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Abstract

We develop nonparametric Bayesian models for mul-

tiscale representations of images depicting natural scene

categories. Individual features or wavelet coefficients are

marginally described by Dirichlet process (DP) mixtures,

yielding the heavy-tailed marginal distributions character-

istic of natural images. Dependencies between features are

then captured with a hidden Markov tree, and Markov chain

Monte Carlo methods used to learn models whose latent

state space grows in complexity as more images are ob-

served. By truncating the potentially infinite set of hidden

states, we are able to exploit efficient belief propagation

methods when learning these hierarchical Dirichlet process

hidden Markov trees (HDP-HMTs) from data. We show

that our generative models capture interesting qualitative

structure in natural scenes, and more accurately catego-

rize novel images than models which ignore spatial rela-

tionships among features.

1. Introduction

Psychophysical experiments have shown that, in a man-

ner analogous to object categorization, images of natural en-

vironments are often identified as members of certain “basic

level” scene categories [24]. In this paper, we develop non-

parametric statistical methods which learn multiscale repre-

sentations of natural scenes, and use these models to accu-

rately categorize images of new environments. This kind of

semantic recognition is directly useful in applications such

as image annotation and retrieval [25]. More generally, the

global identity and structure of natural scenes provide im-

portant contextual cues for the detection and recognition of

objects [23, 24].

A variety of statistical cues are associated with scene

perception, including local structural elements [6, 12, 13],

color patterns, and global spatial attributes such as open-

ness, roughness, and naturalness [15, 24]. Given human–

annotated training data, these global scene properties can be

inferred from spectral representations of images, and used

to classify new scenes [15]. Alternatively, semantic label-

ings of local image regions have been proposed as an inter-

mediate representation for global scene identification [25].

One drawback of these approaches is that hundreds of train-

ing images must be manually labeled according to their

structural properties [15] or constituent objects [25].

To reduce the degree of supervision required during

training, several recent papers have adapted textual topic

models [2, 8] to categorize natural scenes [3, 6, 17]. These

approaches focus on clustering characteristic local textures,

transforming images to “bags of features” and ignoring

global spatial structure. In this paper, we generalize these

approaches in two complementary ways. First, rather than

choosing a fixed number of latent topics by cross-validation,

we adapt the hierarchical Dirichlet process (HDP) [22] to

define nonparametric models whose complexity grows as

additional scenes are observed. Second, we use a tree–

structured graphical model [5, 20, 26, 27] to couple the vi-

sual topic assignments at nearby positions and scales. Our

results confirm that the resulting hierarchical Dirichlet pro-

cess hidden Markov tree (HDP-HMT) more accurately cap-

tures natural scene statistics, and leads to improved catego-

rization performance.

The HDP-HMT was first proposed as a model for the

joint statistics of wavelet decompositions [11]. This earlier

work demonstrated that Dirichlet process mixtures provide

a suitable model for the heavy–tailed statistics of wavelet

coefficients, and used the HDP-HMT to develop an effec-

tive image denoising algorithm. In this paper, we build

hierarchical models for a family of natural scenes rather

than single images, and use them for semantic categoriza-

tion rather than low–level image processing. We compare

the discriminative power of two different image represen-

tations: the multiscale oriented edge responses of steerable

pyramids [18], and a discrete vocabulary of vector quan-

tized SIFT descriptors [14, 19]. To allow learning from

large databases of scenes, we also adapt finite approxima-



tions of the Dirichlet process [9, 10] to develop a truncated

Gibbs sampler with significant computational advantages

over existing methods [11, 22].

We begin in Sec. 2 by reviewing previous models for

wavelet coefficients based on Gaussian scale mixtures.

Sec. 3 describes a complementary family of topic models

adapted to unstructured, feature–based image representa-

tions. We then integrate these research themes in the HDP-

HMT (Sec. 4), develop efficient Monte Carlo methods for

learning from training images (Sec. 5), and evaluate its suit-

ability as a model of natural scene categories.

2. Wavelet Representations of Natural Images

Images of natural scenes typically contain large, homo-

geneously textured regions, as well as localized intensity

changes caused by occlusion boundaries. Their statistics are

thus most simply characterized in representations which are

jointly localized in spatial position and frequency [24, 27].

Wavelet transforms decompose images at multiple scales by

recursively filtering with a scaled, band–pass kernel func-

tion. This invertible linear transform produces a set of low–

pass scaling coefficients xt0, and a forest of multiscale trees

containing higher frequency detail coefficients xt = {xti}.

As illustrated in Fig. 2, we let xti denote the vector of detail

coefficients (of different orientations) at location i beneath

scaling coefficient t.
While orthogonal wavelets approximately decorrelate

natural images, and thus lead to effective compression al-

gorithms, their lack of translational invariance may lead to

instability and aliasing artifacts in the presence of noise.

Steerable pyramids address these issues via an overcom-

plete basis, or frame, optimized for increased orientation se-

lectivity [18]. While the statistics of such non–orthogonal

transformations are more complex, they are advantageous

for image analysis [11, 16].

2.1. Mixture Models for Heavy–Tailed Marginals

Wavelet coefficients typically have kurtotic marginal dis-

tributions, with “heavy tails” indicating that extreme values

occur frequently compared to Gaussian distributions. This

behavior is captured by Gaussian scale mixtures, which

model xti as the product of two independent variables:

xti = vtiuti vti ≥ 0, uti ∼ N (0,Λ) (1)

Marginalizing the scalar multiplier vti mixes Gaussians of

varying scales. While continuous mixing distributions pro-

vide good models of wavelet statistics [26], in many cases

two–component discrete mixtures are also effective:

xti ∼ πN (0,Λ0) + (1 − π)N (0,Λ1) (2)

Here, π is the probability that xti is drawn from an “out-

lier” component with large variance Λ0, and Λ1 is smaller

to capture the many near–zero coefficients. Discrete mix-

tures have important computational advantages, and have

been successfully used for image denoising [4].

2.2. Modeling Wavelets with Markov Trees

The statistical structure of natural scenes is highly non–

stationary [24], and wavelet coefficients typically retain sig-

nificant non–Gaussian dependencies. For example, large

magnitude coefficients often persist across multiple scales,

and cluster at nearby spatial locations [5, 26]. Motivated by

image denoising tasks, local Gaussian scale mixtures have

been used to relate wavelet coefficients at neighboring loca-

tions and scales [16]. This paper instead develops a global

graphical model of multiscale image decompositions.

Due to their scale–recursive construction, wavelet de-

compositions suggest models defined on Markov trees [27].

For images, these graphical models associate detail coef-

ficient xti with a single coarser scale parent xPa(ti), and

four finer scale children {xtj | tj ∈ Ch(ti)} (see Fig. 2).

Tree–structured Gaussian random fields have been used to

capture correlations among wavelet coefficients [27], and

to model the latent multipliers underlying a global Gaus-

sian scale mixture [26]. Alternatively, the discrete mixture

of eq. (2) has been generalized to define a binary hidden

Markov tree (HMT) [5]. In HMTs, the mixture component

zti generating detail coefficient xti is influenced by the cor-

responding parent coefficient:

zti | zPa(ti) ∼ πzPa(ti)
xti | zti ∼ N (0,Λzti

) (3)

As before, detail coefficient xti may be generated via states

zti of low or high variance. However, by associating each

parent state k with its own transition distribution πk, HMTs

also capture dependencies among nearby coefficients.

The earliest applications of HMTs defined independent

graphical models for each orientation subband, and tied

model parameters within each scale to avoid overfitting [5].

It would be preferable to capture dependencies between

orientations, and reduce boundary artifacts from the latent

tree structure [27], by using higher–order discrete models

to generate vectors of wavelet coefficients. However, to

do this one must select an appropriate number of hidden

states K, as well as the pattern used to share states among

different coefficients. For example, the hierarchical image

probability (HIP) model [20] shares parameters within each

scale, and optimizes K via a minimum description length

(MDL) criterion. This paper instead extends the nonpara-

metric approach of [11] to learn latent states whose com-

plexity grows as new training images are observed.

3. Feature–Based Image Representations

In vision applications involving geometric correspon-

dence or semantic categorization, image representations

based on distinctive local features are often effective [3, 6,

13, 14, 19]. By making individual features discriminative,

these methods can make reasonably accurate predictions

with very simple global scene models. In this paper, we

show that coupling local features with global spatial mod-

els can further boost recognition performance [12, 21].
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Figure 1. Graphical representation of a bag–of–features hierarchi-

cal DP. Observed data points xti in each of the T groups are drawn

from group–specific mixtures, whose mixing proportions πt are

coupled via a global random measure β. Hidden states zti index

which of the infinitely many shared mixture components, or top-

ics, generate observed feature xti ∼ F (θzti
).

3.1. Feature Detection and Extraction

Previous comparative studies have shown that for scene

categorization tasks, the best performance is attained by

computing features on a dense, regular grid [3, 6], rather

than at sparse interest points [14, 17]. The intuitive expla-

nation for this phenomenon is that the presence of open,

textureless regions is highly indicative of certain scene cat-

egories [15, 24]. In this paper, we extract features from

overlapping patches spaced on a two-pixel grid. To provide

further discriminative power, we also rescale the input im-

age and extract dense features at three coarser scales [3].

Following several recent papers [3, 6, 12, 17], we use

SIFT descriptors [14] to describe the appearance of each

feature. SIFT descriptors provide effective estimates of the

local orientation cues characteristic of natural scenes [24],

as well as some invariance to lighting and viewpoint. To re-

duce dimensionality, we use K–means clustering to vector

quantize the SIFT descriptors observed in training images,

producing a dictionary of “visual words.” This approach

is quite similar to texton approaches to texture recogni-

tion [13], except that SIFT descriptors aggregate filter re-

sponses over a local region rather than at a single point.

Fig. 4 illustrates the visual words extracted from several

natural scenes. To visualize our unordered SIFT dictionary,

we compute a PCA decomposition of the observed features,

and sort codebook vectors according to their projection on

the first principal direction. For SIFT descriptors, this pro-

cedure arranges words by their dominant orientation. Note

that this one–dimensional PCA projection is used only for

visualization; the actual SIFT codebook contains higher–

order information about local appearance patterns.
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Figure 2. Two levels of an HDP-HMT in which hidden discrete

states zti generate observed features xti. In contrast with the HDP

of Fig. 1, the states at neighboring locations and scales are coupled

by direction dependent transition distributions πd

k . As before, a

global measure β is used to couple these transitions when learning,

encouraging reuse of hidden states.

3.2. Topic Models for Bags of Features

Several recent approaches to discovering semantic or

spatial structure in visual scenes have been inspired by

methods for learning the topics discussed in a corpus of text

documents. Hierarchical probabilistic models like prob-

abilistic latent semantic analysis (pLSA) [8] and latent

Dirichlet allocation (LDA) [2] provide one effective frame-

work for unsupervised topic discovery. These models be-

gin by representing documents as “bags of words,” discard-

ing the sentence structure and underlying syntax. Semantic

content is then analyzed via a two–level hierarchical cluster-

ing, in which topics are associated with typical words and

documents with a distribution over topics.

Topic models have previously been used to discover ob-

jects in simple scenes [19] or web search results [7], parse

presegmented captioned images [1], decompose object cat-

egories via a shared set of parts [21], and categorize natural

scenes [3, 6, 17]. Following an initial stage of segmenta-

tion [1] or feature extraction [3, 6, 17, 19], most such mod-

els discard location information, retaining an unstructured

bag of features. However, because image patches are far

less distinctive than words in human languages, such ap-

proximations ignore potentially valuable global scene at-

tributes. Image-based coordinate frames have been used to

model the internal structure of objects [7, 21], but seem too

rigid for natural scene categories.

Another limitation of many such models is that the num-

ber of latent topics, parts, or objects must be specified.

This choice is known to significantly impact predictive per-

formance [2, 3, 6, 21, 22], and computationally expen-

sive cross–validation procedures are often required. The

following section describes the hierarchical Dirichlet pro-



cess (HDP) [22], a nonparametric alternative which avoids

model selection via a probabilistically constrained infinite

state space. We then integrate the HDP with the hidden

Markov trees of Sec. 2.2, and thus augment visual topic as-

signments with spatial dependencies.

4. Nonparametric Models of Image Features

Many model selection criteria, including MDL, have

asymptotic justifications which are poorly suited to small

datasets. When applied to hierarchical models, they may

also lead to combinatorial problems requiring greedy ap-

proximations [20]. Nonparametric Bayesian methods avoid

these issues by defining priors on infinite models. Learn-

ing algorithms then produce robust predictions by averag-

ing over model substructures whose complexity is justified

by the observed data [21, 22].

4.1. Dirichlet Process Mixtures

Let H denote a prior on some space Θ of appearance dis-

tributions F . For example, we later use inverse–Wishart H
to construct zero–mean Gaussian models of continuous

wavelet coefficients, and Dirichlet H for multinomial mod-

els of vector quantized SIFT descriptors. A Dirichlet pro-

cess (DP) with concentration parameter γ > 0, denoted by

DP(γ,H), then defines a prior over infinite mixtures:

βk = β′

k

k−1
∏

ℓ=1

(1 − β′

ℓ) β′

ℓ ∼ Beta(1, γ) (4)

p(xti | β, θ1, θ2, . . .) =

∞
∑

k=1

βkf(xti | θk) (5)

Component appearance parameters are independently sam-

pled as θk ∼ H . The stick–breaking construction of eq. (4),

which we denote by β ∼ GEM(γ), defines mixture weights

using beta random variables. In contrast with finite mix-

tures, DPs favor simple models given few observations, but

also create low–probability clusters to capture details re-

vealed by large, complex datasets. Practically, DP mixtures

are motivated both by their attractive asymptotic guaran-

tees [21], and by the availability of many efficient computa-

tional methods [9, 21, 22].

4.2. Hierarchical Dirichlet Processes

The hierarchical Dirichlet process (HDP) provides a

flexible framework for sharing mixture components, or top-

ics, among groups of related data [22]. In visual recognition

tasks, for example, these groups could correspond to images

of similar scenes, or categories of related objects [21]. As in

eq. (4), we begin by sampling global weights β for an infi-

nite set of shared mixture components {θk}
∞

k=1. Each of the

T groups (see Fig. 1) then reuses these same components in

different proportions πt = (πt1, πt2, . . .):

πt ∼ DP(α, β) β ∼ GEM(γ) (6)

Here, β determines the mean frequency of each topic,

while α controls the variability of topic weights across

groups [22]. Fixing these parameters, observations are then

independently sampled as in finite topic models:

zti ∼ πt xti | zti ∼ F (θzti
) (7)

Rather than strictly constraining the number of latent topics,

the HDP’s stick–breaking prior places a softer bias towards

the simplest models which explain observed data. As we

demonstrate in Sec. 6, this leads to rich models whose com-

plexity grows as additional data are observed.

4.3. Hierarchical DP Hidden Markov Trees

Hierarchical Dirichlet processes have been previously

used to define an HDP-HMM which learns the structure

of a countably infinite hidden Markov chain from train-

ing data [22]. In this section, we develop an HDP hidden

Markov tree (HDP-HMT) which captures the global statis-

tics of wavelet decompositions or locally extracted image

features. Our approach generalizes earlier work [11] by

sharing hidden states among multiple images, and allowing

distinct transition densities for each child node.

Consider a hidden Markov tree, as in Fig. 2, where each

node has a countably infinite state space zti ∈ {1, 2, . . .}.

Each value k of the current state indexes a different tran-

sition distribution πd
k = (πd

k1, π
d
k2, . . .) over child states in

different directions d. We couple these transitions via a

shared DP prior:

πd
k ∼ DP(α, β) β ∼ GEM(γ) (8)

The simplest approach ties all four children of each parent

to follow the same transition distribution [11]. However, we

have found that allowing a distinct transition distribution πd
k

for each of the four child directions d more accurately mod-

els the asymmetries present in natural scenes. Given these

infinite transition distributions, visual features are generated

via the following coarse–to–fine recursion:

zti | zPa(ti) ∼ πdti

zPa(ti)
xti | zti ∼ F (θzti

) (9)

By defining β to be a discrete probability measure, we en-

sure with high probability that a common set of child states

are reachable from each parent state [22].

Analogously to the standard HDP of Fig. 1, this hierar-

chical construction encourages reuse of states when learn-

ing. However, the group associated with each observation is

now dynamically determined by the state of its parent node,

rather than being fixed a priori. This allows the HDP-HMT

to learn complex patterns characteristic of multiscale ob-

servation sequences, and avoids the need to specify a fixed

scheme for sharing states among observations. Further-

more, by defining a prior on infinite models, the HDP-HMT

avoids the model selection issues considered by previous

applications of Markov trees [20] and topic–based visual

scene models [3, 6, 17].



4.4. Mapping Image Features to HDP-HMTs

Our scene categorization results compare two sets of vi-

sual features: the steerable pyramids of Sec. 2, and vec-

tor quantized SIFT descriptors of Sec. 3.1. For steer-

able pyramids, we define a separate quadtree t for the de-

tail coefficients xti located beneath each scaling coefficient

xt0. While the sequence of hidden states zti within each

quadtree is independently sampled, the trees from all im-

ages of a given scene category share a common set of ob-

servation and transition distributions, and are thus coupled

when learning. The coarsest–scale detail coefficient zt1 in

each tree is sampled from a distribution indexed by a fixed

root state zt0 (see Fig. 2). In our experiments, we divide the

rows of scaling coefficients into eight sets, and associate

each row with a different root state. This construction is de-

signed to capture the vertically layered structure of common

natural scenes [15, 23, 24].

When using discrete features, we take a similar ap-

proach: SIFT descriptors are computed at several scales,

with a 50% reduction in image resolution between suc-

cessive scales. A separate quadtree is then used to link

the finer-scale features beneath each feature at the coarsest

scale. This structure is heuristically similar to a recently

proposed kernel–based method for spatial feature match-

ing [12]. However, that work treats the features at differ-

ent scales independently, while we introduce hidden states

which explicitly couple feature appearance across scales. In

addition, while kernel methods must typically retain a large

proportion of the training images for later testing, our learn-

ing algorithms produce a compact set of latent states which

can be used to quickly categorize novel scenes.

5. Learning Hierarchical Scene Models

In this section, we propose a novel Monte Carlo method

for learning HPD-HMT parameters from training images.

Dirichlet processes have several complementary analytic

representations, which have led to the development of many

different sampling algorithms [9, 21, 22]. In previous work,

posterior inference for the HDP-HMT was accomplished

via a direct assignment Gibbs sampler [11], adapted from

a related approach to HDP-HMMs [22]. This sampler ex-

plicitly instantiates the assignments zti of features to hidden

states, as well as global mixture weights βk for states with

at least one assigned observation. Given these variables, the

state–specific transition distributions πk and observation pa-

rameters θk can be marginalized analytically.

While the direct assignment sampler desirably employs

Rao–Blackwellization [21] to avoid explicitly sampling

some latent variables, it can exhibit slow mixing because

it only updates one hidden state assignment at a time. In ad-

dition, the recursive updates of sufficient statistics needed

to marginalize parameters can be costly when performed

after every feature reassignment. To address these issues,

we propose an alternative truncated sampler which uses fi-

nite approximations of the Dirichlet process to allow joint

resampling of entire trees of state assignments.

5.1. Truncations of Dirichlet Processes

There are two basic methods for producing finite ap-

proximations to DP models. The first truncates the stick–

breaking construction of eq. (4) by setting β′

L = 1 for

some sufficiently large L. In this paper, we instead explore

an alternative, “weak limit” approximation which samples

β from a K–dimensional finite Dirichlet distribution with

symmetric parameters:

β = (β1, . . . , βK) ∼ D(γ/K, . . . , γ/K) (10)

We then take β as the weight vector for a finite, K–

component mixture model with parameters θk ∼ H as be-

fore. It can then be shown that the predictions based on

this finite model converge in distribution to those of a cor-

responding Dirichlet process DP(γ,H) as K → ∞ [9, 10].

A similar finite approximation exists for the HDP [22] of

Fig. 1, in which β is sampled as in eq. (10) and group–

specific mixture weights are drawn according to

πt = (πt1, . . . , πtK) ∼ D(αβ1, . . . , αβK) (11)

The next section extends this approximation to the HDP-

HMT to develop a truncated Gibbs sampling algorithm.

It is important to note that the truncation level K is not

taken to be the number of mixture components observed in

the data, but rather a loose upper bound on that number.

As we show in Sec. 6, the Dirichlet priors of eqs. (10, 11)

cause the sampler to explain observations via a dynamically

chosen subset of the pool of available mixture states. The-

oretical results are available which characterize the mixture

size needed for accurate posterior approximations [10].

5.2. Truncated Gibbs Sampling

Given a truncation level K, our truncated Gibbs sampler

alternates between blocked resampling of trees of state as-

signments zt, global mixture weights β, and state-specific

model parameters and transition distributions {θk, πk}
K
k=1.

The following sections briefly sketch the details of these re-

sampling steps. The truncation level K can be either chosen

larger than the number of expected states to ensure a good

approximation to the underlying HDP, or set smaller to con-

trol computational complexity with large datasets.

Sampling Assignments via Belief Propagation We be-

gin by conditioning on each state’s transition distribution πk

and observation distribution θk. Given these fixed parame-

ters, the joint distribution of the hidden states zt and obser-

vations xt can be represented by a forest of tree–structured,

directed graphical models (see Fig. 2). For such models,

the belief propagation (or sum–product) algorithm can be

used to efficiently resample all of the latent assignments

in closed form [27]. Messages are first passed from the



leaves to the root of each tree to collect summary statis-

tics, which can also be used to evaluate the marginal like-

lihood p
(

xt | {πk, θk}
K
k=1

)

in closed form. A top–down

recursion is then used to resample each node zti given its

parent zPa(ti). The computational cost of resampling the

assignments for N observed features is thus O(NK2).

Sampling Model Parameters In the second stage of the

truncated sampler, we condition on the assignments z of

observations to hidden states. It is then straightforward to

resample the observation distributions θk by aggregating

statistics of the observations {xti | zti = k} assigned to

each state [21, 22]. To resample state–specific transition

distributions πd
k , we first count the number nd(k, ℓ) of tran-

sitions from parent state k to child state ℓ, in direction d,

instantiated by z. The posterior is then Dirichlet:

πd
k ∼ D

(

nd(k, 1) + αβ1, . . . , n
d(k,K) + αβK

)

(12)

Finally, the global mixture weights β, as well as the HDP

concentration parameters γ and α, can be resampled via

auxiliary variable methods [22].

6. Analysis of Natural Scenes

To evaluate the HDP-HMT, we compare steerable pyra-

mid and SIFT descriptor representations of the eight nat-

ural scene categories defined by Oliva and Torralba [15].

Wavelet-domain features were extracted from 128 × 128
grayscale images, using 6 orientation, 4 level steerable pyra-

mid transforms (sp5) [18]. Low–pass and high–pass resid-

ual bands were not modeled. SIFT descriptors were ex-

tracted on a dense grid from 256×256 grayscale images, at

four resolutions produced by dyadic subsampling. We then

used K–means clustering to create a 200–entry codebook

from 50,000 randomly chosen training features.

6.1. Visualization of Learned Scene Statistics

In Fig. 3, we illustrate wavelet coefficient his-

tograms [26] computed from images in two categories,

“coast” and “tallbuilding.” We compare this raw data to co-

efficients simulated from two models: the HDP-HMT, and a

baseline bag–of–words (HDP-BOW) model (a nonparamet-

ric generalization of [6]). For the HDP-BOW, groups cor-

respond to observed features at different scales, which are

drawn from infinite mixtures whose components are shared

across scales. For both models, we used 100 training im-

ages, and ran the Gibbs sampler for 500 iterations.

The HDP-HMT models the non–Gaussian “bow tie”

shapes of wavelet histograms, and also accurately captures

the complex orientation and scale relationships exhibited by

steerable pyramids. However, it underestimates the strong

positive correlations between adjacent horizontal and ver-

tical coefficients in the horizontal and vertical finest scale

subbands, respectively. This deficiency is partially due to

the Markov tree boundaries which separate some pairs of

fine scale coefficients [27].
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Figure 3. Pairwise histograms of steerable pyramid detail coeffi-

cients for 128 × 128 images from the “coast” (columns 1-4) and

“tallbuilding” (columns 5-8) scene categories. Rows 2 & 5 are

computed from observed images, while rows 3 & 6 and 1 & 4

summarize samples from bag–of–features (HDP-BOW) and hid-

den Markov tree (HDP-HMT) models, respectively. As in [26],

we visualize log-contours of joint distributions (top) as well as

normalized conditional distributions (bottom).

By construction, the HDP-BOW cannot capture any de-

pendencies between coefficients at different locations or

scales. It also captures qualitative differences among scene

categories less accurately than the HDP-HMT. In particu-

lar, note that the contours for tallbuilding images are more

elongated than those for coastal scenes, which contain less

high-frequency content. Also, the vertically layered struc-

ture of large–scale environments [24] can be seen in the

greater frequency of horizontal gradients in coast images.

The inability of the HDP-BOW to capture scale and loca-

tion correlations is also evident in the much less coherent

maximum a posteriori (MAP) assignments of features to

topics in test images (see Fig. 4). MAP assignments for the

HDP-HMT, which were computed efficiently via the max-

product algorithm [27], suggest that it captures interesting

feature dependencies. For example, note the restoration of

SIFT descriptors in coarse scale regions of the tallbuilding

image corrupted by aliasing artifacts.

To further illustrate the nonparametric properties of the

truncated HDP, we have trained models for two categories

with varying numbers of training images. We counted the

number of states with at least one assigned observation over

400 MCMC iterations, after discarding 100 burn-in itera-

tions. Figure 5 plots the posterior mean number of hid-

den states versus training set size. Note that the complexity

of this nonparametric model grows as the number of train-

ing images increases, adapting automatically to observed

data. With additional sampling iterations, these growth rates

would become smoother. In this experiment, the truncation

level of K = 200 did not limit model expressiveness.
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Figure 4. Maximum a posteriori joint hidden state assignments for HDP-BOW and HDP-HMT models of two test images. For steerable

pyramid (sp5) features, states are sorted by the determinant of the emission distribution’s covariance matrix. For SIFT features, states are

sorted via a trimmed posterior mean of multinomial emission distributions (after sorting via the first principal component).
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Figure 5. Posterior mean number of states used by the HDP-BOW

and HDP-HMT models, for varying training set sizes. We com-

pare steerable pyramid (sp5, left) and SIFT (right) models of the

“coast” and “tallbuilding” scene categories. In all cases, the trun-

cation level was set to K = 200.

6.2. Scene Categorization Results

For our final experiments, we learned nonparametric

models of both feature types for all eight scene cate-

gories [15]. We used 100 images of each category for train-

ing, and the remainder for test. For the HDP-HMT, we clas-

sified test images as the category which assigned the high-

est marginal likelihood to test features. These likelihoods

can be efficiently computed in closed form with a single,

coarse–to–fine belief propagation (BP) recursion [5, 27].

The confusion matrices of Fig. 6 compare the HDP-HMT’s

categorization performance to that of a baseline bag-of-

words model (HDP-BOW) [3, 6]. Table 1 also summa-

rizes average classification performance for the “natural”

and “man-made” subsets of the scene categories [15]. We

find that the more distinctive local features provided by

SIFT descriptors lead to significant performance improve-

ments. For both feature types, the HDP-HMT is much more

accurate than the HDP-BOW, demonstrating the benefits

of coupling local features with global spatial models. As

in [3, 15], our HDP models have the most difficulty distin-

guishing the “coast” and “opencountry” categories.

Comparing our results to state-of-the-art methods em-

ploying grayscale features, the HDP-HMT performs com-

parably to the discriminative approach of [3], who in turn

improved on [6] for a larger, thirteen category dataset. Note

that we used only half (100 per category) as many train-

ing images as [3]. Furthermore, in contrast with nearest–

neighbor [3, 15] and kernel [12] methods, our classifier does

not need to store any training data for classification. Com-

putation of one test image likelihood via BP, using fixed pa-

rameters for K = 200 states sampled during training, takes

less than a second. As scene and object recognition systems

are applied to larger datasets, such savings in storage and

computation become increasingly important.

7. Discussion

We have developed a nonparametric, data–driven model

for image features which captures spatial dependencies via

a multiscale graphical model. Our results show that this

HDP-HMT captures natural scene statistics more accurately

than bag–of–feature models, and leads to improved catego-
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Figure 6. Confusion matrices for the recognition of eight scene

categories [15] using HDP-BOW (top) and HDP-HMT (bottom)

models of wavelet (sp5, left) or SIFT (right) features. Average

performance across all categories is shown in parentheses.

Dataset [15] HDP-BOW (sp5, sift) HDP-HMT (sp5, sift)

All 70.46 78.38 79.58 84.49

Natural 75.58 82.90 80.89 84.42

Man-made 80.04 81.80 87.27 90.44

Table 1. Average scene categorization performance (mean of the

confusion matrix’s diagonal) for the groupings considered by [15].

rization performance. We are currently exploring the HDP-

HMT’s ability to learn richer appearance patterns from very

large datasets, and model other families of visual scenes.
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