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9.  Scientific Computing 
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Applications of Scientific Computing 

Science and engineering challenges. 

!! Fluid dynamics. 

!! Seismic surveys. 

!! Plasma dynamics. 

!! Ocean circulation. 

!! Electronics design. 

!! Pharmaceutical design. 

!! Human genome project. 

!! Vehicle crash simulation. 

!! Global climate simulation. 

!! Nuclear weapons simulation. 

!! Molecular dynamics simulation. 

Common features. 

!! Problems tend to be continuous instead of discrete. 

!! Algorithms must scale to handle huge problems. 

Commercial applications. 

!! Web search. 

!! Financial modeling. 

!! Computer graphics.  

!! Digital audio and video. 

!! Natural language processing. 

!! Architecture walk-throughs. 

!! Medical diagnostics (MRI, CAT). 
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Floating Point 

IEEE 754 representation. 

!! Used by all modern computers. 

!! Scientific notation, but in binary. 

!! Single precision:  float = 32 bits. 

!! Double precision:  double = 64 bits. 

Ex.  Single precision representation of -0.453125. 

1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

sign bit exponent significand 

125 1/2 + 1/4 + 1/16 = 0.8125 -1 

-1 ! 2125 - 127 ! 1.8125  =  -0.453125 

bias phantom bit 
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Floating Point 

Remark.  Most real numbers are not representable, including " and 1/10. 

Roundoff error.  When result of calculation is not representable.  

Consequence.  Non-intuitive behavior for uninitiated. 

Financial computing.  Calculate 9% sales tax on a 50¢ phone call. 

Banker's rounding.  Round to nearest integer, to even integer if tie. 

if (0.1 + 0.2 == 0.3) { // NO  } 

if (0.1 + 0.3 == 0.4) { // YES } 

double a1 = 1.14 * 75;      // 85.49999999999999  

double a2 = Math.round(a1); // 85 

double b1 = 1.09 * 50;      // 54.50000000000001   

double b2 = Math.round(b1); // 55 SEC violation (!) 

you lost 1¢ 
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Floating Point 

Floating point numbers are like piles of sand; every
 time you move them around, you lose a little sand
 and pick up a little dirt.   - Kernighan and Plauger 
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Catastrophic Cancellation 

A simple function. 

Goal.  Plot f(x) for  -4 # 10-8  $  x  $  4 # 10-8. 

Exact answer 

! 

f (x)  =  
1  " cos x

x
2
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Catastrophic Cancellation 

A simple function. 

Goal.  Plot f(x) for  -4 # 10-8  $  x  $  4 # 10-8. 
! 

f (x)  =  
1 " cos x

x
2

IEEE 754 double precision answer 
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Catastrophic Cancellation 

Ex.  Evaluate fl(x) for x = 1.1e-8. 

!! Math.cos(x) = 0.99999999999999988897769753748434595763683319091796875. 

!! (1.0 - Math.cos(x)) = 1.1102e-16 

!! (1.0 - Math.cos(x)) / (x*x) = 0.9175 

Catastrophic cancellation.  Devastating loss of precision when small

 numbers are computed from large numbers, which themselves are

 subject to roundoff error. 

nearest floating point value agrees with 
exact answer to 16 decimal places. 

inaccurate estimate of exact answer (6.05 # 10-17) 

80% larger than exact answer (about 0.5) 

public static double fl(double x) { 

   return (1.0 - Math.cos(x)) / (x* x); 

} 
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Numerical Catastrophes 

Ariane 5 rocket.  [June 4, 1996] 

!! 10 year, $7 billion ESA project exploded after launch. 

!! 64-bit float converted to 16 bit signed int. 

!! Unanticipated overflow. 

Vancouver stock exchange.  [November, 1983] 

!! Index undervalued by 44%. 

!! Recalculated index after each trade by adding change in price. 

!! 22 months of accumulated truncation error. 

Patriot missile accident.  [February 25, 1991] 

!! Failed to track scud; hit Army barracks, killed 28. 

!! Inaccuracy in measuring time in 1/20 of a second 

since using 24 bit binary floating point. 

Copyright, Arianespace 
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Gaussian Elimination 
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0 x0 + 1 x1 +  1 x2 =  4   

2 x0 + 4 x1 -  2 x2 =  2   
0 x0 + 3 x1 +  15 x2 =  36   
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Linear System of Equations 

Linear system of equations.  N linear equations in N unknowns. 

Fundamental problems in science and engineering. 

!! Chemical equilibrium. 

!! Linear and nonlinear optimization. 

!! Kirchoff's current and voltage laws. 

!! Hooke's law for finite element methods. 

!! Leontief's model of economic equilibrium. 

!! Numerical solutions to differential equations. 

!! … 

matrix notation:  find x such that Ax = b 
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Chemical Equilibrium 

Ex.  Combustion of propane. 

Stoichiometric constraints. 

!! Carbon:  3x0 = x2. 

!! Hydrogen:  8x0 = 2x3. 

!! Oxygen:  2x1 = 2x2 + x3. 

!! Normalize:  x0 = 1. 

Remark.  Stoichiometric coefficients tend to be small integers; 

among first hints suggesting the atomic nature of matter. 

x0C3H8 + x1O2   %   x2CO2 + x3H2O 

C3H8 + 5O2   %   3CO2 + 4H2O 

conservation of mass  
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Kirchoff's Current Law 

Ex.  Find current flowing in each branch of a circuit. 

Kirchoff's current law. 

!! 10  =  1x0 + 25(x0 - x1) + 50 (x0 - x2). 

!! 0  =  25(x1 - x0) + 30x1 + 1(x1 - x2). 

!! 0  =  50(x2 - x0) + 1(x2 - x1) + 55x2. 

Solution.  x0 = 0.2449, x1 = 0.1114, x2 = 0.1166. 

x0 

x1 

x2 

conservation of electrical charge 
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Upper Triangular System of Equations 

Upper triangular system.  aij = 0 for i > j. 

Back substitution.  Solve by examining equations in reverse order. 

!! Equation 2:  x2 = 24/12  =  2. 

!! Equation 1:  x1 = 4 - x2  =  2. 

!! Equation 0:  x0 = (2 - 4x1  + 2x2) / 2  =  -1. 

for (int i = N-1; i >= 0; i--) { 

   double sum = 0.0; 

   for (int j = i+1; j < N; j++) 

      sum += A[i][j] * x[j]; 

   x[i] = (b[i] - sum) / A[i][i]; 

}  
! 

xi =
1

aii
bi " aij x j

j=i+1

N"1

#
$ 

% 

& 
& 

' 

( 

) 
) 

2 x0 +  4 x1 -  2 x2 =  2   

0 x0 +  1 x1 +  1 x2 =  4   
0 x0 +  0 x1 +  12 x2 =  24   
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Gaussian Elimination 

Gaussian elimination. 

!! Among oldest and most widely used solutions. 

!! Repeatedly apply row operations to make system upper triangular. 

!! Solve upper triangular system by back substitution. 

Elementary row operations. 

!! Exchange row p and row q. 

!! Add a multiple & of row p to row q. 

Key invariant.   Row operations preserve solutions. 
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0 x0 + 1 x1 +  1 x2 =  4   

2 x0 + 4 x1 -  2 x2 =  2   
0 x0 + 3 x1 +  15 x2 =  36   

2 x0 + 4 x1 -  2 x2 =  2   

0 x0 + 1 x1 +  1 x2 =  4   
0 x0 + 3 x1 +  15 x2 =  36   

2 x0 +  4 x1 -  2 x2 =  2   

0 x0 +  1 x1 +  1 x2 =  4   
0 x0 +  0 x1 +  12 x2 =  24   

(interchange row 0 and 1) 

(subtract 3x row 1 from row 2) 

Gaussian Elimination:  Row Operations 

Elementary row operations. 
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Forward elimination.  Apply row operations to make upper triangular. 

Pivot.  Zero out entries below pivot app. 

for (int p = 0; p < N; p++) { 

   for (int i = p + 1; i < N; i++) { 

      double alpha = A[i][p] / A[p][p]; 

      b[i] -= alpha * b[p]; 

      for (int j = p; j < N; j++) 

         A[i][j] -= alpha * A[p][j]; 

   } 

} 

! 

aij = aij "
aip

app
apj

bi = bi "
aip

app
bp

Gaussian Elimination:  Forward Elimination 
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Forward elimination.  Apply row operations to make upper triangular. 

Pivot.  Zero out entries below pivot app. 

Gaussian Elimination:  Forward Elimination 
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for (int p = 0; p < N; p++) { 

   for (int i = p + 1; i < N; i++) { 

      double alpha = A[i][p] / A[p][p]; 

      b[i] -= alpha * b[p]; 

      for (int j = p; j < N; j++) 

         A[i][j] -= alpha * A[p][j]; 

   } 

} 
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Gaussian Elimination Example 

-6 x3 + 0 x2 3 = + 1 x1 + -2 x0 

9 x3 + 1 x2 4 = + 1 x1 + 1 x0 

4 x3 + 1 x2 1 = + 0 x1 + 1 x0 

7 x3 + 1 x2 2 = + -1 x1 + 2 x0 
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Gaussian Elimination Example 

-6 x3 + 0 x2 3 = + 1 x1 + -2 x0 

9 x3 + 1 x2 4 = + 1 x1 + 1 x0 

4 x3 + 1 x2 1 = + 0 x1 + 1 x0 

7 x3 + 1 x2 2 = + -1 x1 + 2 x0 -1 x3 + -1 x2 0 = + -1 x1 + 0 x0 

2 x3 + 2 x2 5 = + 1 x1 + 0 x0 

5 x3 + 0 x2 3 = + 1 x1 + 0 x0 



21 

Gaussian Elimination Example 

2 x3 + 2 x2 5 = + 1 x1 + 0 x0 

5 x3 + 0 x2 3 = + 1 x1 + 0 x0 

4 x3 + 1 x2 1 = + 0 x1 + 1 x0 

-1 x3 + -1 x2 0 = + -1 x1 + 0 x0 

1 x3 + 1 x2 5 = + 0 x1 + 0 x0 

4 x3 + -1 x2 3 = + 0 x1 + 0 x0 
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Gaussian Elimination Example 

1 x3 + 1 x2 5 = + 0 x1 + 0 x0 

4 x3 + -1 x2 3 = + 0 x1 + 0 x0 

4 x3 + 1 x2 1 = + 0 x1 + 1 x0 

-1 x3 + -1 x2 0 = + -1 x1 + 0 x0 

5 x3 + 0 x2 8 = + 0 x1 + 0 x0 
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Gaussian Elimination Example 

1 x3 + 1 x2 5 = + 0 x1 + 0 x0 

5 x3 + 0 x2 8 = + 0 x1 + 0 x0 

4 x3 + 1 x2 1 = + 0 x1 + 1 x0 

-1 x3 + -1 x2 0 = + -1 x1 + 0 x0 

x3    =      8/5 
x2   =  5 - x3  =    17/5 
x1   =  0 - x2 - x3  =  -25/5 
x0  =  1 - x2 - 4x3  =  -44/5 
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Gaussian Elimination:  Partial Pivoting 

Remark.  Previous code fails spectacularly if pivot app = 0. 

15 x3 + 3 x1 33 = + 0 x0 

0 x3 + 1 x1 1 = + 1 x0 

-2 x3 + 2 x1 -2 = + 2 x0 

15 x3 + 3 x1 33 = + 0 x0 

0 x3 + 1 x1 1 = + 1 x0 

-2 x3 + 0 x1 -4 = + 0 x0 

Inf x3 + Nan x1 Inf = + 0 x0 

0 x3 + 1 x1 1 = + 1 x0 

-2 x3 + 0 x1 -4 = + 0 x0 
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Gaussian Elimination:  Partial Pivoting 

Partial pivoting. Swap row p with the row that has largest entry in

 column p among rows i below the diagonal. 

Q. What if pivot app = 0 while partial pivoting? 

A.  System has no solutions or infinitely many solutions. 

// find pivot row  
int max = p; 

for (int i = p + 1; i < N; i++) 

if (Math.abs(A[i][p]) > Math.abs(A[max][p])) 

   max = i; 

// swap rows p and max 
double[] T = A[p]; A[p] = A[max]; A[max] = T; 

double   t = b[p]; b[p] = b[max]; b[max] = t; 

! 
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Gaussian Elimination with Partial Pivoting 

public static double[] lsolve(double[][] A, double[] b) { 

   int N = b.length; 

   // Gaussian elimination 

   for (int p = 0; p < N; p++) { 

      // partial pivot 

      int max = p; 

      for (int i = p+1; i < N; i++) 

          if (Math.abs(A[i][p]) > Math.abs(A[max][p])) 

             max = i; 

      double[] T = A[p]; A[p] = A[max]; A[max] = T; 

      double   t = b[p]; b[p] = b[max]; b[max] = t; 

      // zero out entries of A and b using pivot A[p][p] 

      for (int i = p+1; i < N; i++) { 

         double alpha = A[i][p] / A[p][p]; 

         b[i] -= alpha * b[p]; 

         for (int j = p; j < N; j++) 

            A[i][j] -= alpha * A[p][j]; 

      } 

   } 

   // back substitution 

   double[] x = new double[N]; 

   for (int i = N-1; i >= 0; i--) { 

      double sum = 0.0; 

      for (int j = i+1; j < N; j++) 

         sum += A[i][j] * x[j]; 

      x[i] = (b[i] - sum) / A[i][i]; 

   } 

   return x; 

} 

~ N3/3 additions, 
~ N3/3 multiplications 

~ N2/2 additions, 
~ N2/2 multiplications 
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Stability and Conditioning 
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Numerically Unstable Algorithms 

Stability.  Algorithm fl(x) for computing f(x) is numerically stable if

 fl(x) ' f(x+() for some small perturbation (. 

Ex 1.  Numerically unstable way to compute 

!! fl(1.1e-8) = 0.9175. 

Nearly the right answer to nearly the right problem. 

! 

f (x)  =  
1  " cos x

x
2

public static double fl(double x) { 

   return (1.0 - Math.cos(x)) / (x* x); 

} 

true answer ' 1/2. 

a numerically stable formula 

! 

f (x)  =  
2 sin

2
(x /2)

x
2
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Numerically Unstable Algorithms 

Stability.  Algorithm fl(x) for computing f(x) is numerically stable if

 fl(x) ' f(x+() for some small perturbation (. 

Ex 2.  Gaussian elimination (w/o partial pivoting) can fail spectacularly.  

Theorem.  Partial pivoting improves numerical stability. 

a x0 + 1 x1 =  1   
1 x0 + 2 x1 =  3   

1.0 1.0 partial pivoting 

exact 

1.0 0.0 no pivoting 

x0 Algorithm x1 

1
2a-1

3a-1 !1
2a-1

1 !

a = 10-17 

Nearly the right answer to nearly the right problem. 
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Ill-Conditioned Problems 

Conditioning.  Problem is well-conditioned if f(x) ' f(x+() for all small

 perturbation (. 

Ex.  Hilbert matrix. 

!! Tiny perturbation to Hn makes it singular. 

!! Cannot solve H12 x = b using floating point. 

Matrix condition number.  [Turing, 1948]  Widely-used concept for

 detecting ill-conditioned linear systems. 

Solution varies gradually as problem varies. 
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Hilbert matrix 
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Numerically Solving an Initial Value ODE 

Lorenz attractor. 

!! Idealized atmospheric model to describe turbulent flow. 

!! Convective rolls:  warm fluid at bottom, rises to top, cools off, 

and falls down. 

Solution.  No closed form solution for x(t), y(t), z(t). 

Approach.  Numerically solve ODE. 

! 

dx
dt

= "10(x+y)

dy

dt
= "xz + 28x " y

dz
dt

= xy " 8
3
z

x = fluid flow velocity 
y = ) temperature between ascending and descending currents 

z = distortion of vertical temperature profile from linearity 

Edward Lorenz 
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Euler's Method 

Euler's method.  [to numerically solve initial value ODE] 

!! Choose *t sufficiently small. 

!! Approximate function at time t by tangent line at t.  

!! Estimate value of function at time t + *t according to tangent line. 

!! Increment time to t + *t.  

!! Repeat. 

Advanced methods.  Use less computation to achieve desired accuracy. 

!! 4th order Runge-Kutta:  evaluate slope four times per step.   

!! Variable time step:  automatically adjust timescale *t. 

!! See COS 323. 

! 

xt+"t = xt +"t dx
dt
(xt ,yt ,zt )

yt+"t = yt +"t dy

dt
(xt ,yt ,zt )

zt+"t = zt +"t dz
dt
(xt ,yt ,zt )
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Lorenz Attractor:  Java Implementation 

public class Lorenz { 

   public static double dx(double x, double y, double z) 

   { return -10*(x - y);     } 

   public static double dy(double x, double y, double z) 

   { return -x*z + 28*x - y; } 

   public static double dz(double x, double y, double z) 

   { return x*y – 8*z/3;     } 

   public static void main(String[] args) { 
      double x = 0.0, y = 20.0, z = 25.0; 

      double dt = 0.001; 

      StdDraw.setXscale(-25, 25); 

      StdDraw.setYscale(  0, 50); 

      while (true) { 

         double xnew = x + dt * dx(x, y, z); 
         double ynew = y + dt * dy(x, y, z); 

         double znew = z + dt * dz(x, y, z); 

         x = xnew; y = ynew; z = znew; 

         StdDraw.point(x, z);  

      } 
   } 

} 

Euler's method 

plot x vs. z 
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The Lorenz Attractor 

% java Lorenz 

(-25, 0) 

(25, 50) 
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Butterfly Effect 

Experiment. 

!! Initialize y = 20.01 instead of y = 20. 

!! Plot original trajectory in blue, perturbed one in magenta. 

!! What happens? 

Ill-conditioning. 

!! Sensitive dependence on initial conditions. 

!! Property of system, not of numerical solution approach. 

Predictability:  Does the Flap of a Butterfly’s Wings in Brazil set off

 a Tornado in Texas?   - Title of 1972 talk by Edward Lorenz 
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Stability and Conditioning 

Accuracy depends on both stability and conditioning. 

!! Danger:  apply unstable algorithm to well-conditioned problem. 

!! Danger:  apply stable algorithm to ill-conditioned problem. 

!! Safe:  apply stable algorithm to well-conditioned problem. 

Numerical analysis.  Art and science of designing numerically stable

 algorithms for well-conditioned problems. 

Lesson 1.  Some algorithms are unsuitable for floating point solutions. 

Lesson 2.  Some problems are unsuitable to floating point solutions. 


