COS 126 Exam 2 Solutions, Fall 2007

COS 126 General Computer Science Fall 2007

Exam 2 Solutions

1. Turing Machines

[# e e oot [a]afo a1 a0 e]e]e]

2. Circuits

a) Truth Table

S DO D1

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

PRINCETON UNIVERSITY

COS 126 Exam 2 Solutions, Fall 2007

3. Audio list

public class AudioPlayer {
private Node start; // first song
private Node end; // last song
private Node cur; // current song

// a Node is a node in a linked list
private class Node {
private String filename;
private Node next;

public AudioPlayer() {
// create empty linked list
start = null; end = null; cur = null;

// add song to the end of list
public void addSong(String title) {
Node tmp = new Node();
tmp.filename = filename;
tmp.next = null;
if (start == null)
end = start = tmp;
else {
end.next = tmp;
end = end.next;

// play and print the current song

private void playCur() {
System.out.println(‘‘Now Playing: ‘¢ + cur.filename);
StdAudio.play(cur.filename) ;

// play and print all songs
public void playAll() {
cur = start;
while (cur !'= null) {
this.playCur();
cur = cur.next;

PRINCETON UNIVERSITY

// make requested song current, and play it and print it
// assume it is in the list
public void skipToThisSong(String filename) {
cur = start;
while (cur != null) {
if (cur.filename.equals(filename)) {
this.playCur();
break;
}

cur = cur.next;

}

// main (test client)
public static void main(String[] args) {
AudioPlayer player = new AudioPlayer();
// read song filenames from StdIn and store in the
// linked list
while (!StdIn.isEmpty()) {
String name = StdIn.readString();
player.addSong(name) ;

COS 126 Exam 2 Solutions, Fall 2007

4. TOY
//pop
60: 7101 R[1] <- 1 constant 1
61: 8202 R[2] <- mem[02] stack pointer to R[2]
62: 2221 R[2] <- R[2] - RI[1] decrement stack pointer in R[2]
63: A302 R[3] <- mem[R[2]] pop from stack and put result in R[3]
64: 9303 mem[03] <- R[3] store popped item in memory
65: 9202 mem[02] <- R[2] store new stack pointer
66: EFO0 goto R[F] TOY’s return statement

5. Object Oriented Programming

public class STNew {
private STLite list[];
public STNew() {

list = new STLite[10];
for (int i = 0; i < 10; i++) list[i] = new STLite();

public void put(int key, String value) {
list[key % 10].put(key, value);

public String get(int key) {
return list[key % 10].get(key);

PRINCETON UNIVERSITY

6. Queues

public static Queue<Integer> QueueMerge (Queue<Integer> r, Queue<Integer> s){

Queue<Integer> q = new Queue<Integer>();
while (!r.isEmpty() || !'s.isEmpty()) {
if (r.isEmpty()) q.enqueue(s.dequeue());
else if (s.isEmpty()) q.enqueue(r.dequeue());
else if (r.peek() < s.peek()) g.enqueue(r.dequeue());
else q.enqueue(s.dequeue());

}

return q;

7. Regular Expressions

a) (i) (A|B)(A|B) Answer: 4
(ii) AB+ Answer: oo
(iii) AB* Answer: oo
iv) AB Answer: 1

b) Answer: (i), (ii), (iii), and (iv)
Every regular expression specifies a set of strings that can be accepted by some deter-
ministic finite state automaton.

c) In Java, the regular expression “\d” matches any digit. The equivalent is (0|1|2|3]4|5/6]7|8|9)

d) Each answer below is one or more of these strings.
A: alphabet

B: abracadabra

C: babcock

D: hubbub

E: suburbia

F: dabchick

) ab Answer: ABCF
) abc Answer: CF

(iii) a.*a Answer: AB
) P * (eight dots) Answer: ABCEF
) bu(b|r) Answer: DE

8. Theory

T

—

The Church-Turing Thesis is called a thesis and not a theorem because it is a statement
about the real world that cannot be formally proved.

It’s possible to write a program that can decide whether another program solves the
halting problem.

In general, it is undecidable whether a Turing Machine will halt on a given input.

In general, it is undecidable whether a Turing Machine will halt on a given input after
at most n steps.

If a problem is in P, then any program that solves that problem must run in polynomial
time.

If a problem is in P, then it’s possible to write a program that checks proposed solutions
to that problem in polynomial time.

If a problem is in NP, then it’s possible to write a program that checks proposed solutions
to that problem in polynomial time.

If P=NP, then the Traveling Salesperson Problem can be solved in polynomial time.
If the Traveling Salesperson Problem can be solved in polynomial time, then P=NP.

When a DFA is processing a particular input string, its running time will always be
polynomial in the length of that input string.

