
princeton univ. F’07 cos 597D: thinking like a theorist

Lecture 13: LP-based Decoding of Expander Codes

Lecturer: Sanjeev Arora Scribe:Aravindan Vijayaraghavan

1 Introduction

This lecture continues in the series of lectures illustrating the use of thinking continuously.
In this lecture we will demonstrate the use of Linear Programming to decode expander codes,
which were introduced in Lecture 6. We will formulate a Linear programming relaxation for
decoding expander codes and prove that the LP optimum is unique and gives the required
code word. We do this by constructing a witness, from which we prove optimality and
uniqueness by LP duality (or Farkas Lemma). In the next section we give a quick review
of LP duality, followed by a recap of expander codes. We then proceed to describe the
LP decoding algorithm and prove the correctness of the algorithm assuming the existence
of a witness. Finally, we describe how to construct the witness efficiently. In fact, we
use a property(symmetry) of the LP(decoder) polytope (shown in [?]) to give a simpler
description of the decoding algorithm.

LP duality

We now give an alternate view of LP duality. We consider the system of linear inequalities

āi.x̄ ≥ bi ∀i ∈ {1, 2, . . . ,m} (1)

We want to know when this system of linear inequalities is feasible over R. We can try
to show infeasibility by finding a positive combination of these inequalities which gives us
a contradiction (like 0 ≥ 1). However, it is not clear whether this method of deriving
contradictions is complete. LP duality (Farkas lemma) answers precisely this question by
stating that it is always possible to come up with a contradiction for an infeasible system
of linear inequalities, using a positive combination of these system of linear inequalities.
Farkas lemma states that
Lemma 1
For A ∈ Rm×n, b ∈ Rm, exactly one of the following is true:

• ∃x ∈ Rn such that Ax ≤ b
x ≥ 0.

• ∃y ∈ Rm such that AT y ≥ 0
yT b < 0
y ≥ 0.

1

2

Recap of Expander codes (LDPC)

We now give a brief description of Expander codes (Low Density Parity Check Codes) which
were covered in Lecture 6. Consider a bipartite (α,β)-expander graph G(V,W,E) where V
and W represent the two partitions of the graph. Further, we assume that all vertices of V
have degree c. Let n = |V | and m = |W |. We also need that the expansion β = δc, where
δ > 2

3 + 1
3c and that β is an integer. The subset of vertices V (of size n) represents the n

bits in the code and subset W of vertices represents the constraints satisfied by the bits of
any codeword. The constraint corresponding to a vertex j ∈ W is g(j), given by

⊕∑

i∈Γ(j)

xi = 0 (2)

where Γ(j) represents the neighbours of j, and the addition here refers to parity or exclusive-
or (⊕). The expander code C is thus defined implicity as the set of vectors x ∈ GF (2)n

which satisfies the constraint g(j) for every vertex j in partition W . We further assume
that the expander graph is randomly constructed (w.r.t edges) and that m < n

2 . Clearly the
number of vectors in code (size of code space) |C| ≥ 2n

2m ≥ 2
n
2 . Further, using the expansion

of the graph, it is shown that MinDistance(C) ≥ α (from the unique neighbours property).

2 Decoding Expander codes

We now briefly describe the decoding procedure. The received word is b̄ = (b1, b2, . . . , bn) ∈
GF (2)n and we are given that at most ρ bits are erroneous where ρ ≤ 3δ−2

2δ−1(αn − 1) . For
the purpose of this discussion we assume that vertices in W are also degree-bounded. We
need to find the codeword f̄ = (f1, f2, . . . , fn) which is closest to b̄ (w.r.t l1 distance) such
that all the following constraints are satisfied.

∀j ∈ W,
⊕∑

i∈Γ(j)

fi = 0 (3)

However, the constraints specified here are not linear constraints. The key idea here is
to capture each non-linear constraint using linear constraints so that we can use a linear
program for decoding. With this intention, we define for every constraint j ∈ W , variables
wj,S where S ⊆ Γ(j). The intention is that wj,S is 1 if all the binary variables bi corre-
sponding to the elements i ∈ S are 1 and the rest of the elements (/∈ S) are 0. We would
want wj,S as {0, 1} variables as well. The constraints are given below,

∀j ∈ W,
∑

S⊆Γ(j)

wj,S = 1 (4)

∀i ∈ V, j ∈ W, fi =
∑

S⊆Γ(j),S&i

wj,S (5)

∀S ⊆ Γ(j) s.t |S| is odd, wj,S = 0 (6)

3

Figure 1: Figure shows the expander graph with |W | = |V |/2. For the constraint node y1

shown in the figure, the associated constraint is x1 ⊕ x2 ⊕ x3 = 0.

The objective function that needs to be minimized is dependent on the received word b
and on the property of the transmitting channel. We now make a simplifying assumption
about the received code-word. We describe the decoding algorithm assuming that the
transmitted code-word is 0n and that the received word b̄ has weight ≤ ρ. If the decoding
algorithm works under this simplified assumption, it can shown [?] using some symmetry
properties of the LP decoder polytope, that the decoding works for other received words
too. A polytope P for a code C is said to be C-symmetric if for any point f in the polytope
P , and codeword y ∈ C, the point f relative to y, f [y](= |fi − yi|) is also in P . We now
state the relevant result from [?]

Theorem 2
For any LP decoder using a C-symmetric polytope to decode C under a binary input
memoryless symmetric channel, the probability that the LP decoder fails is independent of
the codeword that is transmitted.

Thus, it suffices to show that the decoding algorithm works for the transmitted codeword
being 0n.

2.1 The LP Decoder

Let us assume that the channel is a binary symmetric channel. The decoder for the expander
code consists of solving a linear program, which depends on the received word b̄. The LP

4

under the assumption that the received word b̄ has weight ρ is given by

minimize
∑

i∈V

γifi (7)

∀j ∈ W,
∑

S⊆Γ(j)

wj,S = 1 (8)

∀i ∈ V, j ∈ W, fi =
∑

S⊆Γ(j),S&i

wj,S (9)

∀S ⊆ Γ(j) s.t |S| =odd, wj,S = 0 (10)
wj,S , fi ≥ 0 (11)

where
γi =

{
−1 if bi = 1
+1 if bi = 0

If the channel is not a binary symmetric channel, then γi represents a log-likelihood ratio
of the ith code bit.

It is clear that this LP is solvable in polynomial time (number of constraints and variables
is polynomial in n, because of the degrees being bounded). We now need to show that the
vector 0n is the unique optimal solution of the LP. The dual of the LP presented above is

maximize
∑

j∈W

vj (12)

∀j ∈ W, S ⊆ Γ(j),
∑

i∈S

τij ≥ vj (13)

∀i ∈ V,
∑

j∈Γ(i)

τij ≤ γi (14)

The variables vi, τij ∈). The objective function value for f̄ = 0, wj,φ = 1, wj,S '=φ = 0 is 0.
We will henceforth denote this assignment of variables as (0n, w0). We now try to obtain
a certificate or witness, consisting of an assignment to the dual variables, which will prove
the unique optimality of(0n, w0).

Definition 1 A setting of the dual variables {τij} is a witness if

(a) For all checks j ∈ W , and distinct i, i′ ∈ Γ(j), we have τij + τi′j ≥ 0.

(b) For all i ∈ V , we have
∑

j∈Γ(i) τij < γi.

We now use Farkas Lemma and LP duality to show that if a witness exists, (0n, w0) is the
unique optimum.

Proposition 3
If there exists a witness i.e a setting of the dual variables {τij} satisfying conditions (a), (b)
in Definition 1, then (0n, w0) is the unique optimum to the LP defined above.

5

Proof: Let {τij} be a witness. We first show that (0n, w0) is an optimum solution by
finding a feasible assignment to the dual variables vj with dual objective function value 0.
The required assignment is vj = 0 ∀j. Clearly, conditions (a), (b) in Definition 1 imply that
constraints (13) and (14) are satisfied respectively. The dual objective function value is 0,
and thus by LP duality (0n, w0) is an optimal solution.

To show that (0n, w0) is a unique optimum, we show that if fi = ε > 0 for some i ∈ V ,
then we show by Farkas lemma that the objective value is > 0. If fi′ = ε > 0 for some
i′ ∈ V , we add the constraint

−fi′ ≤ −ε where ε > 0

to the primal. Let the corresponding dual variable be z′. We need
∑

iinV γifi ≤ 0. To show
that this system is infeasible, by Farkas lemma, it suffices to find a solution to the dual
variables {tij}, {vj}, z′ satisfying the constraints

maximize
∑

j∈W

vj (15)

∀j ∈ W, S ⊆ Γ(j),
∑

i∈S

τij ≥ vj (16)

∀i ∈ V \ {i′},
∑

j∈Γ(i)

τij ≤ γi (17)

∑

j∈Γ(i′)

τi′j + z′ ≤ γi′ (18)

∑

j

vj − εz′ < 0 (19)

Such a solution clearly exists with the values of τij , vj as before, with 0 < z′ < γ′i −∑
j∈Γ(i′) τij (this value of z′ exists from condition (b) of Def 1). Thus (0n, w0) is a unique

optimum for the LP as required. !

The LP described above is clearly solvable in polynomial time (all vertices are of bounded
degree) and this completes the description of the decoding algorithm. This procedure can
also be extended to the case where the degree of vertices in W is not bounded, but it is left
as an exercise.

3 Using the Expansion to find a Witness

We now use the expansion of the graph to find such a witness i.e. assign appropriate
edge weights τij that satisfy Definition (1). To do this, we now define a δ-matching and
show that if such a δ-matching exists, then a witness can be constructed. We then show
such a δ-matching exists using the expansion of the graph. For the purpose of the rest of
the lecture, we use λ = 2(1 − δ) + 1

c , where β = δc is the expansion of the graph. Let
U = {i ∈ V |γi = −1} and let U̇ be the set of variables /∈ U that have more that (1 − λ)c
neighbours in Γ(U). Also define U ′ = U ∪ U̇ . Here U corresponds to the bits of the received
word which are 1.

6

Definition 2 A δ-matching of U is a subset of edges M which are incident to U satisfying
the following conditions:

1. Every constraint j ∈ Γ(U) is incident to at most one edge in M .

2. Every node i ∈ U is incident to at least δc edges of M .

3. Every node i′ ∈ U̇ is incident to at least λc edges of M .

Intuitively, we see that such a δ-matching of U can be constructed by applying the
matching algorithm used in Lecture 5 repeatedly. However, we prove the existence of this
δ-matching in the next subsection 3.1. We now show that if such a δ-matching for U exists,
then we can obtain a witness i.e. edge weights {τij} satisfying Definition 1.

Lemma 4
If a δ-matching for U exists, then a witness i.e. a setting of values {τij} satisfying Definition
1 exists.

Proof: Let x be a positive constant such that 1
(2δ−1)c < x < 1

(1−λ)c . We now set the values
{τij} as follows:

• For every edge e = (i, j) ∈ M , we set τij = −x and we set τi′j = x for all i′ ∈ Γ(j).
We observe that this is consistent since each constraint j ∈ W is incident on at most
one edge of M .

• We set all other τij = 0.

Clearly this assignment satisfies property (a) of Definition 1, since no two edges incident
on j ∈ W get negative weights and it is impossible for exactly one vertex of U to be a
neighbour of j. We now check that property (b) is also satisfied. We observe that all edges
e ∈ M incident on i ∈ U get weight −x, other edges of M receive weight 0 and other edges
get weight 0 or x.
If i ∈ U , γi = −1. There are atleast δc edges from M incident on i, each having weight −x.
Therefore ∑

j∈Γ(i)

τij ≤ δc(−x) + (1− δ)cx = (1− 2δ)cx < −1 < γi

If i ∈ U̇ , γi = 1. There are at most (1 − λ)c edges which are /∈ M and they contribute at
most (1 − λ)cx weight, while the remaining edges (atleast λc of them) are in M and have
weight 0. Hence ∑

j∈Γ(i)

τij ≤ (1− λ)cx < 1 < γi

Finally, if i /∈ U ′, still γi = 1. At most (1− λ)c edges are incident on Γ(U) and only these
can contribute non-zero weight. Hence

∑

j∈Γ(i)

τij ≤ (1− λ)cx = (1− λ)cx < 1 < γi

!

7

3.1 Existence of δ-matching of U

We now prove (as in [?]) that there exists a δ-matching of U when the graph G has expansion
(α, δc) expansion, where δ > 2

3 + 1
3c . We first show that the size of U̇ is small by arguing

that if U̇ is large, then the expansion property is violated as many neighbours of U̇ are in
Γ(U).

Lemma 5
If the number of erroneous bits |U | ≤ ρ, then |U̇ | ≤ 1−δ

3δ−2 |U |, where ρ ≤ 3δ−2
2δ−1(αn− 1).

Proof: For convenience, let ν = 1−δ
3δ−2 . Assume to the contrary that |U̇ | > ν|U |. Then

there exists some Ũ ⊆ U̇ such that |Ũ | = +ν|U |, + 1. Now, |U ∪ Ũ | ≤ ρ(1 + ν) + 1 ≤ αn.
By the expansion property, |Γ(U ∪ Ũ)| ≥ cδ(|U | + |Ũ |).

Further |Γ(U∪Ũ)| =≤ c|U |+ |Γ(Ũ)\Γ(U)|. But each node in Ũ has at most λc−1 edges
which are not incident on Γ(U). Thus |Γ(U ∪ Ũ)| ≤ c|U | + (λc − 1)|U | which contradicts
the lower bound due to the expansion. !

Now, note that |U ′| = |U |+ |U̇ | ≤ αn, and thus the expansion property holds for U ′. We
construct the δ−matching of U by finding the maximum flow of a directed graph H which
is constructed from G as follows. The vertices of H correspond to the vertices U ′, Γ(U ′)
and two other vertices designated as the source s and sink t. For every edge (i, j) ∈ G,
where i ∈ U ′, j ∈ Γ(U ′), we include a directed edge (i, j) in H with capacity 1. We also add
directed edges of capacity δc from s to every node i ∈ U ′. Similarly, we include a directed
edge of capacity 1 from each vertex of Γ(U ′) to t. We note that since every edge capacity
is integral, the maximum flow is integral.
Proposition 6
If there is a flow of value δc|U ′| in H, there is a δ-matching M .

Proof: To prove the claim, we consider an integral flow(f) and we set

M = {e = (i, j)|i ∈ U ′, j ∈ Γ(U ′) and f(e) = 1

Since f has value δc|U ′|, every edge (s, i), i ∈ U ′ is saturated. Hence, exactly δc edges
out of each vertex i ∈ U ′ is saturated with a unit flow. This satisfies the second and third
conditions in Def2 (λ < δ). Since edges to t from Γ(U ′) is of capacity 1 each, there is atmost
one edge of non-zero flow incident on each vertex Γ(U ′). Thus the first condition of Def2 is
also satisfied. !

Now to complete the proof, we just need to show that the value of the maximum flow in
H is δc|U ′|. Equivalently, we show that the value of the min-cut in H is δc|U ′|. Let Vs, Ws

represent the vertices of V and W respectively, on the source side of the min-cut. Vt, Wt

be the corresponding vertices on the sink-side in the min-cut. It is easily seen that without
loss of generality, there are no edges in the min-cut from Vs to Wt (for those edges (i, j),
we move j to the source-side).
The edges contributing to the min-cut are those from s to Vt and from Ws to t. Thus

MinCut value ≥ δc|Vt| + |Ws| ≥ δc|Vt| + |Γ(Vs)| ≥ δc|Vt| + δc|Vs| = δc|U ′|

8

This gives the construction (and existence) of δ-matching for U .

Thus, the LP decoder described by the linear program (7) decodes correctly when the
transmitted codeword is 0n and the number of bit errors is ≤ ρ. As described earlier, this
suffices to show that an LP decoder works for all other transmitted codewords as well.

References

[1] J. Feldman, T. Malkin, R. Servedio, C. Stein, and M. Wainwright. Lp decoding corrects
a constant fraction of errors. In Technical Report TR-2003-08, Operations Research,
Columbia University, 2003.

[2] J. Feldman, D. R.Karger, and M. Wainwright. Lp decoding. In Proceedings of 41st
Annual Allerton Conference on Communiction, Control and Computing, 2003.

