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Variational Inference for Dirichlet Process Mixtures

In this lecture, we begin with the basic concept of variational inference, with an emphasis
on mean-field approach based on exponential families. Then Sethuraman’s stick-breaking
construction for Dirichlet process (DP) is briefly reviewed. Finally, we talk about applying
variational inference for DP mixtures, based on Sethuraman’s stick-breaking construction.

Variaitonal Inference

The basic idea of variational inference is to formulate the computation of a marginal or
conditional probability in terms of an optimization problem. This (generally intractable)
problem is then “relaxed”, yielding a simplified optimization problem that depends on a
number of free parameters, known as variational parameters. Solving for the variational
parameters gives an approximation to the marginal or conditional probabilities of interest.

Notations:

data : x = {x1, x2, . . . , xN},
hidden variables : w = {w1, w2, . . . , wM},
model : θ.

In Bayesian setting, we are usually interested in the posterior of w given x and θ:
p(w|x, θ). According to Bayes’ theory, the computation of the posterior is

p(w|x, θ) =
p(w,x|θ)
p(x|θ) =

p(w,x|θ)∫
p(w,x|θ)dw ,

where the integral p(x|θ) =
∫

p(w,x|θ)dw is usually computationally intractable. Accord-
ing to Jensen’s inequality:

log p(x|θ) = log
∫

p(w,x|θ)dw

= log
∫

q(w)
p(w,x|θ)

q(w)
dw

= logEq
p(W,x|θ)

q(W)

≥ Eq log
p(W,x|θ)

q(W)
= Eq [log p(W,x|θ)]− Eq [log q(W)]
= L(q). (1)

In summary, we have log p(x|θ) ≥ L(q), where the equality holds only if p(w,x|θ)
q(w) = p(x|θ),

that is q(w) = p(w|x, θ), the posterior distribution of w. In general, L(q) is a lower bound
of log p(x|θ).



However, q(w) without any constraints makes no simplification of the problem. In
variational inference, we define an alternative family of distributions q(w|ν), where ν is
called free variational parameters. Then, the optimization problem we want to solve is:

arg max
q
L(q) ⇔ arg min

q
KL [q(w|ν) ‖ p(w|x, θ)] . (2)

There are no general rules to select q. The mean-field variational distribution is the simplest
one with full factorization,

q(w|ν) =
M∏

m=1

qνm(wm). (3)

Substitute (3) into (1), we rewrite (1) as

log p(x|θ) ≥ Eq [log p(x|θ) + log p(W|x, θ)]− Eq [log q(W)]
= Eq [log p(x|θ) + log p(W|x, θ)− log q(W)]

= log p(x|θ) +
M∑

m=1

Eq [log p(Wm|W1, . . . , Wm−1,x, θ)]−
M∑

m=1

Eq [log qνm(Wm)]

(4)

We use coordinate ascent to optimize the lower bound. To optimize with respect to νi,
reorder w such that wi is last in the list. Isolate the terms containing νi,

li = Eq [log p(Wi|W−i,x, θ)]− Eq [log qνi(Wi)] (5)

Suppose that p(wi|w−i,x, θ) is in the exponential family:

p(wi|w−i,x, θ) = h(wi) exp
{
g(w−i,x, θ)T wi − a(g(w−i,x, θ))

}
, (6)

and qνi(wi) is in the same family, which means qνi(wi) = h(wi) exp
{
νi

T wi − a(νi)
}
. The

maximum of (5) is achieved by setting ∂li
∂νi

= 0, which gives:

νi = Eq [g(w−i,x, θ)] . (7)

DP Mixtures based on the Stick-Breaking Construction

Consider two infinite collections of independent random variables, Vi ∼ Beta(1, α) and
η∗i ∼ G0, i = 1, 2, . . ., Sethuraman’s stick-breaking construction of DP is:

π(vi) = vi

i−1∏

j=1

(1− vj)

G =
∞∑

i=1

π(vi)δη∗i . (8)

And we have G ∼ DP(αG0). Based on Sethuraman’s stick-breaking construction, DP
mixtures is stated as follows:

1. Draw Vi|α ∼ Beta(1, α), i = 1, 2, . . .

2. Draw η∗i |λ ∼ G0(· |λ), i = 1, 2, . . .
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Figure 1: Graphical model representation of an exponential family DP mixture based on
Sethuraman’s stick-breaking construction.

3. For the nth data point:

(a) Draw Zn ∼ Mult(π(v))

(b) Draw Xn|zn ∼ F (· |ηzn∗)
The graphical model of DP mixtures is shown as Figure 1. We restrict ourselves to DP
mixtures for which the observable data are drawn from an exponential family distribution,
and where the base distribution for the DP is the corresponding conjugate prior.

The distribution of Xn conditioned on Zn and {η∗1, η∗2, . . .} is:

p(xn|zn, η∗1, η
∗
2, . . .)

∞∏

n=1

(h(xn) exp {η∗i xn − a(η∗i )})1[zn=i] . (9)

And the base distribution G0(· |λ) is the conjugate prior to F (· |η):

p(η∗|λ) = h(η∗) exp{λT
1 η∗ + λ2(−a(η∗))− a(λ)}. (10)

The hidden variables here are W = {Z1:N , η∗1:∞,V1:∞}.

Variational Inference for DP Mixtures

First, we have

log p(x1:N |α, λ) ≥ Eq [log p(V1:∞|α)] + Eq [log p(η∗1:∞|λ)]

+
N∑

n=1

(Eq[log p(Zn|V1:∞)] + Eq[log p(xn|Zn)])

− Eq[log q(Z1:N , η∗1:∞,V1:∞)]. (11)

For the variational distribution, we consider the truncated stick-breaking representations.
We fix a value T and let q(vT = 1) = 1 (as shown in Figure 2); this implies that the
mixture proportions π(v) are equal to zero for t > T according to (8). Thus, the proposed
variational distribution (fully factorized) is:

q(v, η∗, z) =
T−1∏

t=1

qγt(vt)
T∏

t=1

qτt(η
∗
t )

N∏

n=1

qφn(zn), (12)

where qγt(vt) are beta distributions, qτt(η∗t ) are exponential family distributions with nat-
ural parameters τt (within the same family of G0), and qφn(zn) are discrete multinomial
distributions.
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Figure 2: Truncated stick-breaking representations.

All of the terms in the lower bound of Equation (11) involve standard computations
in the exponential family, except for the third term Eq[log p(Zn|V1:∞)]. We rewrite it as
follows:

Eq[log p(Zn|V1:∞)] = Eq

[
log

( ∞∏

i=1

(1− Vi)1[Zn>i]V
1[Zn=i]
i

)]

=
∞∑

i=1

(Eq[1[Zn > i] log(1− Vi)] + Eq[1[Zn = i] log Vi])

=
T∑

i=1

(q(zn > i)Eq[log(1− Vi)] + q(zn = i)Eq[log Vi]) , (13)

where

q(zn = i) = φn,i

q(zn > i) =
T∑

j=i+1

φn,j

Eq[log Vi] = Ψ(γi,1)−Ψ(γi,1 + γi,2)
Eq[log(1− Vi)] = Ψ(γi,2)−Ψ(γi,1 + γi,2). (14)

Ψ is the digamma function. Using Equation (7), we have the coordinate ascent algorithm
as follows:

γt,1 = 1 +
∑

n

φn,t

γt,2 = α +
∑

n

T∑

j=i+1

φn,j

τt,1 = λ1 +
∑

n

φn,txn

τt,2 = λ2 +
∑

n

φn,t

φn,t ∝ exp(St), (15)

where,

St = Eq[log Vt] +
t−1∑

i=1

Eq[log(1− Vi)] + Eq[η∗t ]
T Xn − Eq[a(η∗t )]. (16)

4


