
COS 597C: Bayesian nonparametrics

Lecturer: David Blei Lecture # 1
Scribes: Peter Frazier, Indraneel Mukherjee September 21, 2007

In this first lecture, we begin by introducing the Chinese Restaurant Pro-
cess. After a brief review of finite mixture models, we describe the Chinese
Restaurant Process mixture, where the latent variables are distributed ac-
cording to a Chinese Restaurant Process. We end by noting a connection
between Dirchlet processes and the Chinese Restaurant Process mixture.

The Chinese Restaurant Process

We will define a distribution on the space of partitions of the positive integers,
N. This would induce a distribution on the partitions of the first n integers,
for every n ∈ N.

Imagine a restaurant with countably infinitely many tables, labelled 1, 2, . . ..
Customers walk in and sit down at some table. The tables are chosen ac-
cording to the following random process.

1. The first customer always chooses the first table.

2. The nth customer chooses the first unoccupied table with probability
α

n−1+α
, and an occupied table with probability c

n−1+α
, where c is the

number of people sitting at that table.

In the above, α is a scalar parameter of the process. One might check
that the above does define a probability distribution. Let us denote by kn

the number of different tables occupied after n customers have walked in.
Then 1 ≤ kn ≤ n and it follows from the above description that precisely
tables 1, . . . , kn are occupied.

Example A possible arrangement of 10 customers is shown in Figure 1.
Denote by zi the table occupied by the customer i. The probability of this
arrangement is
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1, 3, 8 2, 5, 9, 10 4, 6, 7

. . .

Figure 1: The Chinese restaurant process. Circles represent tables and the
numbers around them are the customers sitting at that table.

Pr(z1, . . . , z10) = Pr(z1) Pr(z2|z1) . . . Pr(z10|z1, . . . , z9)
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We can make the following observations:

1. The probability of a seating is invariant under permutations. Permut-
ing the customers permutes the numerators in the above computation,
while the denominators remains the same. This property is known as
exchangeability.

2. Any seating arrangement creates a partition. For example, the above
seating arrangement partitions customers 1, . . . , 10 into the following
three groups (1, 3, 8), (2, 5, 9, 10), (4, 6, 7). Exchangeability now implies
that two seating arrangements whose partitions consist of the same
number of components with identical sizes will have the same proba-
bility. For instance, the probability of any seating arrangement of ten
customers where three tables are occupied, with three customers each
on two of the tables and the remaining four on the third table, will
have the same probability as the seating in our example.

Thus we could define a distribution on the space of all partitions of the
integer n, where n is the total number of customers. The number of
partitions is given by the partition function p(n), which has no simple
closed form. Asymptotically, p(n) = exp(O(

√
n)).
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3. The expected number of occupied tables for n customers grows loga-
rithmically. In particular

E[kn|α] = O(α log n)

This can be seen as follows: Let Xi be the IRV for the event that the
i th customer starts a new table. The probability of this happening is
Pr[Xi = 1] = α/(i−1+α). Since kn =

∑
i Xi, by linearity of expectatin

the summation is equal to
∑

i α/(α+ i−1) which is upper bounded by
O(αHn) where Hn is the nth harmonic sum.

By taking the limit as n goes to infinity, we could perhaps define a dis-
tribution on the space of all natural numbers. However, technical difficulties
might arise while dealing with distributions over infinite sequences, and ap-
propriate sigma algebras have to be chosen. Chapters 1-4 of [5], and the
lecture notes from ORFE 551 (sent to course mailing list) are recommended
for reading up basic measure theory.

Review: Finite mixture models

Finite mixture models are latent variable models. To model data via finite
mixtures of distributions, the basic steps are

1. Posit hidden random variables

2. Construct a joint distribution of observed and hidden random variables

3. Compute the posterior distribution of the hidden variables given the
observed variables.

Examples include Gaussian mixtures, Kalman filter, Factor analysis, Hid-
den Markov models, etc. We review the Gaussian mixture model.

A Gaussian mixture with K components, for fixed K, can be described
by the following generative process:

1. Choose cluster proportions π ∼ Dir(α), where Dir(α) is a dirichlet prior,
with parameter α, over distributions over k points.

2. Choose K means µk ∼ N(0, σ2
µ)
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3. For each data point:

(a) Choose cluster assignment z ∼ Mult(π)

(b) Choose x ∼ N(µz, σ
2
X).

The above gives a model for the joint distribution Pr(π, µ1:K , z1:Nx1:N |α, σ2
µ, σ

2
X).

We will drop α, σ2
µ, σ

2
X from now on, and assume they are known and fixed.

The posterior distribution, given data x1:N is Pr(π, µ1:K , z1:N |x1:N) and has
the followin:

1. This decomposed the data over the latent space, thus revealing under-
lying structure when present.

2. The posterior helps predict a new data point via the predictive distribu-
tion Pr(x|x1:N). For simplicity, we show how to calculate this quantity
when the cluster proportions π is fixed.

Pr(x|x1:N , π) =
∑

z

∫
µz

Pr(x, z, µz|x1:N , π)dµz

=
∑

z

∫
µz

πz Pr(x|µz) Pr(µz|x1:N)dµz

=
∑

z

πz

∫
µz

Pr(x|µz) Pr(µz|x1:N)dµz

We could compute Pr(µz|x1:N)dµz from the posterior Pr(µ1:K , z1:N |x1:N , π)
by marginalizing out the z1:N and the µk for k 6= z. This would enable
us to complete the above calculation to obtain the predictive distribu-
tion.

Chinese Restaurant Process Mixture

A Chinese restaurant process mixture is constructed by the following proce-
dure:

1. Endow each table with a mean, µ∗k ∼ N(0, σ2
µ), k = 1, 2, . . ..

2a. Customer n sits down at table zn ∼ CRP(α; z1, . . . , zn−1).
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µ∗1

1, 3, 8

µ∗2

2, 5, 9, 10

µ∗3

4, 6, 7

. . .

Figure 2: The Chinese restaurant process mixture. Each table k has a mean
µ∗k and customers sitting at it are distributed according to that mean. Tables
1 through 3 and customers 1 through 10 are pictured.

2b. A datapoint is drawn xn ∼ N(µ∗zn
, σ2

x).

We will consider the posterior and predictive distributions. The hidden
variables are the infinite collection of means, µ∗1, µ

∗
2, . . ., and the cluster as-

signments z1, z2, . . .. Consider the posterior on these hidden variables given
the first N datapoints,

p(µ∗1:N , z1:N | x1:N , θ),

where we define θ = (σ2
µ, σ

2
x, α) to contain the fixed parameters of the model.

Note that we only need to care about the means of the first N tables because
the rest will have posterior distribution N(0, σ2

µ) unchanged from the prior.
Similarly, we only need to care about the cluser assignments of the first N
customers because the rest will have posterior equal to the prior.

The predictive distribution given the data and some additional hidden
variables is

p(x | x1:N , µ∗1:N+1, z1:N , θ) =

1+KN∑
z=1

p(z | z1:N)p(x | z, µ∗z).

These hidden variables may be integrated out with the posterior on the hid-
den variables to give the predictive distribution conditioned only on the data.
Note that, whereas in the finite mixture model the cluster proportions were
modeled explicitly, here the cluster proportions are within the z variables.
Also note that permuting the x1:N results in the same predictive distribution,
so we have exchangeability here as we did earlier.

Why is exchangeability important? Having exchangeability is as though
we drew a parameter from a prior and then drew data independently and
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identically from that prior. Thus, the data are independent conditioned on
the parameter, but are not independent in general. This is weaker than
assuming independence.

Specifically, DeFinetti’s exchangeability theorem [1] states that the ex-
changeability of a random sequence x1, x2, . . . is equivalent to having a pa-
rameter θ drawn from a distribution F (·) and then choosing xn iid from the
distribution implied by θ. That is,

θ ∼ F (·)

xn
iid∼ θ.

We may apply this idea to the Chinese restaurant process mixture, which
is really a distribution on distributions, or a distribution on the (µz1 , µz2 , . . .).
The random means µz1 , µz2 , . . . are exchangeable, so this implies that their
distribution may be expressed in the form given by DeFinetti’s exchangeabil-
ity theorem. Their distribution is given by

G ∼ DirichletProcess(αG0)

µzi

iid∼ G.

Here G0 is the distribution of the µ∗ on the reals, e.g., N(0, σ2
u). Note

that we get repeated values when sampling the zi whenever a customer sits
at an already occupied table. Then customer i has µzi

identical to the µzj
of

all customers j previously seated at the table. In fact, G is an almost surely
discrete distribution on the reals with a countably infinite number of atoms.

The reading for next week, [2, 4], is on how to compute the posterior of
the hidden parameters given the data, and also includes two new perspectives
on the Chinese restaurant process. One perspective is the one just described,
of the Chinese restaurant process as a Dirichlet process, and the other is as
an infinite limit of finite mixture models. In the reading, focus on [4]. In
addition, a good general reference on Bayesian statistics that may be helpful
in the course is [3].
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