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Markov Chain Monte Carlo Sampling for Dirich-

let Process Mixture Models

In this lecture, we will begin by discussing Dirichlet processes, and progress
onto Dirichlet process mixtures. Then we will review conjugacy and Markov
Chain Monte Carlo (MCMC) methods. Finally, we will arrive at MCMC
sampling for Dirichlet Process mixtures, which was presented in the assigned
reading for this week’s seminar.

Dirichlet Process (DP)

Let us make the connection explicit between the Dirichlet Process and the
Chinese Restaurant Process presented last week. It is worth emphasizing
that the Dirichlet Process is a distribution over distributions, which is pa-
rameterized by a scalar α and by the base distribution G0. Note that the
expression αG0 is a measure which integrates to α.

Then, each draw from the Dirichlet Process would result in a distribution:

G ∼ DP (αG0)

The space of G is the same space as G0. If G0 is a Gaussian, for example,
then G would be a distribution over <. Similarly, the space of G would be <P
for a multivariate Gaussian, the positive integers for a Poisson distribution,
and <+ for a Gamma distribution.

G is not present simply for the purposes of being integrated out. Some-
times, we do explicitly integrate G, although we will not do that for some
time.

Some properties of a Dirichlet process:

1. Draws from DP (αG0) are discrete. There is a positive probability of
drawing certain numbers, unlike, say, a Gaussian where the probability
of drawing any one number is always zero.
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This is both interesting and limiting. The goal of a Dirichlet Process is
to represent arbitrary distributions. This doesn’t seem very arbitrary at
first glance. But for now, simply consider it a property of the Dirichlet
Process.

2. The posterior distribution of a Dirichlet Process is still a Dirichlet Pro-
cess. This is a form of conjugacy, which we shortly will discuss in
greater detail.

Suppose we draw a value φn IID from the Dirichlet Process: (using
Nealish notation rather than the notation we used last week):

G ∼ DP (αG0)

φn
iid∼ G

Then the posterior distribution will be a Dirichlet process with a Dirac
delta at φn. For example, after drawing the first value φ1, the posterior
distribution will look like this:

0
φ

1

G|{φ1, αG0} ∼ DP (αG0 + δφ1)
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When we normalize the distribution to integrate to one, the presence
of the Dirac delta δφ1 will give a greater probability to the value φ1,
and less to the initial distribution αG0. Note that α functions as a scal-
ing factor, where smaller α gives greater weight to φ1 in the posterior
distribution.

3. Because the Dirichlet Process is a distribution of distributions, the
expectation is a distribution. Let the numerator be the base measure,
and normalize to get:

E[G|αG0] =
αG0∫

αG0(φ)dφ

=
αG0

α
∫
G0(φ)dφ

=
αG0

α
= G0

Notice that G is discrete, but the expectation is not discrete. It is
interesting that the expectation does not possess the same properties
as each individual draw from the distribution.

The DP and the Chinese Restaurant Process

After N draws from a Dirichlet Process, the posterior distribution is:

G|φ1:N , αG0 ∼ DP

(
αG0 +

N∑
n=1

δφn

)
Then the probability of the next draw from the Dirichlet Process is:

P (|φ1:N) =

∫
GP (G|φ1:N)dG

= E[G|φ1:N ]

=
αG0 +

∑N
n=1 δφn

α +N
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In other words, with probability proportional to α, the next draw will be
a Gaussian. With probability proportional to 1, we will get a value that has
already been drawn.

To put it more formally:

P (φ|φ1:N) =

{
draw from G0 with probability α

α+N

φN with probability 1
α+N

The denominator is simply a normalizing factor, as follows:

∫
αG0 +

N∑
n=1

δφn = α

∫
G0(φ)dφ+

N∑
n=1

∫
δφndφ = α +N

Notice that the denominator α+N is the same as in the Chinese Restau-
rant Process. So in order to get to the Chinese Restaurant Process from the
Dirichlet Process, we need to argue that the φn’s have a clustering structure.

P (φ1, ..., φN) = P (φ1)P (φ2|φ1)...P (φN |φ1:(N−1))

Suppose φ1:N takes on the unique values φ∗1:K . Then with probability
α

α+N
, we will obtain a Gaussian. Because Gaussians do not repeat, this

corresponds to a new value. Similarly, with probability number of occurrences
α+N

, we
will obtain an existing value. Arbitrarily map the discrete real values to table
numbers, and we see that the partition structure of the Dirichlet Process is
exactly that of the Chinese Restaurant Process.

Just to recap, then:

G ∼ DP (αG0)

φn
iid∼ G

P (φ1...φN) =

∫ N∏
n=1

P (φn|G)P (G)dG

As an aside, note that this is a different model from other distributions
such as:

µ ∼ N(0, 1)φn
iid∼ N(µ, σ2)

The Dirichlet Process gives our Gs very special properties.
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Summary

G|φ1 ∼ DP (αG0 + δφ1)

P (G|φ1) ∝ P (G, φ1)

= P (G)P (φ1|G)

= DP ·G(φ1)

P (G|φ1, φ2) ∝ P (G, φ2|φ1)

= P (G|φ1)P (φ2|G)

= DP ·G(φ2)

∼ DP(αG0 + δφ1 + δφ2)

Here, we have defined the Dirichlet Process implicitly, but understanding
its properties led to the development of a model in which it is identical to the
Chinese Restaurant Process. Later on, we shall define the Dirichlet Process
more constructively.

Dirichlet Process Mixtures

P (φ1, ..., φN) = P (φ1)P (φ2|φ1)...P (φN |φ1:(N−1))

This is equivalent to the CRP mixture:

φ∗i ∼ G0

zn ∼ CRP (α; z1, ..., zn−1)

xn ∼ P (x|φ∗zn
)

From now on, we can equivalent use the CRP form or the DP form:

G ∼ DP (αG0)

φn
iid∼ G

xn ∼ P (x|φn)

5



Computing Posteriors

Conjugacy

A basic definition of conjugacy: the posterior is in the same family as the
prior. The best reference for conjugacy is Gelman; it’s crystal-clear there.

We saw one example of this already:

G is a DP

φ ∼ G

G|φ is still a DP

More examples of conjugacy:

Prior P0(θ) Dirichlet Beta Gaussian
Likelihood P (X|θ) Discrete Binomial Gaussian
Posterior P (θ|X) Dirichlet Beta Gaussian

A more formal definition: Let

φ ∼ G0

X
iid∼ F (φ)

Call φ|X ∼ Ĝ0,X

Then if Ĝ0,X is in the same family as G0, then G0 is a conjugate prior.

In general, every exponential family has a conjugate prior.

We use conjugate priors to make Bayesian computation easier. Aside: a
reference prior is the case where you let the prior be totally uninformative,
(the KL divergence between the prior and the posterior when the number
of observations is asymptotically large is a maximum), i.e. we let the data
speak for itself. Then a conjugate prior is the exact opposite of the reference
prior, in that we are maximizing rather than minimizing the effect of the
prior.

Let’s assume that G0 is the conjugate prior to P (X|φ)
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Here, the Xi’s are chosen from a distribution according to the parameter
at the table.

A Basic Review of MCMC

A more thorough exposition may be found in (Neal 93). Neal is a very thor-
ough author who posts source code, compiler source code, and PRNG seed
values, so you can always reproduce his results exactly. Gelman gives a prac-
tical approach, which is suitable for our purposes.

Let
Z1:M : all of the hidden variables
X1:N : the observations
θ: the fixed values (hyperparameters)

We want the posterior
P (Z1:M |X1:N , θ)

How do we do this? The basic idea of MCMC is to build a Markov Chain
on Z

(t)
1:M , t being the iteration index, such that the stationary distribution

Z
(∞)
1:M of this MC is the posterior.
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For large T , ZT
1:M should approximate a draw from π, the stationary dis-

tribution.

Once we have collected B samples from π, we can estimate the posterior

P (Z1:M |X1:N , θ) ≈
1

B

B∑
i=1

δZ1:M
(i)

However, to do this we do not take all the iterations of samples, because this
may not lead us to a good estimate. Some basic terminology and concepts
in MCMC sampling:

• Burn-in: The number of iterations between the first sample and the
first sample from the approximate stationary distribution.

• Lag: The number of iterations between actual samples taken after burn-
in.

To estimate sufficient independence of samples taken after burn-in, one
common metric is the autocorrelation. Typically we care only about one of
the modes, so this is a reasonable heuristic to use.

Gibbs Sampling

Gibbs Sampling is the simplest of all MCMC algorithms. It is a special case
of Metropolis-Hastings.
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Let Z−i = Z\Zi = {Z1, · · · , Zi−1, Zi+1, · · · , ZM}. We sample

Zi ∼ P (Zi|Z−i, X1:N)

The proof of convergence of this sampling to π is given in (Neal 93).

When G0 is conjugate, we only need P (Z1:N |X1:N , G0, α), where Z1:N are
the table assignments. That is, we do not need the φ’s; we’ve marginalized
out the DP parameters. Quick example: G0 ∼ N (0, 10), α = 1.0.

Sometimes we look for the predictive distribution P (X|X1:N). This can be
calculated by marginalizing out a number of parameters, and using conjugate
priors. The remainder is a derivation of how to estimate this distribution.

P (X|X1:N) =
∑
Z1:N

P (Z1:N |X1:N)P (X|Z1:N , X1:N) (1)

P (X|Z1:N , X1:N) =
1+Kn∑
i=1

P (Z = i|Z1:N)P (X|Z = i, Z1:N , X1:N)

(2)

P (X|Z = i, Z1:N , X1:N) =

∫
P (φ∗i |Z = i, Z1:N , X1:N)P (X|φ∗i )dφ∗i (3)

Where in (??) we marginalize over the partition structure and use the chain
rule, in (??) we marginalize over all possible current and future tables.

In (??), the first term in the integral is a conjugate prior, so we can cal-
culate the integral analytically, and represent it as bi(X;Z1:N , X1:N). Note
that we sample to approximate the predictive distribution:

P (X|X1:N) ≈ 1

B

B∑
b=1

P (X|Z(b)
1:N , X1:N)
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