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The Indian Buffet Process

Briefly, the Indian Buffet process is the Machine Learning attempt to cast Bayesian Non-
parametrics into the latent feature model.

Latent Features

Some notation: let zi be a latent feature vector on k features. zi is simply a vector of
indicators, specifying one of 2k possible combinations of features. For example, for k = 7,
we might have [0011000]T .

Then xi is just a distribution, e.g. xi ∼ N
(
ηT zi, σ

2
)
. Notice the placement of zi which

selects a set of features.
Latent features got started in factorial HMMs, which describe latent feature vectors

evolving over time.

Finite Model

Let us look at the finite model, with K features, and where:

πk|α ∼ Beta
( α
K
, 1
)

zik|πk ∼ Bernoulli(πk)

πk is the relative probability of each feature being on, e.g.:

K1

zk are binary vectors, giving the latent structure that’s used to generate the model. This
is similar to Radford and Neal, letting K →∞.

The marginal probability of the binary vector matrix Z is:

P (Z) =
K∏
k=1

α
K

Γ(mk + α
K

)Γ(N −mk + 1)

Γ(N + 1 + α
K

)
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where mk is the number of times that the kth feature is on, N is the number of items,
and K is the number of features. This result falls out of the Beta/Bernoulli conjugate pair.

Infinite Model

Now take the limit as K → ∞. Define the left-order-function lof(Z) to be the matrix that
reorders columns according to their magnitude as binary numbers. For example:

N

K

Now let [Z] be the set of matrices that are lof-equivalent. This is, of course, a many-to-one
mapping, but it is a fine representation when feature order does not matter.

Then:

P ([Z]) =
αK+∏2N−1
h=1 Kh!

exp{−αHN}
K+∏
k=1

(N −mk)!(mk − 1)!

N !

where K+ is the number of features that are actually used. Refer to equations (29)-(34)
in Griffiths and Ghahramani for the derivation.

Indian Buffet Process

Returning to our favorite restaurant analogy, an Indian Buffet Process is a process where:
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• Customer 1 chooses the first K
(1)
1 dishes ∼ Poisson(α).

• Customer i chooses:

– Each of the existing dishes with probability mk

i
.

– K
(i)
1 additional dishes, where K

(i)
1 ∼ Poisson(α

i
)

cust 1: new dishes 1−4

cust 3: old dishes 1,2,4,6

cust 2: old dishes 2,4

new dishes 5−6

new dishes 7−8

Notice
∑

iK
(i)
1 = K+, and is finite. Notice also that this distribution is not exchangeable.

K
(i)
1 depends on Z, and we need Z to be well-formed.

Beta Process

The Beta process:

B ∼ BP(c, B0)

is a distribution on positive random measures. It is a type of Lévy process, which is
described by a Lévy measure on space Ω of atoms and weight space [0, 1]:

ν = c(ω)p−1(1− p)c(ω)−1dpB0(dω)

Here, c is the concentration and B0 is the base measure. When B0 is discrete,

B0 =
∑
i

qiδωi

B =
∑
i

piδωi

where

pi ∼ Beta(c(ωi)qi, c(ωi)(1− qi))

If B0 is a mix of continuous and discrete, we must account for the two parts separately.
They are irreconcilable because the continuous case has zero probability of any one point.
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Bernoulli Process

Define Bernoulli process with hazard measure B:

X ∼ BeP(B)

where B is a measure on Ω.
If B is continuous, then X is a Poisson process with intensity B, with steps at each of

the delta functions.

If B is discrete, then:

X =
∑
i

biδωi

bi ∼ Bernoulli(pi)

Indian Buffet Process

Given:

B ∼ BP(c, B0)

X ∼ BeP(B)
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then the Beta process is conjugate to the Bernoulli process:

B|X1:n ∼ BP

(
c+ n,

c

c+ n
B0 +

1

c+ n

n∑
i=1

Xi

)

and:

Xn+1|X1:n ∼ BeP

(
cγ

c+ n
B0 +

1

c+ n

∑
i

xi

)

= BeP

(
cγ

c+ n
B0 +

∑
j

mn,j

c+ n
δωj

)

with scaling parameter γ. Notice the correspondance to the Indian Buffet Process. We
generate Poisson( cγ

c+n
) new features, i.e. taste a Poisson number of new dishes. And we taste

each existing dish j with probability
mn,j

c+n
.

Hierarchical Beta Process

The graphical model for the hBP is simply:

A  ~ BP(c , B)j j

B  ~ BP(c , B )0 0

X  ~ BeP(A )ij j

Thibaux and Jordan then apply a Monte Carlo inference procedure on document clas-
sification and obtain 58% accuracy. For document classification, this accuracy rate is not
super-impressive. Notice that they ended up at the boundaries of the grid, which suggests
that the whole space hasn’t actually been searched. It’s unclear what the motivating appli-
cation for this would be. But factorial models are very important, so there must be some
application area.
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