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Abstract

Nonparametric Bayesian mixture models, in partic-
ular Dirichlet process (DP) mixture models, have
shown great promise for density estimation and
data clustering. Given the size of today’s datasets,
computational efficiency becomes an essential in-
gredient in the applicability of these techniques to
real world data. We study and experimentally com-
pare a number of variational Bayesian (VB) ap-
proximations to the DP mixture model. In partic-
ular we consider the standard VB approximation
where parameters are assumed to be independent
from cluster assignment variables, and a novel col-
lapsed VB approximation where mixture weights
are marginalized out. For both VB approximations
we consider two different ways to approximate the
DP, by truncating the stick-breaking construction,
and by using a finite mixture model with a sym-
metric Dirichlet prior.

Introduction

welling@ics.uci.edu

tehyw@comp.nus.edu.sg

be orders of magnitude faster than sampling, especially when
special data structures such as KD trees are used to cache cer-
tain sufficient statisticMoore, 1998; Verbeekt al, 2003;
Kuriharaet al,, 2004.

[Blei and Jordan, 20Q5ecently applied the framework of
variational Bayesian (VB) inference to Dirichlet process (DP)
mixture models and demonstrated significant computational
gains. Their model was formulated entirely in the truncated
stick-breaking representation. The choice of this representa-
tion has both advantages and disadvantages. For instance,
it is very easy to generalize beyond the DP prior and use
much more flexible priors in this representation. On the flip
side, the model is formulated in the space of explicit, non-
exchangeable cluster labels (instead of partitions). In other
words, randomly permuting the labels changes the probabil-
ity of the data. This then requires samplers to mix over cluster
labels to avoid biafPorteoust al, 2004.

In this paper we propose and study alternative approaches
to VB inference in DP mixture models beyond that proposed
in [Blei and Jordan, 2045 There are three distinct contri-
butions in this paper: in proposing an improved VB algo-
rithm based on integrating out mixture weights, in comparing
the stick-breaking representation against the finite symmet-

Mixture modeling remains one of the most useful tools inyj¢ pirichlet approximation to the DP, and in the maintain-
statistics, machine learning and data mining for applicationg,g optimal ordering of cluster labels in the stick-breaking
involving density estimation or clustering. One of the mosty/g gjgorithms. These lead to a total of six different algo-
prominent recent develo_pments in this field is the appllca'glor}ithms, including the one proposed[Blei and Jordan, 2045

of nonparametric Bayesian techniques to mixture modelingyye experimentally evaluate these six algorithms and compare
which allow for the automatic determination of an appropnateagainst Gibbs sampling.

number of mixture components. Currentinference algorithms °| ' s tion 2.1 we explore both the truncated stick-breaking

forﬁsu?h models age m?ztly bgself ORAGi?bS Sartnpltilngéwbhgd&pproximation and the finite symmetric Dirichlet prior as fi-
sufter irom a numper ot drawbacks. Viost importantly, $5100S e jimensional approximations to the DP. As opposed to the

fruncated stick-breaking approximation, the finite symmetric

problems we face in modern-day data mining. Secondly, saiTyyicpiet model is exchangeable over cluster labels. Theoret-

pling requires careful monitoring of the convergence of theCaII this has important consequences. for example a Gibbs
Markov chain, both to decide on the number of samples oy 'mp au ' xamp !

%ampler is not required to mix over cluster labels if we are

be ignored for burn-in and to decide how many samples artomputing averages over quantities invariant to cluster label
needed to reduce the variance in the estimates. These co armutations (as is typically the case)

siderations have lead researchers to develop deterministic al- In Section 2.2 we explore the idea of integrating out the

ternatives which trade off variance with bias and are easily_. ¢ iahtsr. h lansing th delto al di
monitored in terms of their convergence. Moreover, they caﬁn'x ure weightsr, hence collapsing the model to a lower di-
mensional space. This idea has been shown to work well for
*This material is based in part upon work supported by theLDA models[Tehet al, 2004 where strong dependencies ex-
National Science Foundation under Grant Number D/HS-0535278st between model parameters and assignment variables. Such
YWT thanks the Lee Kuan Yew Endowment Fund for funding. dependencies exist between mixture weights and assignment



variables in our mixture model context as well, thus we ex-afterT terms,
pect collapsing to also be important here. This intuition is

reflected in the observation that the variational bound on the Vi ~ B(vis 1, ) i=1,..,T=1 (1)

log evidence is guaranteed to improve. vp =1 (2)
In Section 3 we derive the VB update equations corre- = ”iH(l — ;) i=1,..T7 (3)

sponding to the approximations in Section 2. We also con- i<i

sider optimally reordering cluster labels in the stick-breaking — i>T (4

VB algorithms. As mentioned, the ordering of the cluster la-

bels is important for models formulated in the stick- breaklngwhere[g(v 1,a) is a beta density for variable with para-

representation. In the pap@lei and Jordan, 20Q%his issue meters 1 andy, and one can verify thaz o= 1. In-

was ignored. Here we also study the effect of cluster reorders orporatmg this |nto a joint probability over da:ta iteris—

ing on relevant performance measures such as the predlctl\{e(n}’ n=1,. , cluster assignments = {z,}, n =

log evidence. 1,..,N, stick-breaking weights = {v;}, i = 1,...,T and
The above considerations lead us to six VB inference metheluster parameteng = {n;}, ¢ = 1,..., T we find

ods, which we evaluate in Section 4. The methods are: 1)

the truncated stick-breaking representation with standard VB £’ (X,2,v,m) =

(TSB), 2) the truncated stick-breaking representation with N

collapsed VB (CTSB), 3) the finite symmetric Dirichlet rep- H P(Xn|nz,) p(zn|m(v ] [Hp n;)B(vi; 1, a)] (5)

resentation with standard VB (FSD), 4) the finite symmetric  [n=1

Dirichlet presentation with collapsed VB (CFSD), and 5) and

6) being TSB and CTSB with optimal reordering (O-TSB and

O-CTSB respectively).

wherer (v) are the mixture weights as defined in (3). In this
representation the cluster labels are not interchangeable, i.e.
changing labels will change the probability value in (5). Note
also that a§” — oo the approximation becomes exact.

A second approach to approximate the DP is by assuming

2 Four Approximations to the DP a finite (but large) number of clusterk], and using a sym-
metric Dirichlet priorD on [Ishwaran and Zarepour, 20002

We describe four approximations to the DP in this section. m~D(m; s i) (6)
These four approximations are obtained by a combination o{-hls results in the joint model,

truncated stick-breaking/finite symmetric Dirichlet approxi-
mations and whether the mixture weights are marginalized P(X,z, w,n) =

out or not. Based on these approximations we describe the -
six VB inference algorithms in the next section.
g [ pGaln-) p Zn'”] [Hp m] ) ()
n=1

The most natural representation of DPs is using the Chi-
nese restaurant process, which is formulated in the space %

partitions. Partitions are groupings of the data independer&)e essential difference with the stick-breaking representa-

n is that the cluster labels remain interchangeable under
is representation, i.e. changing cluster labels doats
change the probabilityPorteouset al, 2004. The limit

K — oo is somewhat tricky because in the transitiih—

oo we switch to the space of partitions, where states that
result from cluster relabelings are mapped to the same par-
Pon For example bothyy = 1,29 = 1,23 = 2 and

= 3,20 = 3,23 = 2 are mapped to the same partition

of cluster labels, where each data-point is assigned to exact
1 group. This space of partitions turns out to be problem-
atic for VB inference, where we wish to use fully factorized
variational distributions on the assignment variablgg;) =
L, ¢(zn). Since the assignments = 1,z = 1, 23 = 2 rep-
resent the same partitidn, 2)(3) asz; = 3,22 = 3,23 = 2,
there are intricate dependencies between the assignment val
ables and it does not make sense to use the factorizati 2)(3
above. We can circumvent this by using finite dimensional )(. )'

L - : In figure 1 we show the prior average cluster sizes under
approximations for the DP, which are formulated in the spac . ; .
of cluster labels (not partmons) and which are known to %he truncated stick-breaking (TSB) representation (left) and

closely approximate the DP prior as the number of explic- under the finite symmetric Dirichlet (FSD) prior (middle) for

itly maintained clusters growfishwaran and James, 2001 two values of the truncation level and number of clusters re-

. o spectively. From this figure it is apparent that the cluster
::rgvmr,:? vamé%rggﬁg; nZg)l(JtZThese finite approximations labels in the TSB prior are not interchangeable (the proba-

bilities are ordered in decreasing size), while they are inter-
changeable for the FSD prior. As we incredsand K these
priors approximate the DP prior with increasing accuracy.
One should note however, that they live in different spaces.
The DP itself is most naturally defined in the space of parti-
In the first approximation we use the stick-breaking representions, while both TSB and FSD are defined in the space over
tation for the DF{Ishwaran and James, 2J@nd truncate it  cluster labels. However, TSB and FSD also live in different

2.1 TSB and FSD Approximations
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Figure 1: Average cluster size for three finite approximations to the DP prior. Left: Truncated stick-breaking prior (TSB) as given in (3).
Middle: Finite Symmetric Dirichlet prior (FSD). Right: Stick-breaking representation corresponding to the FSD prior. In each figure we
show results for two truncation level$}/ K = 6 (left bars) andl’/ K = 11 (right bars).

spaces! More precisely, one can transform a sample frorwith

the FSD prior into the stick-breaking representation by per- N N
forming a size-biased permutation of the mixture weights o o o .

(i.e. after every sample fror®(w) we sample an ordering Ni = z_:lﬂ(z" =) Noi= Z I(zn > 1) (11)
according torr without replacement). As it turns out, for fi- "=
nite K this does not exactly recover the left hand figure inandN>; = N; + N~;. For FSD we find instead,
1, but rather samples from a prior very closely related to it K

shown in the right pane of figure 1. This prior is given by L) [Tim T(NVe + %)

a stick-breaking construction as in eqn.(3) with stick-lengths I(N +a)D(g)E
sampled from,

n=1

prsp(z) = 12)

oY i 3 \Variational Bayesian Inference
v ~ Buisl+ — 00— —

K K) ® The variational Bayesian inference algorittsttias, 2000;
Conversely, we can obtain samples from the FSD prior byGhahramani and Beal, 20Dwer bounds the log marginal
applying a random, uniformly distributed permutation on thelikelihood by assuming that parameters and hidden variables
cluster weights obtained from eqgn.(8). Although these twoare independent. The lower bound is given by,
stick-breaking constructions are slightly different, for large P(X,2,0)

enoughk, T they are very similar and we do not expectany ,(x) > B(X) = . z)O(0) log — 2277 (13
difference in terms of performance between the two. (X) = B(X) Z do Q=)Q(6) log Q(2)Q(0) (13)
2.2 Marginalizing out the Mixture Weights where@ is either{n, v}, {n,w} or {n} in the various DP

The variational Bayesian approximations discussed in th@pproximations discussed in the previous section. Approxi-
next section assume a factorized form for the posterior dismate inference is then achieved by alternating optimization
tribution. This means that we assume that parameters are if this bound over)(z) andQ(8). In the following we will
dependent of assignment variables. This is clearly a very bagPell out the details of VB inference for the proposed four
assumption because changesrinwill have a considerable methods. For the TSB prior we use,

impact onz. ldeally, we would integrate out all the parame- N 7

ters, but this is too computationally expensive. There is how- _ ‘ ‘

ever a middle ground: we can marginalize aufrom both (rse(z,m,v) = lH q(z">] [HQ(WM(%)] (14)
methods without computational penalty if we make another " =

approximation which will be discussed in section 3.3. Forwhereg(v) is not used in the TSB model withmarginalized
both TSB and FSD representations the joint collapsed modeiut. For the FSD prior we use,

over X, z,n is given by,

N K
N o] Z T) = Zn ™
Hp(xn,|172n)] p(Z) [Hp(m)] (9) QFSD( ) 115 ) [];IQ( )] |J]:[1 q(nk)] Q( ) (15)
n=1 i=1

As well, g(7r) is left out for the collapsed version.

P(X,z,m) =

with different distributions over cluster labelgz) in both

cases. For the TSB representation we have, 3.1 Bounds on the Evidence

prss(z) = H T(1+ N)l(a + N>i) (10)  Given the variational posteriors we can construct bounds on
I'(l1+a+ Nx) the log marginal likelihood by inserting into eqn.(13). Af-

i<T



ter some algebra we find the following general form, where the conditionad(z,, |z-,,) is different for the FSD and
TSB priors. For the TSB prior we use (10), giving the condi-

tional
ZZ / a(2n)q(ns,, ) log p(xnl12,,)

n=1 z, %= p(zn = Z'|Zﬁn) =
+ / q(n:) log q(zn)log q(zn)
Z nz:l ; whereN;™ = N; — (2, = i), NJ} = N>; — (2, > 1) are

i Extra Term (16) the correspondlng counts with), removed. In contrast, for
the FSD prior we have,
where the “extra term” depends on the particular method. For
the TSB prior we have, p(zn = klz-pn) =

14+ N;™ 1 a+ NP

22
1—5—oz+N§?j<k1+04+N£§1 (22)

N+ %
N™ 4+ «

N T Zn
Termrsg :Z Z q(zn)/ [H q(vi)] log p(zn|v) 3.3 Gaussian Approximation
av [i=1 The expectation required to compute the update (21) seems
intractable due to the exponentially large space of all assign-
=+ Z/ (v 1Og (vi) (17)  ments forz. It can in fact be computed in polynomial time
(v3) using convolutions, however this solution still tended to be

(23)

n=1z,=1

too slow to be practical. A much more efficient approximate
solution is to observe that both random variabéesand V- ;
are sums over Bernoulli variabledi; = > 1I(z, = ¢) and

Term:so—z Z / (2n)q(7) log p(zp| ) Ns; =3, I(z, > ). Using the central Iirrjit theorem these
sums are expected to be closely approximated by Gaussian

On the other hand for the FSD prior we find,

n zp=1
distributions with means and variances given by,
p(m)
+ q(m) log (18) N
dm q(ﬂ-) .
_ , E[N;] =) q(zn =) (24)
For both collapsed versions these expressions are replaced by, et
N N
Termerse/crsp= ) [H Q(Zn)] logp(z)  (19) VIN] =D (20 = D)(1 = g(z0 = 1)) (25)
zZ n=1 n=1
. N
3.2 VB Update Equations .
. P au . EN>i] =303 a(zn = ) (26)
Given these bounds it is now not hard to derive update equa- e
tions for the various methods. Due to space constraints we
will refer to the paper$Blei and Jordan, 2005; Ghahramani . _
and Beal, 2000; Penny, 2001; ¥tal, 2005 for more details VIN>i| = Z > a(zn =) Z 4(zn=k)  (27)
on the update equations for the un-collapsed methods and fo- n=1j>i kst
cus on the novel collapsed update equations. To apply this approximation to the computation of the average

Below we will provide the general form of the update in (21), we use the following second order Taylor expansion,
equations where we do not assume anything about the par- 1

ticular form of the priorp(n;). The equations become par- E[f(m)] ~ f(E(m)] + f (E[m])V[m] (28)
ticularly simple when we choose this prior in the conju-
gate exponential family. Explicit update equations§on;)  This approximation has been observed to work extremely
can be found in the pape{ﬁhahramani and Beal, 2000; well in practice, even for small values of.
Blei and Jordan, 2005; Penny, 2001; &tal., 2004.

For ¢(n;) we find the same update for both methods, 3.4 Optimal Cluster Label Reordering

As discussed in section 2.1 the stick-breaking prior assumes a

q(n;) < p(n;) exp Z q(zn = 1) log p(x| i) (20)  certain ordering of the clusters (more precisely, a size-biased
ordering). Since a permutation of the cluster labels changes

the probability of the data, we should choose the optimal per-

n

while for ¢(z,) we find the update mutation resulting in the highest probability for the data. The
optimal relabelling of the clusters is given by the one that or-

(20) Z H 108 p(2n|7) ders the cluster sizes in decreasing order (this is true since

4\%n) XD 4(#m ) 108 P\Zn|Z-n the average prior cluster sizes are also ordered). In our ex-

Z—n MFEN

periments we assess the effect of reordering by introducing
algorithms O-TSB and O-CTSB which always maintain this
X exp / q(12,) log p(xn|n2,) (21)  optimal labelling of the clusters. Note that optimal ordering
=, was not maintained ifBlei and Jordan, 2005
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4 Experiments coefficient ¢ = 2. We studied the accuracy of each algorithm
. . . . as a function of the number of data cases and the truncation
In the following experiments we compared the six algorlthms1evel of the approximation. In figures 2 and 3 we show the
discussed in the main text in terms of their log-probability ON osults as we vary N (keebing T and K fixed at 30) while in
held out test data. The probability for a test point,is then g0 s 4 and 5 we plot the results as we vary T and K (keep-
given by, ing N fixed at 200). We plot both the absolute value of the log
probability of test data and the value relative to a Gibbs sam-
p(z) = Z/ p(e[n2,)a(mz)Elp(2t|Ztain) ] (zan) pler (GS). We 50 iterations for burn-in, and run another 200
2 iterations for inference. Error bars are computed on the rela-

where the expectatiaR[p( z: |Zain)]y(za) iS COMputed using tive vaI_ues_ln order to subtract variance caqsed by tht_a differ-
the techniques introduced in section 3.3. All experimentsem splits (i.e. we measure variance on paired experiments).

were conducted using Gaussian mixtures with vague priors igqiowing [Dasgupta, 1999a Gaussian mixture isseparated

on the parameters. _ if for each pair (i, j) of components we havgm; — m;||> >
In the first experiment we generated synthetic data from @2 D max(\"**, \**) | whereA™** denotes the maximum eigen-

mixture of 10 Gaussians in 16 dimensions with a separationalue of their covariance.



more efficient computationally than Gibbs sampling, with al-
most no loss in accuracy.

TSB ﬂnﬂaam We are currently working towards models where the para-

metersn are marginalized out as well. We expect this to have

O-TSB u ﬂ n ﬂ E E ﬂ a more significant impact on test accuracy than the current

setup which only marginalizes over, especially when clus-

CTSB uﬂﬂ“EEE ;ri]:rfogrgglﬁ]%?ien%egr;i)onrqtgﬂgtei(l)yr,].it seems this will cfome
ocr BEANANEBNEABBEN i o 15 e oo e o
s DEONANBANRRAAREAL 5o b compsed variadonsl nference for hier-
CFSD ﬂnﬂnﬂﬂmm archical DP modelETehet al,, 2004.
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