
Introduction to Computer Science • Sedgewick and Wayne • Copyright © 2007 • http://www.cs.Princeton.EDU/IntroCS

7. Theory of Computation

2

Introduction to Theoretical CS

Two fundamental questions.

!! What can a computer do?

!! What can a computer do with limited resources?

General approach.

!! Don't talk about specific machines or problems.

!! Consider minimal abstract machines.

!! Consider general classes of problems.

e.g., Pentium M running Linux kernel 2.6.15

3

Why Learn Theory?

In theory …

!! Deeper understanding of what is a computer and computing.

!! Foundation of all modern computers.

!! Pure science.

!! Philosophical implications.

In practice …

!! Web search: theory of pattern matching.

!! Sequential circuits: theory of finite state automata.

!! Compilers: theory of context free grammars.

!! Cryptography: theory of computational complexity.

!! Data compression: theory of information.

In theory there is no difference between theory

and practice. In practice there is. - Yogi Berra

Introduction to Computer Science • Sedgewick and Wayne • Copyright © 2007 • http://www.cs.Princeton.EDU/IntroCS

Regular Expressions and DFAs

5

Pattern Matching Applications

Test if a string matches some pattern.

!! Process natural language.

!! Scan for virus signatures.

!! Search for information using Google.

!! Access information in digital libraries.

!! Retrieve information from Lexis/Nexis.

!! Search-and-replace in a word processors.

!! Filter text (spam, NetNanny, ads, Carnivore, malware).

!! Validate data-entry fields (dates, email, URL, credit card).

!! Search for markers in human genome using PROSITE patterns.

Parse text files.

!! Compile a Java program.

!! Crawl and index the Web.

!! Read in data stored in TOY input file format.

!! Automatically create Java documentation from Javadoc comments.

6

Pattern Matching in Google

Google. Supports * for full word wildcard and | for union.

7

Pattern Matching in TiVo

TiVo. WishList has very limited pattern matching.

Reference: page 76, Hughes DirectTV TiVo manual

8

Describing a Pattern

PROSITE. Huge database of protein families and domains.

Q. How to describe a protein motif?

Ex. [signature of the C2H2-type zinc finger domain]

!! C

!! Between 2 and 4 amino acids.

!! C

!! 3 more amino acids.

!! One of the following amino acids: LIVMFYWCX.

!! 8 more amino acids.

!! H

!! Between 3 and 5 more amino acids.

!! H

CAASCGGPYACGGWAGYHAGWH

9

Regular Expressions: Basic Operations

Regular expression. Notation to specify a set of strings.

every other string!aabaab aabaab Concatenation

every other string!
aaaab

abaab
a(a|b)aab

Parentheses

(ab)*a

ab*a

aa | baab

.u.u.u.

Regular Expression

aa

abbba

a

ababababa

ab

ababa

aa

abbba
Closure

Union

Wildcard

Operation

every other string!
aa

baab

succubus

tumultuous

cumulus

jugulum

No Yes

10

Regular Expressions: Examples

Regular expression. Notation is surprisingly expressive.

b

bb

baabbbaa

bbb

aaa

bbbaababbaa

a* | (a*ba*ba*ba*)*

multiple of three b’s

111111111

403982772

1000234

98701234

.*0....

fifth to last digit is 0

subspace

subspecies

raspberry

crispbread

.*spb.*

contains the trigraph spb

gcgcgg

cggcggcggctg

gcgcaggctg

gcgctg

gcgcggctg

gcgcggaggctg

gcg(cgg|agg)*ctg

fragile X syndrome indicator

Regular Expression No Yes

11

Generalized Regular Expressions

Regular expressions are a standard programmer's tool.

!! Built in to Java, Perl, Unix, Python, ….

!! Additional operations typically added for convenience.

!! Ex: [a-e]+ is shorthand for (a|b|c|d|e)(a|b|c|d|e)*.

111111111

166-54-1111

08540-1321

19072-5541
[0-9]{5}-[0-9]{4} Exactly k

decade rhythm [^aeiou]{6} Negations

camelCase

4illegal

lowercase

Capitalized
[A-Za-z][a-z]* Character classes

ade

bcde

abcde

abcbcde
a(bc)+de One or more

Regular Expression Operation No Yes

12

Regular Expressions in Java

Validity checking. Is input in the set described by the re?

public class Validate {
 public static void main(String[] args) {
 String re = args[0];
 String input = args[1];
 StdOut.println(input.matches(re));
 }
}

% java Validate "C.{2,4}C...[LIVMFYWC].{8}H.{3,5}H" CAASCGGPYACGGAAGYHAGAH
true

% java Validate "[$_A-Za-z][$_A-Za-z0-9]*" ident123
true

% java Validate "[a-z]+@([a-z]+\.)+(edu|com)" doug@cs.princeton.edu
true

legal Java identifier

valid email address (simplified)

need quotes to "escape" the shell

C2H2 type zinc finger domain

powerful string library method

13

More String Library Functions

String searching methods.

public class String (Java's String library)!

replace all occurrences of regular"

expression with the replacement string!
replaceAll(String re, String str) String

return the index of the first occurrence"

of the string r after the index from!
indexOf(String r, int from) int

does this string match the given"

regular expression!
matches(String re) boolean

split the string around matches of the"

given regular expression!
split(String re) String[]

String s = StdIn.readAll();
s = s.replaceAll("\\s+", " ");

replace all sequences of whitespace characters with a single space!

14

More String Library Functions

String searching methods.

public class String (Java's String library)!

replace all occurrences of regular"

expression with the replacement string!
replaceAll(String re, String str) String

return the index of the first occurrence"

of the string r after the index from!
indexOf(String r, int from) int

does this string match the given"

regular expression!
matches(String re) boolean

split the string around matches of the"

given regular expression!
split(String re) String[]

String s = StdIn.readAll();
String[] words = s.split("\\s+");

create array of words in document!
regular expression that
matches any whitespace character

15

Solving the Pattern Match Problem

Regular expressions are a concise way to describe patterns.

!! How would you implement the method matches() ?

!! Hardware: build a deterministic finite state automaton (DFA).

!! Software: simulate a DFA.

DFA: simple machine that solves a pattern match problem.

!! Different machine for each pattern.

!! Accepts or rejects string specified on input tape.

!! Focus on true or false questions for simplicity.

16

Deterministic Finite State Automaton (DFA)

Simple machine with N states.

!! Begin in start state.

!! Read first input symbol.

!! Move to new state, depending on current state and input symbol.

!! Repeat until last input symbol read.

!! Accept input string if last state is labeled Y.

Y N N
b b

 a a a

 b

b b a a b b a b b b b a a b b a b b Input

DFA

17

DFA and RE Duality

RE. Concise way to describe a set of strings.

DFA. Machine to recognize whether a given string is in a given set.

Duality. For any DFA, there exists a RE that describes the same set of

strings; for any RE, there exists a DFA that recognizes the same set.

Practical consequence of duality proof: to match RE, (i) build DFA and

(ii) simulate DFA on input string.

a* | (a*ba*ba*ba*)*

multiple of 3 b's!

Y N N
b b

 a a a

 b

multiple of 3 b's!

18

Implementing a Pattern Matcher

Problem. Given a RE, create program that tests

whether given input is in set of strings described.

Step 1. Build the DFA.

!! A compiler!

!! See COS 226 or COS 320.

Step 2. Simulate it with given input.

State state = start;
while (!StdIn.isEmpty()) {
 char c = StdIn.readChar();
 state = state.next(c);
}
StdOut.println(state.accept());

19

Application: Harvester

Harvest information from input stream.

!! Harvest patterns from DNA.

!! Harvest email addresses from web for spam campaign.

% java Harvester "[a-z]+@([a-z]+\.)+(edu|com)" http://www.princeton.edu/~cos126
rs@cs.princeton.edu

dgabai@cs.princeton.edu
doug@cs.princeton.edu

wayne@cs.princeton.edu

% java Harvester "gcg(cgg|agg)*ctg" chromosomeX.txt

gcgcggcggcggcggcggctg

gcgctg

gcgctg

gcgcggcggcggaggcggaggcggctg

20

Application: Harvester

Harvest information from input stream.

!! Use Pattern data type to compile regular expression to NFA.

!! Use Matcher data type to simulate NFA.

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class Harvester {
 public static void main(String[] args) {
 String re = args[0];
 In in = new In(args[1]);
 String input = in.readAll();
 Pattern pattern = Pattern.compile(re);
 Matcher matcher = pattern.matcher(input);

 while (matcher.find()) {
 StdOut.println(matcher.group());
 }
 }
}

equivalent, but more efficient
representation of a DFA

the match most recently found

look for next match

create NFA from RE

create NFA simulator

21

Application: Parsing a Data File

Ex: parsing an NCBI genome data file.

LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003

DEFINITION Ornithorhynchus anatinus clone CLM1-393H9,

ACCESSION AC146846

VERSION AC146846.2 GI:38304214

KEYWORDS HTG; HTGS_PHASE2; HTGS_DRAFT.

SOURCE Ornithorhynchus anatinus

ORIGIN

 1 tgtatttcat ttgaccgtgc tgttttttcc cggtttttca gtacggtgtt agggagccac

 61 gtgattctgt ttgttttatg ctgccgaata gctgctcgat gaatctctgc atagacagct // a comment

 121 gccgcaggga gaaatgacca gtttgtgatg acaaaatgta ggaaagctgt ttcttcataa

 ...

128101 ggaaatgcga cccccacgct aatgtacagc ttctttagat tg

//

String re = "[]*[0-9]+([actg]*).*";
Pattern pattern = Pattern.compile(re);
In in = new In(filename);
while (!in.isEmpty()) {
 String line = in.readLine();
 Matcher matcher = pattern.matcher(line);
 if (matcher.find()) {
 String s = matcher.group(1).replaceAll(" ", "");
 // do something with s
 }
}

extract the RE part in parentheses

24

Limitations of DFA

No DFA can recognize the language of all bit strings with an equal
number of 0's and 1's.

!! Suppose an N-state DFA can recognize this language.
!! Consider following input: 0000000011111111

!! DFA must accept this string.
!! Some state x is revisited during first N+1 0's since only N states
 0000000011111111

 x x

!! Machine would accept same string without intervening 0's.
 0000011111111

!! This string doesn't have an equal number of 0's and 1's.

N+1 0's N+1 1's

x

25

Summary

Programmer.

!! Regular expressions are a powerful pattern matching tool.

!! Implement regular expressions with finite state machines.

Theoretician.

!! Regular expression is a compact description of a set of strings.

!! DFA is an abstract machine that solves pattern match problem for

regular expressions.

!! DFAs and regular expressions have limitations.

Variations

!! Yes (accept) and No (reject) states sometimes drawn differently

!! Terminology: Deterministic Finite State Automaton (DFA), Finite

State Machine (FSM), Finite State Automaton (FSA) are the same

!! DFA’s can have output, specified on the arcs or in the states

–! These may not have explicit Yes and No states

26

Fundamental Questions

Q. Are there patterns that cannot be described by any RE/DFA?

A. Yes.

!! Bit strings with equal number of 0s and 1s.

!! Decimal strings that represent prime numbers.

!! DNA strings that are Watson-Crick complemented palindromes.

!! and many, many more . . .

Q. Can we extend RE/DFA to describe richer patterns?

A. Yes.

!! Context free grammar (e.g., Java).

!! Turing machines.

27

Turing Machines

Alan Turing (1912-1954)

Challenge: Design simplest machine that is
"as powerful" as conventional computers.

28

Turing Machine

Desiderata. Simple model of computation that is "as powerful" as

conventional computers.

Intuition. Simulate how humans calculate.

Ex. Addition.

0 0 0 0

0 0 0 1

0 0 0 0

2 3 4 5

0 0 + 3

0 0 0 0

1 4 1 5

0 0 0 0

0 0 0

6 0 0

9 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

29

Turing Machine: Tape

Tape.

!! Stores input, output, and intermediate results.

!! One arbitrarily long strip, divided into cells.

!! Finite alphabet of symbols.

Tape head.

!! Points to one cell of tape.

!! Reads a symbol from active cell.

!! Writes a symbol to active cell.

!! Moves left or right one cell at a time.

tape head

tape

tape head

tape # 1 1 0 0 + 1 0 1 1 # … … tape

30

Turing Machine: Fetch, Execute

States.

!! Finite number of possible machine configurations.

!! Determines what machine does and which way tape head moves.

State transition diagram.

!! Ex. if in state 2 and input symbol is 1 then: overwrite the 1 with x,

move to state 0, move tape head to left.

0:x

1:x

#:# #:#

#:#

#:#

1:x

0:x
0 1

2

4

3 5

L

R

R

R N Y

… # # x x x 1 1 0 # # … Before

31

1

Turing Machine: Fetch, Execute

States.

!! Finite number of possible machine configurations.

!! Determines what machine does and which way tape head moves.

State transition diagram.

!! Ex. if in state 2 and input symbol is 1 then: overwrite the 1 with x,

move to state 0, move tape head to left.

0:x

1:x

#:# #:#

#:#

#:#

1:x

0:x
0 1

2

4

3 5

L

R

R

R N Y

… # # x x x 1 x 0 # # … x After

L

R

32

Turing Machine: Initialization and Termination

Initialization.

!! Set input on some portion of tape.

!! Set tape head.

!! Set initial state.

Termination.

!! Stop if enter yes, no, or halt state.

!! Infinite loop possible.

–! (definitely stay tuned !)

… # # 0 0 1 1 1 0 # # …

0:x

1:x

#:# #:#

#:#

#:#

1:x

0:x
0 1

2

4

3 5

L

R

R

R N Y

… # # x x x x x x # # …

33

Example: Equal Number of 0's and 1's

… # # 0 0 1 1 1 0 # # …

0:x

1:x

#:# #:#

#:#

#:#

1:x

0:x

find left end

skip x

find 1

find 0

accept reject

L

R

R

R N Y

34

Turing Machine Summary

Goal: simplest machine that is "as powerful" as conventional computers.

Surprising Fact 1. Such machines are very simple: TM is enough!

Surprising Fact 2. Some problems cannot be solved by ANY computer.

Consequences.

!! Precursor to general purpose programmable machines.

!! Exposes fundamental limitations of all computers.

!! Enables us to study the physics and universality of computation.

!! No need to seek more powerful machines!

Variations

!! Instead of just recognizing strings, TM’s can produce output: the

contents of the tape

!! Instead of Y and N states, TM’s can have a plain Halt state

next lecture

35

Alan Turing and
his elder brother.

Alan's report card at 14.

Alan Turing

Alan Turing (1912-1954).

!! Father of computer science.

!! Computer Science’s “Nobel Prize” is called the Turing Award.

