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The Indian Buffet Process

Briefly, the Indian Buffet process is the Machine Learning attempt to cast Bayesian Non-
parametrics into the latent feature model.

Latent Features

Some notation: let z; be a latent feature vector on k features. z; is simply a vector of
indicators, specifying one of 2¥ possible combinations of features. For example, for k = 7,
we might have [0011000]7.

Then x; is just a distribution, e.g. z; ~ N (nTzZ-, 02). Notice the placement of z; which
selects a set of features.

Latent features got started in factorial HMMs, which describe latent feature vectors
evolving over time.

Finite Model

Let us look at the finite model, with K features, and where:

mi|a ~ Beta <%, 1>
Zik| T ~ Bernoulli(my)

7, is the relative probability of each feature being on, e.g.:
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zr, are binary vectors, giving the latent structure that’s used to generate the model. This
is similar to Radford and Neal, letting X' — oo.
The marginal probability of the binary vector matrix Z is:

P(Z) - ﬁ 21 (my, JE (N —my + 1)

et (N +14+ %)
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z,| 0 1 0 0 1
Z, 1 1 0 0 1
2| 0| 1|1 1|1

where my, is the number of times that the k™" feature is on, IV is the number of items,
and K is the number of features. This result falls out of the Beta/Bernoulli conjugate pair.

Infinite Model

Now take the limit as K — oo. Define the left-order-function lof(Z) to be the matrix that
reorders columns according to their magnitude as binary numbers. For example:

- B

Now let [Z] be the set of matrices that are lof-equivalent. This is, of course, a many-to-one

mapping, but it is a fine representation when feature order does not matter.
Then:

P((2) = s — expl- aHN}H = et — 1

h=1 n!

where K| is the number of features that are actually used. Refer to equations (29)-(34)
in Griffiths and Ghahramani for the derivation.

Indian Buffet Process

Returning to our favorite restaurant analogy, an Indian Buffet Process is a process where:

2



e Customer 1 chooses the first K{l) dishes ~ Poisson(«).

e Customer 7 chooses:

— Each of the existing dishes with probability “.

- K fi) additional dishes, where K fi) ~ Poisson($)

cust 1: new dishes 1-4

cust 2: old dishes 2,4
new dishes 5—-6

cust 3: old dishes 1,2,4,6
new dishes 7-8

Notice ). K 1(i) = K, and is finite. Notice also that this distribution is not exchangeable.
K fz) depends on Z, and we need Z to be well-formed.

Beta Process

The Beta process:

B ~ BP(c, By)

is a distribution on positive random measures. It is a type of Lévy process, which is
described by a Lévy measure on space €2 of atoms and weight space [0, 1]:

v = c(w)p (1 - p)" " dpBy(dw)

Here, c is the concentration and By is the base measure. When Bj is discrete,

By = qids,

where

pi ~ Beta(c(w;)gi, c(w;)(1 — q;))

If By is a mix of continuous and discrete, we must account for the two parts separately.
They are irreconcilable because the continuous case has zero probability of any one point.
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Bernoulli Process

Define Bernoulli process with hazard measure B:

X ~ BeP(B)

where B is a measure on €.
If B is continuous, then X is a Poisson process with intensity B, with steps at each of
the delta functions.

\J

\J

If B is discrete, then:
X =) b,
b; ~ Bernoulli(p;)

Indian Buffet Process

Given:

B ~ BP(c, By)
X ~ BeP(B)



then the Beta process is conjugate to the Bernoulli process:

c 1 -
B|X;., ~ BP , B X;
‘ b (c—l—n c+n 0+c+n; )

and:

cy 1
X1l X1 ~ BeP B i
+1] X e <c+n 0+C+n;$>
= BeP B Ow.
¢ <c+n 0+;c+n J)

with scaling parameter . Notice the correspondance to the Indian Buffet Process. We

generate Poisson(;7-) new features, i.e. taste a Poisson number of new dishes. And we taste
cach existing dish j with probability 7=2.

Hierarchical Beta Process

The graphical model for the hBP is simply:

B ~BP(¢, B)

A, ~BP(q, B)

X, ~BeP(A)

Thibaux and Jordan then apply a Monte Carlo inference procedure on document clas-
sification and obtain 58% accuracy. For document classification, this accuracy rate is not
super-impressive. Notice that they ended up at the boundaries of the grid, which suggests
that the whole space hasn’t actually been searched. It’s unclear what the motivating appli-
cation for this would be. But factorial models are very important, so there must be some
application area.



