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We begin by deriving the coordinate ascent algorithm for variational inference in exponential

families. Given our latent variable model, we have hyperparameters θ, observed variables

x = {x1, . . . , xN}, and latent variables w = {w1, . . . , wM}. We are interested in the hidden

structure of the posterior distribution but need to bound its denominator:

p(w|x, θ) =
p(w,x|θ)

∫

p(w,x|θ)dw
=

p(w,x|θ)

p(x|θ)
. (1)

We bound the denominator by using Jensen’s inequality:

log p(x|θ) = log

∫

p(w,x|θ)dw (2)

= log

∫

p(w,x|θ)
q(w)

q(w)
dw (3)

≥

∫

q(w) log

(

p(w,x|θ)

q(w)

)

dw (4)

= E (log p(w,x|θ)) − E (log q(w)) , (5)

where q is the variational distribution. The last term in the above inequality is the entropy of

q. The q that optimizes the above inequality is p(w|x, θ). However, we cannot compute the

posterior distribution directly. Instead, we optimize the above bound by restricting ourselves

to the fully-factorized variational distribution of the form:

qν(w) =
M
∏

i=1

qνi
(wi), (6)

where ν = {ν1, . . . , νM} are the variational parameters and each distribution is in the ex-

ponential family. We derive a coordinate ascent algorithm in which we iteratively maximize

the bound with respect to each νi. Using the chain rule, we write the above inequality as:

log p(x|θ) ≥ E

(

log p(x|θ) +
M
∑

m=1

log p(wm|x, w1, . . . , wm−1, θ) −
M
∑

m=1

log qνm
(wm)

)

(7)

= log p(x|θ) +
M
∑

m=1

E (log p(wm|x, w1, . . . , wm−1, θ)) −
M
∑

m=1

E (log qνm
(wm)) .(8)
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We proceed with the coordinate ascent algorithm by isolating terms that contain νi and

reordering w such that wi is the last in the list. We maximize the following function with

respect to νi:

li = E (log p(wi|w−i,x, θ)) − E (log qνi
(wi)) . (9)

This maximization is equivalent to minimizing the KL-divergence, which is the difference

between two distributions:

min
ν

KL (qν(w)||p(w|x, θ)) . (10)

We assume that the variational and conditional distributions are in the exponential family:

qνi
= h(wi) exp

(

νT
i wi − a(νi)

)

(11)

p(wi|w−i,x, θ) = h(wi) exp
(

gi(w−i,x, θ)T wi − a(gi(w−i,x, θ))
)

, (12)

where gi(w−i,x, θ) denotes the natural parameter for the sufficient statistic wi when con-

ditioning on the remaining latent variables and the observations. After optimizing l with

respect to νi, we find that the maximum is attained at:

νi = E (gi(w−i,x, θ)) . (13)

We base the coordinate ascent algorithm on the above expression. Such an algorithm finds

a local maximum for Eq 5 by iteratively updating νi for i ∈ {1, . . . ,M}. However, it may be

possible to employ other algorithms such as the Newton, Conjugate Gradient, Gauss-Jacobi,

or Gauss-Seidel Method.

Now, we apply our understanding to the Dirichlet Process (DP) mixture model, where the

vector π(v) comprises the infinite vector of mixing properties and {η∗

1, η
∗

2, . . .} are the atoms

representing the mixture components. Let zn be an assignment variable of the mixture

component with which the data point xn is associated. The data can be described as arising

from the following process:

1. Draw vi|α ∼ Beta(1, α), i = {1, 2, . . .}

2. Draw η∗

i |G0 ∼ Go, i = {1, 2, . . .}

3. For the nth data point:

• Draw zn|v1, v2, . . . ∼ Mult(π(v))

• Draw xn|zn ∼ p(xn|η
∗

zn
)
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We restrict ourselves to DP mixtures for which the observable data is drawn from an expo-

nential family distribution and where the base distribution for the DP is the corresponding

conjugate prior. The distribution of xn conditional on zn and {η∗

1, η
∗

2, . . .} is:

p(xn|zn, η∗

1, η
∗

2, . . .) =
∞
∏

i=1

(

h(xn) exp
(

ν∗T
i xn − a(ν∗

i )
))1[zn=i]

. (14)

Furthermore, the base distribution is:

p(η∗|λ) = h(η∗) exp
(

λT
1 η∗ + λ2(−a(η∗)) − a(λ)

)

, (15)

where we decompose the hyperparameters λ such that λ1 contains the first dim(η∗) compo-

nents and λ2 is a scalar.

Using the Truncated Stick Breaking (TSB) representation as a model and approximation for

the DP mixture, we develop a mean-field variational algorithm. In this representation the

latent variables are the stick lengths, the atoms, and the cluster assignments: w = {v,η∗,z}.

The hyperparameters are the scaling parameter and the parameter of the conjugate base

distribution: θ = {α, λ}. T is the truncation level, which is a variational parameter that can

be freely set. We write the variational bound on the log marginal probability of the data as:

log p(x|α, λ) ≥ E (log p(v|α)) + E (log p(η∗|λ))

+
N
∑

n=1

(E (log p(zn|v)) + E (log p(xn|zn))) (16)

− E (log q(v,η∗,z)) .

Additionally, we propose the following factorized family of variational distributions for mean-

field variational inference:

q(v,η∗,z) =
T−1
∏

t=1

qγt
(vt)

T
∏

t=1

qτt
(η∗

t )
N
∏

t=1

qφn
(zn), (17)

where qγt
(vt) are beta distributions, qτt

(η∗

t ) are exponential family distributions with natu-

ral parameters τt, and qφn
(zn) are multinomial distributions. Furthermore, the variational

parameters are:

ν = {γ1, . . . , γT−1, τ1, . . . , τT , φ1, . . . , φN}. (18)

Before applying the coordinate ascent algorithm to the above bound, we note that all of the

terms in the bound involve standard computations in the exponential family except for the
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third term. Therefore, we rewrite the third term using indicator random variables:

E (log p(zn|v)) = E

(

log

(

∞
∏

i=1

(1 − vi)
1[zn>i]v

1[zn=i]
i

))

(19)

=
∞
∑

i=1

(q(zn > i)E (log(1 − vi)) + q(zn = i)E (log vi)) (20)

=
T
∑

i=1

(q(zn > i)E (log(1 − vi)) + q(zn = i)E (log vi)) , (21)

because E (log(1 − vT )) = 0, q(zn > T ) = 0, and we can truncate the summation at t = T .

In the above expressions:

q(zn = i) = φn,i (22)

q(zn > i) =
T
∑

j=i+1

φn,j (23)

E (log vi) = Ψ(γi,1) − Ψ(γi,1 + γi,2) (24)

E (log(1 − vi)) = Ψ(γi,2) − Ψ(γi,1 + γi,2). (25)

Using the value for which li was maximized: νi = E (gi(w−i,x, θ)), the mean-field coordinate

ascent algorithm yields:

γt,i = 1 +
∑

n

φn,t (26)

γt,2 = α +
∑

n

T
∑

j=t+1

φn,j (27)

τt,1 = λ1 +
∑

n

φn,txn (28)

τt,2 = λ2 +
∑

n

φn,t (29)

φn,t ∝ exp(St) (30)

St = E (log vt) +
t−1
∑

i=1

E (log(1 − vi)) + E (η∗

t )
T

xn − E (a(η∗

t )) . (31)

for t ∈ {1, . . . , T} and n ∈ {1, . . . , N}.


