private int root(int i) * Find too expensive (could be N operations).
{

while (i '= id[i]) i = id[i]; chase parent parents until reach root

return i; (depth of i operations)
}
public boolean find(int p, int q)
{ algorithm union

check if p and q have same root
= t = t(q) ; —t
) return root(p) root(q) (depth of p and q operations) quick-find
quick-union <—— worst case

public void unite(int p, int q)
{

int i = root(p), j = root(q); change root of p to point to root of q * includes cost of finding root

id[i] = j; (depth of p and q operations)

23

Improvement 1. weighting

Weighted quick-union.

* Modify quick-union to avoid tall trees.

* Keep track of size of each subseft.

* Balance by linking small tree below large one.

Ex. Union of 3 and 5.
* Quick union: link 9 fo .
* Weighted quick union: link 6 to o.

» improvements size

N
—-
-

@ © ® ®@ @
® ©®

25 26

Weighted quick-union example

3-4 0123

Weighted quick-union analysis

Analysis.

®®®©©@®
@@@@@@
%@@@@@
@@@@
8° 808

1 edye’
@
{3)

®
@

©@®
©
&\
D ooy
§ 0P @
©

(G0
=)
4
e/

@)
e/
@

e

no problem:

/ trees stay flat

* Find: takes time proportional to depth of p and q.

* Union: takes constant time, given roots.

* Fact: depth is at most Ig N. [needs proof]

Q. How does depth of x increase by 1?

A. Tree Ti containing x is merged into another tree Ta.

27

* The size of the tree containing x at least doubles since |Tz| > |Til.

* Size of tree containing x can double at most Ig N times.

29

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[ij to count
number of objects in the tree rooted at i.

Find. Identical to quick-union.

return root(p) == root(q);

Union. Modify quick-union to:
* Merge smaller tree into larger tree.
* Update the sz[] array.

int i = root(p):
int j = root(q);
if (sz[i] < sz[3j]) { id[i] = j; sz[j] += sz[i]; }
else { idI[3]

i; sz[i] += sz[]j]; }

Weighted quick-union analysis

Analysis.

* Find: takes time proportional to depth of p and q.
* Union: takes constant time, given roots.

* Fact: depth is at most Ig N. [needs proof]

quick-find N 1
quick-union N * N
weighted QU IgN* IgN

* includes cost of finding root

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p, set

the id of each examined node to root (p).

Weighted quick-union with path compression example

®(3C)8(3C)C)0(3

@00 J%)C)C)C)O

8<DC)&%DC)C)®
g®0%b@©®
8°e808®

no problem:
t trees stay VERY flat

33

Path compression: Java implementation

Standard implementation: add second loop to root() to set the id of each
examined node to the root.

Simpler one-pass variant: make every other node in path point to its
grandparent.

public int root(int i)
{
while (i !'= id[i])
{

id[i] = id[id[i]]; <
i = id[i];

only one extra line of code !

}

return i;

In practice. No reason not to!l Keeps tree almost completely flat.

WQUPC performance

Theorem. [Tarjan 1975] Starting from an empty data structure, any sequence
of M union and find operations on N objects takes O(N + M Ig* N) time.
* Proof is very difficult. T

* But the algorithm is still simple! actually O(N + M (M, N))

see COS 423

Linear algorithm?

* Cost within constant factor of reading in the data. 1 0
e In theory, WQUPC is not quite linear. 2 1
* Inpractice, WQUPC is linear. 4 2
T 16 3

because Ig* N is a constant in this universe 65536 4

265536 5

Ig* function

number of times needed to take

Amazing fact. No linear-time linking strategy exists. 5o Iy o o) i

Summary

Bottom line. WQUPC makes it possible to solve problems that

could not otherwise be addressed.

quick-find MN
quick-union MN
weighted QU N+MlogN
QU + path compression N+ M log N
weighted QU + path compression N+Mlig* N

M union-find operations on a set of N objects

Ex. [10° unions and finds with 10° objects]
* WQUPC reduces time from 30 years to 6 seconds.

Supercomputer won't help much; good algorithm enables solution.

35

Union-find applications

Percolation.
Games (Go, Hex).

¥ Network connectivity.

Least common ancestor.

Equivalence of finite state automata.
Hoshen-Kopelman algorithm in physics.
Hinley-Milner polymorphic type inference.
Kruskal's minimum spanning tree algorithm.
Compiling equivalence statements in Fortran.
Morphological attribute openings and closings.
Matlab's bwlabel () function in image processing.

37

» applications

Percolation

A model for many physical systems:

* N-by-N grid of sites.

* Each site is open with probability p (or blocked with probability 1-p).
 System percolates if top and bottom are connected by open sites.

percolates does not percolate
blocked

-~

site

~—open
site
(717&'” —
site
site connected to top)
N=8 no open site connected to top

Percolation

A model for many physical systems:

* N-by-N grid of sites.

* Each site is open with probability p (or blocked with probability 1-p).
+ System percolates if top and bottom are connected by open sites.

percolates does not percolate
- blocked
site

full
~—open
empty site

open —
site connected to top

site
N=8 1o open site connected to top

Likelihood of percolation

Depends on site vacancy probability p.

p low p medium p high
does not percolate percolates? percolates

N=20

41

39

Percolation

A model for many physical systems:
* N-by-N grid of sites.

* Each site is open with probability p (or blocked with probability 1-p).
* System percolates if top and bottom are connected by open sites.

[i | | oo |

electricity material conductor insulated
fluid flow material empty blocked
social interaction population person empty

percolates

conducts

porous

communicates

Percolation phase transition

Theory guarantees a sharp threshold p* (when N is large).
* p>p*: almost certainly percolates.
* p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

percolation
probability

0 - T
0 p* 1

N=100 site vacancy probability p

42

40

Monte Carlo simulation

* Initialize N-by-N whole grid to be blocked.

* Make random sites open until top connected o bottom.
* Vacancy percentage estimates p*.

. full open site
(connected to top)

empty open site

(not connected to top)

. blocked site

Sites = 135

43

UF solution to find percolation threshold

Q. How to declare a new site open?

open this site

full open site
(connected to top)

empty open site
(not connected to top)

. blocked site

45

UF solution to find percolation threshold

How to check whether system percolates?
* Create object for each site.

* Sites are in same set if connected by open sites.

* Percolates if any site in top row is in same set as any site in bottom row.

N

but need to check N2 pairs (stay tuned)

. full open site
(connected to top)

empty open site

(not connected to top)

. blocked site

UF solution to find percolation threshold

Q. How to declare a new site open?

A. Take union of new site and all adjacent open sites.

open this site

full open site
(connected to top)

empty open site
(not connected to top)

. blocked site

46

44

UF solution: a critical optimization
Q. How to avoid checking all pairs of top and bottom sites?

A. Create a virtual fop and bottom objects;
system percolates when virtual top and bottom objects are in same set.

virtual top row ——>

. D
-

. full open site
(connected to top)

empty open site

(not connected to top)

. blocked site

virtual bottom row ——>

47

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.
* Model the problem.

* Find an algorithm to solve it.

* Fast enough? Fits in memory?

* If not, figure out why.

* Find a way to address the problem.

* Iterate until satisfied.

The scientific method.

Mathematical analysis.

49

Percolation threshold

Q. What is percolation threshold p* ?

A.

About 0.592746 for large square lattices.

percolation constant known
only via simulation

percolation
probability

| I
0 0.593 1

site vacancy probability p

48

