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1 Gibbs Sampling with a DP

First, let’s recapitulate the model that we’re using. We assume that each table
has an associated parameter φ which comes from some base measure G0 for
k = 1 . . .

φ∗
k ∼ G0. (1)

Each data point comes from some table given by

zn ∼ CRP(α, z1:n−1). (2)

And then the data itself comes from the parameter associated with that table:

xn ∼ p(· |φ∗
zn

) (3)

Last time, we left off with the predictive distribution

p(x|x1:N ) =
∑
z1:N

p(z1:N |x1:N )p(x|z1:N , x1:N ), (4)

where the sum ranges over all possible seating arrangements z1:N . The
quantity on the left can also be viewed as the expectation of p(x|z1:N , x1:N )
under the distribution p(z1:N |x1:N ), i.e. Ep(z1:N |x1:N)[p(x|z1:N,, x1:N )].

1.1 Sampling Equations

Last time, we showed that p(x|z1:N , x1:N ) can be computed exactly when p(· |φ∗
zn

)
is conjugate to G0, and the other half is just the well-defined Chinese Restau-
rant Process. The problem, however, is that it is intractable to sum over all
of the seating possibilities. Thus, we need approximate inference to handle the
sum over z. What we can do is take the average of S samples from the true
distribution to estimate the expectation

Ep(z1:N |x1:N )[p(x|z1:N,, x1:N )] ≈
1

S

S∑
s=1

p(x|zs
1:N , x1:N ) (5)

using zs
1:N to denote the assignment to tables for sample s. To get these samples

from the posterior, we use Gibbs sampling. We fix all but one z (denoted by
z−i) and compute the table probabilities for that zi conditioned on all of the
others, which is given by

p(zn|z−n, x1:N ) =
p(zn, xn|z−n, x−n)

p(xn|z−n, x−n)
(6)

∝ p(zn, xn|z−n, x−n) (7)

= p(zn|z−n, x−n)p(xn|zn, z−n, x−n) (8)
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after applying the chain rule. At this point, we can observe that p(zn|z−n, x−n) =
p(zn|z−n), as zn is independent of x−n given their respective table assignments
z−n, and is just given by the Chinese Restaurant Process. Note that zn can take
K−n + 1 values, where K−n is the number of tables occupied when we consider
the variables z−n.

The other term, however, requires us to marginalize over φzn
, which gives

us

p(xn|zn, z−n, x−n) =

∫
φ∗

zn

p(xn|φ
∗
zn

)p(φ∗
zn
|z−n, xn) (9)

This can be viewed as the expected value of p(xn|φ
∗
zn

) under the posterior
distribution p(φ∗

zn
|z−n, x−n). This depends on the distribution for generating

the data, but if it’s in the same family as G0, then it’s almost always possible to
compute this exactly. For instance, if G0 ∼ N(0, σ2

0) and P (X |φ∗) is N(φ∗, σ2
x),

then this posterior is also normally distributed.
For Gibbs sampling we go through all of the seating assignments for a single

iteration; after some number of iterations called the burn-in period, we begin
taking samples from the distribution with a periodicity called the lag.

1.2 Implementation Details

• Autocorrelation is usually used to determine the lag and burn-in, as this is
a measure of independence. However, in practice, these values are usually
reported without justification.

• The indices of assignment aren’t necessarily - and usually aren’t - con-
sistent across iterations of the Gibbs sampler. The trickiest part of the
implementation is representing the table assignments.

• While you might expect α to have the biggest effect on the number of
clusters (choosing a new table with probability proportional to α), the
more relevant factor is the variance of the base measure. For example, if
G0 : N(0, σ2

0), a really small σ2
0 will cause you to have a lot of clusters.

• Hyperparameters can also have a prior distribution put on them, but there
is a “moment of truth” at some point when a parameter will have to be
set, either by choice or resorting to cross-validation.

• The posterior will be multimodal. This is not a problem for our purposes,
both because we want to find a single mode and also because modes will
correspond to different yet equivalent assignments (e.g. points 1,4,3 sit at
table A and 4 and 6 at table B is equivalent to reversing the table choices).

• If G0 is not conjugate, you have to use Metropolis-Hastings, usually Al-
gorithm 8 in Neal’s paper.

1.3 Score

The score is proportional to the posterior (for a particular sample s) and is
given by
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Figure 1: The probability density function of the Beta distribution for different
settings of the parameters a and b.

log(p(zs
1:N )p(x1:N |zs

1:N)). (10)

The goal is to get samples from a mode of the posterior; an increase in score
followed by a plateau as the number of iterations increases is used as an indi-
cation that the samples are coming from a high probability region. Computing
this is a good idea because it allows you to assess convergence. This still remains
a tricky problem, however, as discussed in the Neal article, and tt’s usually not
addressed thoroughly in papers.

2 Dirichlet Distribution

The Dirichlet distribution is a distribution over vectors with k elements such
that Gi > 0 and

∑
Gi = 1, which means that the Dirichlet distribution is a

distribution over the k − 1 simplex. When k = 2, this is the β distribution,
the p.d.f. of which is illustrated in Figure 1 for various values of the a and b

parameters.
This distribution takes parameter α, a k-dimensional vector, and its proba-

bility density function is

p(G|α) =
Γ(

∑
αi)∏

Γ(αi)
Gαi−1

1 . . . Gαk−1
k . (11)

We will now discuss properties of the Dirichlet distribution that will also
apply to the Dirichlet process.

2.1 Influence of the parameter

In order to have an idea of how the setting of the parameters αi influence
the samples drawn from a Dirichlet, Figure 2 shows several draws at different
settings (letting all αi be the same value). If αi < 1 we have sparse distributions
that concentrate the mass on a few or even a single value. If αi >> 1, they are
centered around a point on the simplex (a uniform distribution). If αi = 1, the
same probability is given to all the points on the simplex.
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Figure 2: Each row shows five draws from a Dirichlet distributions with a given
value of αi.
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2.2 Gamma Distribution

In order to generate draws from a Dirichlet we can take advantage of the fol-
lowing property

zi ∼ Gamma(αi), (12)

then independent of
∑

zi,

〈
zj∑
zi

, . . . ,
zk∑

zi

〉 ∼ Dir(α) (13)

by drawing one value from each of the variables zi and combining them into a
vector that will be a draw from a Dirichlet.

2.3 Partitions

A draw from a Dirichlet can be viewed as a distribution over X (e.g. the 20
loadings on a D&D 20-sided die). If we have a partition A1, . . . , Am of X (e.g.
roll 1− 8 severe maiming, roll 9− 16 flesh wound, roll 17− 20 victory would be
three partitions) then, taking G(Ai) =

∑
x∈Ai

αx, we have that, if G ∼ Dir(α),
then for any partition A1, . . . , Am of X :

〈G(A1), . . . , G(Am)〉 ∼ Dir(α′). (14)

for α′ = (
∑

j∈A1
αj , . . . ,

∑
j∈Am

αj).
In particular, this tell us that the marginal of Gi when we divide into just

two partitions is

〈A1, A2〉 ∼ Dir(αi,
∑
j 6=i

αj), (15)

a Beta distribution. We can consider α as a measure on our discrete space X.
If we have A1, . . . , Am partitioning X , then

G(j|Ai) =
G(j)

G(Ai)
(16)

for j ∈ Ai we have two properties.
First, 〈G(A1), . . . , G(Am)〉, G(· |A1), . . . , G(· |Am) are independent of each

other. Moreover, G(· |Am) ∼ Dir(αAi
) (in other words, the α restricted to Ai).

This means that if you know the partition, then it tells you nothing about what’s
inside.

Secondly, this partition is neutral to the right. Thus, if we have a hierarchy
of subsets

B1 ⊃ B2 ⊃ B3 ⊃ · · · ⊃ Bm, (17)

then G(B1) ⊥ G(B2|B1) ⊥ · · · ⊥ G(Bm|Bm−1).

3 Expectation

The expectation of G ∼ Dir(α) is given by

E[G] =
α∑
i αi

=
α

α(X)
= ᾱ, (18)

where α(X) makes it sum to one and thus be a distribution on the k-simplex.
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4 Posterior

Suppose that we have G ∼ Dir(α) and we have xn i.i.d. from G. Then we have

p(G|x1 . . . xn) ∝ p(G)

n∏
i=1

p(xi|G) (19)

= p(G)

n∏
i=1

Gxi
(20)

=

k∏
i=1

Gαi−1+ni , (21)

(22)

In other words, we still have a Dirichlet, but with the number of xi observed
for each component added to our parameter αi. This is analogous to the setting
where we have an urn with multicolored balls, and for each ball that we remove
from the urn we place another ball of the same color back in (i.e. adding one to
the numerator for each xi).

For a particular xn+1, we then have

p(xn+1|x1, . . . , xn) =

∫
G(xn+1)p(G|x1, . . . , xn) =

α +
∑

δxi

α(X) + n
. (23)

We can thus interpret α as an unnormalized guess at G and, as we condition
on observed data, the posterior becomes a convex combination of our prior and
our empirical observation estimates. We can also view this as a new measure
α′ = α +

∑n

i=1 δxi

The predictive distribution can also be viewed as a convex combination of
the distribution mean ᾱ and the empirical distribution where the probability of
X having outcome i is given by ni

n
(i.e. the fraction of the n observations where

the outcome was seen). More formally

p(xn+1 = i|x1, . . . , xn) =
α(X)

α(X) + n
ᾱ +

n

α(X) + n

ni

n
(24)

and it’s clear that the magnitude of α determines how many observations are
necessary before the empirical distribution has more influence than ᾱ on the
prediction.
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