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. INTRODUCTION

Many real-world processes, as diverse as speech signalbuthan genome, and financial time-series,
can be modeled via a hidden Markov model (HMM). The HMM asssithat observations are generated
by a hidden, discrete-valued Markov process representiagystem’sstate evolution. An extension to
the HMM is the switching linear dynamic system (SLDS), whiadlows for more complicated dynamics
generating the observations, but still follows the Marktates-switching of the HMM. For both the HMM
and the SLDS, the state sequence’s Markov structure accdonthe temporal persistence of certain
regimes of operation.

Recently, the hierarchical Dirichlet process (HDP) [1] leeen applied to the problem of learning
hidden Markov models (HMM) with unknown state space cairlitinand is referred to as a HDP-HMM.

A Dirichlet process is a distribution over random probapitheasures on infinite parameter spaces. This
process provides a practical, data-driven prior towarddetsowhose complexity grows as more data is

observed. A specific hierarchical layering of these Diktlgrocesses results in the HDP. When applied as
a prior on the parameters of an HMM, the Dirichlet proces®areges simple models of state dynamics,

but allows additional states to be created as new behavierstserved. The hierarchical structure allows

for consistent learning of temporal state dependencieadttition, the HDP has a number of properties

that allow for computationally efficient learning algoritls, even on large datasets.

The original HDP-HMM addresses the statistical issue ofimpmith an unknown and potentially

infinite state space, but allows for learning models witheatistically rapid dynamics. For many ap-
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plications, the state sequence’s Markov structure is amoxppation to a system with more complex
temporal behavior, perhaps better approximated as semkeMavith some non-exponentially distributed
state duration. Setting a high probability of self-traiesitis a common approach to modeling states that
persist over lengthy periods of time. One of the main lintas of the original HDP-HMM formulation

is that it cannot be biased towards learning transition iiessthat favor such self-transitions. This
results in a large sensitivity to noise, since the HDP-HMM explain the data by rapidly switching
among redundant states. Although the Dirichlet processdesl a weak bias towards simple explanations
employing fewer model components, when state-switchirapailities are unconstrained there can be
significant posterior uncertainty in the underlying model.

Existing learning algorithms for HDP-HMMs are based on Mskchain Monte Carlo (MCMC)
methods, such as Gibbs sampling, with an implementationsbquentially samples the state for each
time step [1]. This sequential sampler leads to a slow mixiaig since global assignment changes
are constrained to occur coordinate by coordinate, makindjfficult to transition between different
modes of the posterior. Existing HMM algorithms, such asftrevard-backward algorithm [2], provide
efficient methods for jointly sampling the entire state setpe conditioned on the observations and model
parameters. While the original MCMC algorithm marginatizaut the infinite set of infinite dimensional
transition densities, we explore the use of truncated aqmetions to the Dirichlet process to make joint
sampling tractable.

In this paper we revisit the HDP-HMM, and develop methodschtillow more efficient and effective
learning from realistic time series. In Sec. I, we begin lbggenting some of the theoretical background
of Dirichlet processes. Then, in Sec. lll, we briefly deserthe hierarchical Dirichlet process and, in
Sec. IV, how it relates to learning HMMs. The revised forntigla is described in Sec. V while Section
V-C outlines the procedure for the blocked resampling ofdfa¢e sequence. In S&, we offer a model
and inference algorithm for an HDP-HMM with non-standardssion distributions. We present results

from simulated datasets in Sec. VII.

[I. DIRICHLET PROCESSES

A Dirichlet process defines a distribution over probabiligasures on a parameter sp&ewhich
might be countably or uncountably infinite. This stochaptiacess is uniquely defined by a concentration
parameterr, and base measuré], on the parameter spaé we denote it by DRy, H). Consider a

random probability measur@ ~ DP(«, H). The Dirichlet process is formally defined by the property
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that for any finite partitioh {A;, ..., Ak} of the parameter space,

That is, the measure of a random probability distributi®r- DP(«, H) on every finite partition of the
parameter spad® follows a specific Dirichledistribution The Dirichlet process was first introduced by
Ferguson [3] using Kolmogorov's consistency conditionsmare practically insightful definition of the
Dirichlet process was given by Sethuraman [4]. Considerobatility mass function (pmf{m;}°, on

a countably infinite set, where the discrete probabilitiess @nstructively defined as follows:

B, ~ Beta1, ) k=1,2,...
k—1

m=0 JJA-8) k=12, ... )
/=1

In effect, we have divided a unit-length stick by the weights The k*" weight is a random proportion
B, of the remaining stick after the previoys — 1) weights have been defined. Thasick-breaking
constructionis typically denoted byr ~ GEM(«). Sethuraman showed that with probability one, a

random drawG ~ DP(«, H) can be expressed as
GO)=> md(0—0;) Op~H, k=12 .., 3)
k=1

where the notatior (6 — 6;,) indicates a Dirac delta & = 6.

From this definition, we see that the Dirichlet process diitudefines a distribution over discrete
probability measures. The stick-breaking constructi@o ajives us insight into how the concentration
parameter controls the relative proportion of the mixture weights, and thus determines the model
complexity in terms of the expected number of componentk significant probability mass.

The Dirichlet process has a number of properties which makerénce using this nonparametric
prior computationally tractable. Because random proiighiheasures drawn from a Dirichlet process
are discrete, there is a strictly positive probability ofltiple observation®; ~ G taking identical values.
For each observatiof; ~ G, let z; be an indicator random variable for the unique valdgsuch that

6; = 6... Blackwell and MacQueen [6] introduced a Polya urn repmestéon of the Dirichlet process,

1A partition of a setA is a set of disjoint, non-empty subsets.éfsuch that every element of is contained in exactly one
of these subsets. More formall{/A;c}f:1 is a partition of A if Uy Ax = A and for eachj # k, A, N A; = 0.

2If the value ofa is unknown, the model may be augmented with a gamma priorildliion on ¢, so that the parameter is
learned from the data [5]. See Section V-D.
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which can be equivalently described by the following prédé distribution on these indicator random

variables:
K
~ 1

(6%
0(z, k NLo(z, k). 4
a+ N (27)+Q+N; k(27) ()

p(ZN+1 =z \ Zl:N704) =

Here, N}, is the number of indicator random variables taking the valpand is a previously unseen
value. We use the notatiofi(z, k) to indicate the Kronecker delta. This representation camdesl to
sample observations from a Dirichlet process without eiipliconstructing the countably infinite random
probability measur&s ~ DP(a, H).

The predictive distribution of Eq. (4) is commonly referredas theChinese restaurant processhe
analogy is as follows. Také; to be a customer entering a restaurant with infinitely maijets each
serving a unique disHh. Each arriving customer chooses a table, indicated;bin proportion to how
many customers are currently sitting at that table. With esquositive probability proportional te, the
customer starts a new, previously unoccupied tablErom the Chinese restaurant process, we see that
the Dirichlet process has a reinforcement property thatdda favoring simpler models.

We have shown that it; ~ 7 and 7 ~ GEM(«), then we can integrate out to determine the
predictive likelihood ofz;. Another important distribution is that over the numi#€rof unique values of
z; drawn fromr given the total number oV draws. Whenr is distributed according to a stick-breaking
construction with concentration parameterthis distribution is given by [7]:

p(K | N,a) = %

s(N, K)o’ (5)
wheres(n, m) are unsigned Stirling numbers of the first kind.

The Dirichlet process is most commonly used as a prior Bigion on the parameters of a mixture
model when the number of mixture components is unknavgriori. Such a model is called Ririchlet
process mixture modednd is depicted by the graphs of Fig.1(a)-(b). The parametttr which an
observation is associated implicitly partitions or clustéhe data. In addition, the Chinese restaurant
process representation indicates that the Dirichlet m®gegovides a prior that makes it more likely to
associate an observation with a parameter to which otheradigons have already been associated. This
reinforcement property is essential for learning finitggresentative mixture models. It can be shown
under mild conditions that if the data are generated by afimiture, then the Dirichlet process posterior

is guaranteed to converge (in distribution) to that finite afemixture parameters [8].

We now describe how the Dirichlet process mixture model camdrived as the limit of a sequence
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Fig. 1. Dirichlet process (left) and hierarchical Dirichfrocess (right) mixture models represented by two gra@)dndicator
variable representation in which ~ GEM(«), 6 ~ H(X), z; ~ 7, andy; ~ f(y | 0,). (b) Alternative representation with
G ~ DP(a, H), 0; ~ G, andy; ~ f(y | 6;). (c) Indicator variable representation in whigh~ GEM(y), mx ~ DP(a, 3),
Ok ~ H(X), zji ~ 7, andy;; ~ f(y | 6-,,). (d) Alternative representation witf¥o ~ DP(y, H), G; ~ DP(a, Go), 0;i ~ G,
andy;; ~ f(y | 0;:). Plate notation is used to compactly represent replicateiies of the graph [9].

2
&

of finite mixture models. Let us assume that there amomponents to our finite mixture model and we
place a Dirichletdistribution prior on these mixture weights. Our finite mixture model iscbed by:

m~Dir(a/L,...,a/L) z~m7
O ~ H(\) yi ~ F(6y,).

(6)

Let GL(0) = Zﬁzl m0(6 — 0%). Then, it can be shown that for every measurable funcfiontegrable
with respect to the measuré, this finite distributionG’ converges in distribution to a countably infinite

distribution G distributed according to a Dirichlgirocesg10], [11]. That is,

/ £(0)dG (6) 2 / £(0)dG(0), @)
0 0

asL — oo for G ~ DP(a, H).

I11. HIERARCHICAL DIRICHLET PROCESSES

There are many scenarios in which groups of data are thoogb¢ fproduced by related, yet unique,
generative processes. For example, take a sensor netwarikoniog an environment where time-varying
conditions may influence the quality of the data. Data ctdiécinder certain conditions should be grouped
and described by a similar, but disparate model from thattleérodata. In such scenarios we can take a
hierarchical Bayesian approach and place a global Dirigiiecess priorD P(«, Gy) on the parameter
space©. We then draw group specific distributiold$; ~ DP(c, Gy), which will be discrete so that

parameters are shared within the group. However, if the beesssure’ is absolutely continuous with
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respect to the Lebesgue measure, parameters will not bedshetween groups. Only in the case where the
base measur€ is discrete will there be a strictly positive probability thie group specific distributions
having overlapping support (i.e. sharing parameters bEtvgeoups.) To overcome this difficulty, the base
measureiy should itself be a random measure distributed accordingDiriahlet processD P(v, H).
This results in what is termed laerarchical Dirichlet procesgHDP) [1] and is depicted by the graphs
of Fig. 1(c)-(d).

We now describe the HDP with a bit more formality. Lgt1,...,y;n~,) be the set of observations in

groupj. We assume there atk such groups of data. Then, the generative model can be nvete

Go(0) = 32521 Bro(6 — 0) B ~ GEM(y)
O~ H(\)  k=1,2,...

Gj(0) = Y252, jed(0 — b5¢) mj~GEM(a) j=1,...,J (8)
0t ~ Go t=1,2,...
H_jiNGj yﬂNF(éﬂ) jzl,...,J, ’izl,...,Nj.
See Fig. 1(d).

The Chinese restaurant process analogy of the Dirichlegsocan be extended t&€Chinese restaurant
franchisefor the HDP. The analogy is as follows. There dreestaurants, each with infinitely many tables.
Each customer is pre-assigned to a given restaurant dednhiy its groupj. Upon entering thet”
restaurant, a customey; sits at a table;; ~ ;. Each table then chooses a digh~ Gy, or equivalently,
an index for a distk;; ~ 3. Therefore, customey;; eats dishgji = ~jtﬂ = ijtji. The generative model

is summarized below and is depicted in the graph of Fig. 2(a):

B ~GEM(Y)  kjr~ 0
7~Tj ~ GEM(O&) tji ~ 7~Tj (9)
O ~ H(A) Yji ~ F (O, )-

Let nj; be the number ofustomersn restaurany sitting at tablet andm;, be the number ofables

in restaurantj serving dishk. As with the Chinese restaurant process, the stick-brgafténsitiesr
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Fig. 2. Graph of the (a) Chinese restaurant franchise, antb(pered Chinese restaurant franchise. For the Chinetaurant
franchise, each customer (observatiam) is assigned to a tablg; ~ 7; in restaurantj, wherer; ~ GEM(«). Each tablet
then chooses a global dish indéx ~ 3, where3 ~ GEM(y). The likelihood of the observation is given lyy; ~ F(ijtji ).

For the tempered franchise, there is artual restaurant serving dishds;, which may have either arisen from the dikh
served in theunderlyingrestaurant ifw;; = 0 or from having been overridden by dighif w;; = 1.

and 8 may be marginalized to yield the following predictive distitions:

T

pltji |t tjimn, @) o Y bt t) + ad(ti, ) (10)
t=1
K ~
p(kjt ’ ElakZa"wﬁj—hkjla"'7kjt—17’y) X kaa(kjhk) +75(k]t7k)7 (11)
k=1
wherem j, = . mj, andk; = (kj1, ..., kjr,). Here,T; is the number of currently occupied tables in

restaurant, and K is the total number of unique dishes being served in the higec The variables;
and k represent choosing a currently uninstantiated table dr, despectively.

Since each distributiol’; uses a discrete base measGlg multiple 6;; may take an identical value
0, for multiple unique values of implying that multiple tables in the same restaurant may dr&isg

the same dish, as depicted in Fig. 3. We can w@iteas a function of these unique dishes:
Gj(0) =D md(0 —0x), m; ~DP(a,5), O ~ H, (12)
k=1
wherer; now defines a restaurant-specific density over dishes seatieer than over tables with

ij: Z 'ﬁ'jt' (13)

tlkjp:k'

Let z;; be the indicator random variable for the unique dish thaeolziony;; eats. Thatisz;; = kj; .
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Fig. 3. Chinese restaurant franchise with= 2 restaurants. The currently occupied tables each choosshd,di~ G, where
G; ~ DP(«, Go) is a discrete probability measure so that multiple tableg s®ave the same dish. Sin¢& has overlapping
support withG., parameters (i.e. dishes) are shared between restaurants.

A third equivalent representation of the generative mosiéh iterms of these indicator random variables:

B ~ GEM(7)
mj ~DP(a, B)  zji ~ 7 (14)
Op ~ H(N) yji ~ F(02,,),
and is shown in Fig. 1(c).
As with the Dirichlet process, the HDP mixture model has aerjretation as the limit of a finite

mixture model. In terms of the parameter indicator randomiatée representation, we write:

B~ Dir(1/L, ...,7/L)
T~ Dir(aﬁl,...,aﬁL) Zji ~ T (15)

As L — oo, this model converges in distribution to that of the HDP migt model [1].

V. HDP-HMM

Hierarchical Dirichlet processes can be applied as a pridhe state values of a HMM with unknown
state space cardinality, as described in [1]. Let us der@estate of the Markov chain at timeby z;.
Here, we have intentionally reused the notattofor this random variable for reasons that will become
clear. Assume there are potentially countably infinitelyngnedMM state values. For each of these HMM
states, there is a countably infinite transition densityralie next HMM state. Letr;, be the transition
density for HMM statek. Then, the Markov structure on the state sequence dictasst~ 7, ,. In

terms of the previous HDP description, we see that specifies the group with whicly is associated.
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Namely, all observationg; with z,_; = j are assigned to group since z; ~ m;. The current HMM
statez; then determines which of the global parametgrare used to generate the observatipnThe

HDP-HMM is depicted by the graph in Fig. 4(a).

ot t0)
oa+r

3

>
Il
e

Fig. 4. Graph of the (a) HDP-HMM and (b) tempered HDP-HMM. T8iatez;, taking values within a potentially countably
infinite state space, indexes the transition densityfrom which the subsequent state;; is drawn. That iszi41 ~ 72,.
These transition densities have a hierarchical Dirichteicess prior. The HDP-HMM takes, ~ DP(«, 8) with the global
base measure defined 8s~ GEM(~). The tempered HDP-HMM instead employs ~ DP(a + &, 8;) with a state-specific
base measurg, = (a8 + kdx) /(o + k), which is a deterministic function of the global base meagtir~ GEM() and the
hyperparametera and . The observation likelihood distributions are defined by garameter$, so thaty: ~ F(0.,).

This model can also be described in terms of the Chinesaurasiiafranchise. We will refer te; as the
parent anc:;; as the child. The parent enters a restauyagétermined by its parent (the grandparent),
z—1 = j. We assume there is a bijective mapping of indigest — ji. The parent then chooses a
tablet;; ~ 7; and that table is served a dish indexed&y ~ 3. The index of the dish the parent is
eating, kj;,, = z;; = %, determines the parameter of the parent’s likelihood ibistion, 6.,, as well
as the restaurant (or group) of the chid ;. This analogy is not very intuitive or useful for the basic

HDP-HMM, but will be important in developing the tempered PHHIMM.

A. Inference for HDP-HMM

In this section we describe one of the three Markov chain EMaddarlo (MCMC) HDP sampling
algorithms presented in [1]. Specifically, we consider tlreal assignment Rao-Blackwellized Gibbs
sampler, which is cited as the best-suited to the HDP-HMMIliagion. In the Chinese restaurant
franchise, an observation;; is assigned to a table;, and each table is then assigned a dighso
that y;; is indirectly associated with paramet@gjtji. The direct assignment sampler circumvents this

complicated bookkeeping by directly associating an olaem y;; with a parameter via the indicator
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random variablez;;, where in the HDP-HMM we have; = zj. In this sampler, a set of auxiliary
variablesm;, must be added, as will be discussed subsequently.

Throughout the remainder of the paper, we will use the falhgwnotational conventions. Given a
random sequencéry, zs, ..., 27}, we use the shorthand,.; to be the sequencgry, zo,...,2¢} and
z\; to be the sef{xy,...,24—1,%¢41,..., 27} Also, for random variables with double subindices, such
asz,,q,, We will usex to denote the entire set of such random variables, .,, Va1, a2 }.

To derive the direct assignment sampler, we first assumentbatample: table assignments for each
observationt;;; dish assignments for each of these tabtgs,and the global mixture weights, Because
of the properties of the HDP, and more specifically the stickaking densities, we are able to marginalize
the group-specific densities; and parameter8;, and still have closed-form distributions from which to
sample (since exchangeability implies that we may treatyeta@ble and dish as if it were the last,
as in Eqg. (11).) The marginalization of these variables isrred to asRao-Blackwellizatior{12]. The
assumption of having;; andk;; is a stronger assumption than that of havifgsincez;; can be uniquely
determined fronY;; and k;;, though not vice versa. We then proceed to show that direethgplingz;;
instead oft;; andk;; is sufficient when a set of auxiliary variables is additidypalampled.

1) Sampling3: We begin by examining the posterior distribution®fRecall the HDP mixture model
defined in Eqg. (8). At any given iteration of the sampler, Istassume that there afé unique dishes
being served and let us consider the finite partifép, 62, . .., 0k, 0; } of the parameter space, where
0; = ©\ Uff:l{ek} is the set of all currently unrepresented parameters. Byiitiefi of the Dirichlet

process(=y has the following distribution on this finite partition:
(GO(Hl), ‘e 7G0(9K)7 GQ(QE)) ~ Dir(fyH(Hl), v ,’YH(QK)KYH(@,;))

~ Dir(0,...,0,7), (16)

where we have used the fact thdtis absolutely continuous with respect to the Lebesgue measu
For every currently instantiated table k;, associates the table-specific dié)g with one among the

unique set of dishe§t;, ..., 0k }. We have usedh;;, to denote how many of the table-specific dishes in

restaurantj are dishd,. Therefore, we haven observationséjt ~ (g in the franchise that fall within

the single-element partitiofd; }. By the properties of the Dirichlet distribution we have,

p((Go(61), ..., Go(0k), Go(0;))|{0;¢},7) o Dir(mys,...,mk,7). (7)

Since(Go(01),...,Go(0x), Go(8;)) are by definition equal t¢51, .. ., Bk, 5;) and from the conditional
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independencies illustrated in Fig. 2, the desired postéligtribution of 3 is

p((ﬁl??ﬁK?ﬁ]}) | t>k7y1:T77) (08 Dir(m.ly-">m.K77)' (18)

From the above, we see thét ,}X | is a set of sufficient statistics for re-sampligigdefined on this
partition.

2) Samplingz;: We now determine the posterior distribution ff

p(Zt =k ’ Z\t7y1:Ta/8aa7 A) X p(Zt =k ’ Z\t75704)p(yt ‘ y\tazt = kaz\ta)‘) (19)

The properties of the Dirichlet process dictate that on thiefipartition {1,..., K, I?:} we have the

following form for the group-specific transition densities

p(ﬂ-] | O‘?ﬁ) X Dir(aﬁlv"'vaﬁK7aﬁ]~g)' (20)
We use the above definition af; and the Dirichlet distribution’s conjugacy to the multiniainobserva-
tions z; to marginalizerr; and derive the following conditional distribution over thtates assignments:

—t aﬁzt+]+n;;t+1+5(zt717k)5(k7'zt+1)
(afk +n," 1 )( PR S ) kel,... K

Oéﬂffﬂzt“ k=k.

plz =k | 2, B, ) ox (21)
For a detailed derivation, see Appendix I-A. The notatigf represents the number of Markov chain
transitions from statg to k£, which can be computed from.r. Furthermore, we use;. to indicate the
number of transitions from to any other state (i.e2;, = >, n;;) and nj‘,f the number of transitions
from statej to £ not counting the transition from; ; to z; or from z; to z.,1. Let 2,1 = j and
z1+1 = £. The intuition behind this distribution is that we choosetatesk with prior probability as a
function of how many times we have seen otlido k& andk to ¢ transitions. Note that there is a minor
dependency on whether either or both of these transitionggjwond to a self-transition (i.é¢.= j or
k=1¢)

The conditional distribution of the observatiop given an assignment, = k£ and given all other
observationg,-, having marginalized out,,, can be written as follows:

pWe | e, 20 = Ky g, A) - o /6 e | 0k)p Ok | {yr | 27 =k, 7 # t}, N)dby. (22)

Note that the sefy, | z; = k,7 # t} denotes all the observations other thany; that were drawn

from the observation likelihood distribution parametedzby ;. By placing a conjugate prior on the
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parameter space, there is a closed form distribution far irginal likelihood. Further details may be
found in Appendix I-B.

From the above conditional distributions f6randz;, we see that the only effect of; andk;; is via
m;k, the number of tables serving dighin restaurant. Thus, it is sufficient to sample:;; instead of
t;; andkj;, when given the state index.

3) Samplingm;,: Having the state index assignmentsr effectively partitions the data (customers)
into both restaurants and dishes, though the table assigarage unknown. For example, ; = j and
z = k tells us that customaey; is in restaurany and eating distk, though there may be multiple tables
serving this dish so that the customer’s table cannot bevttigpuated. Thus, sampling ;; is in effect
equivalent to sampling table assignments for each custafter knowing the dish assignment. This

conditional distribution given by:

pltii =t kjy =kt 7 k7 yir, B,0) o pltyi | tjn, .. tjic1 tjivts - - by, )p(kse = k | B)

nll te{l,...,T;};
o Jt { J} (23)

Oéﬁk, t :tj.

Here, ﬁj_tji is the number of customers sitting at talslén restaurantj, not counting customey;;.
Similarly, t=7% are the table assignments for all customers exgepand k! are the dish assignments
for all tables except table in restaurang. The form of this distribution implies that a customer’sleab
assignment conditioned on a dish assignniefallows a Dirichlet process with concentration parameter

af. That is,
tii | kje,, =kt 7 kT g, Boa ~ 7, 7~ GEM(aBy).

Then, Eq. (5) provides the form for the density over the numifeunique components (i.e. tables)
generated by sampling;;, times from this conditional stick-breaking density:

L'(afy)

F(aﬁk——l—njk)s(njk’ m)(afy)™. (24)

p(m]k’ =m | njk>ﬁ>a) =

In terms of the Chinese restaurant franchise, the numbeansitions from statg to &, n;;, is the total
number of customers in restaurgneating dishk (i.e. n;, = quﬁ:k n;j:.) For largeny, it is often
more efficient to sample»;;, by simulating the table assignments of the Chinese restguas described
by Eqg. (23), rather than having to compute a large array ofiffi numbers. See Algorithm 1 for an
outline of the HDP-HMM direct assignment Gibbs sampler.
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V. TEMPEREDHDP-HMM

For the sake of argument, let us assume that we have confimimservations of our discrete state
space, such as generated by a Gaussian likelihood digbributet us also assume that the state of
the HMM typically persists over a period of time. In such sméwos, the unconstrained nature of the
HDP-HMM transition probabilities obscures the learninggedure and results in a sensitivity to the
within-state variations in the observations. This sevigjtis especially pronounced when the degree of
the state-specific variation is an unknown parameter of thedah For example, with Gaussian likelihoods
parameterized by unknown means and covariances, the samaledivide the observations generated
from a single state into two states with slightly differetpected means, each with small expected
covariances, and then quickly switch between these twesstdihe HDP-HMM reinforces this assignment
since the predictive distribution of state transitionstalies that if the system is in one state at a given
time, it is likely to be in the other state at the next time dt@ged on having already seen many of these

transitions. This scenario is depicted in Fig. 5.

True Mode Sequence

Observation Sequence

Estimated Mode Sequence

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Time Time Time

(@) (b) (€)
Fig. 5. Qualitative plots showing the sensitivity of theginal HDP-HMM direct assignment sampler to variations ie th
observations. (a) Observation sequence; (b) true HMM sexjeence; and (c) estimated HMM state sequence after T@€ates

of the Gibbs sampler. In plot (c), we see that individual teti@tes are divided into multiple estimated states, each kigh
probability of switching to one of the others.

Although the MCMC sampler is guaranteed to converge to the posterior distribution, many fast
state-switching sequences have large posterior probabilithe standard HDP-HMM, thus slowing the
rate at which the sampler explores the entire sequence .sphedrue state sequence might have only
marginally larger posterior probability than these otheplanations of the observations. Furthermore,
when observations are high-dimensional, this fragmenadif data into redundant states may reduce
predictive performance. For scenarios where the HMM isat@pproximating a semi-Markov process,
one would like to be able to incorporate the fact that slowessavitching is preferable to fast state-

switching. That is, the probability of a self-transitionositd be biased towards larger values. To this end,
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we modify the standard HDP-HMM as follows:

B ~ GEM(»v)

(25)

0

o+ K

where (a3 + kd;) indicates that an amount is added to thej*® component ofa3. Now, each state-
specific transition density has a unique base measure witidditional weight, determined by, on a
transition to that given state. See Fig. 4(b).

The concept behind this parameter is reminiscent of the self-transition bias patamin the infinite
HMM [13]. The infinite HMM employs a two-level urn model. Thep-level process places a probability
on transitions to existing states in proportion to how mames these transitions have been seen, with
an added bias towards a self-transition even if this has matiqusly occurred. With some remaining
probability an oracle is called, representing the secendtlurn. This oracle chooses an existing state
in proportion to how many times the oracle previously chded state, regardless of the state transition
involved, or chooses a previously unvisited state. Theleracincluded so that newly instantiated states
may be visited from all currently instantiated states. I18][Jonly a heuristic approximation to a Gibbs
sampling algorithm was presented for inference in this rhoflee full connection between the infinite
HMM and the HDP formulation, as well as developing a globansistent inference algorithm, was
made in [1]. However, in the HDP-HMM formulation of [1], treewas no mention of the self-transition
bias parameter.

To better understand the form of Eq. (25), it is useful to metw the formal definition of the Dirichlet

process. Consider a finite partitiger, ..., Zx ) of the positive integer&.. Then
(71']-(21), ... ,Wj(ZK)) ~ Dir(aﬂ(Zl) + lifsj(Zl), - ,aﬂ(ZK) + R(Sj(ZK)) (26)

so thatk is only added to the Dirichlet parameter of the arbitraritgadl partition containingj, which
corresponds to a self-transition.

We will refer to this model as theemperedHDP-HMM.

A. Chinese Restaurant Franchises with Loyal Customers

We further abuse the analogy of the Chinese restaurantstbpdirg it to the tempered HDP-HMM,
where we now have a franchise of restaurants that each hawsahdet of customers. Each restaurant

in the franchise has a specialty dish with the same index atsaththe restaurant. Although this dish is
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also served in other restaurants, it is more popular in tsb'slinamesake restaurant. We can see this
increased popularity in the specialty dish from the fact tha

Oéﬂ + /<;6j

kip ~
7t o+ K

(27)

Noting thatz; = zj; = kj;,, andz41 ~ m,, we see that children are more likely to eat in the same
restaurant as their parent and, in turn, more likely to eatrt#staurant’s specialty dish. This develops
family loyalty to a given restaurant in the franchise. Hoe\f the parent chooses a dish that is not the
house specialty, the child will then go to the restaurantretibis dish is the specialty and will in turn
be more likely to eat this dish, too. One might say that for tdrapered HDP-HMM, the children have
similar tastebuds to their parents and will always go théatgant that prepares their parent’s dish best.
Often, this keeps many generations eating in the same rastau

The inference algorithm, which is derived in Sec. V-B, is giifited if we introduce a set of auxiliary

random variableg;; andw;; as follows:

kjp ~
K
Wi~ Ber<a+ﬂ> (28)
kjt, wjr = 0;
k?jt _ 9t gt

j7 Wit = 17

where Be(p) represents the Bernoulli distribution withthe probability of success. We will describe this
formulation in terms of arunderlyingand anactual restaurant. Thainderlyingrestaurant corresponds
to the process of choosing a dish without taking the restdirapecialty into consideration (i.e. the
original Chinese restaurant franchise.) With some prdingbihe considered decision to order a given
dish is overridden (perhaps by a waiter's suggestion) aedtalhle is served the specialty dish. The
dishes the waiters actually serve the tables corresporttetactual restaurant. This generative process is
depicted in Fig. 6(a). We refer tb;; as theconsidereddish index andv;; as theoverridevariable. Our
inference algorithm, described in Sec. V-B, will aim to infeese variables conditioned on knowledge
of the serveddishesk;;. For example, if the served dish of tallen restaurantj is indexed byy, the
house specialty, the origin of this dish may either have Hemm consideringk;; = j or having been
overridden byw;; = 1. See Fig. 6(b).

This formulation is equivalent to the original formulatiomhich can be clearly seen if we rewrite the
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DOOO | OO0
@1104"]’2204"./3—1 @140 4 1=0 :u]270 :“’/3_1%/10
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(a) Generative (b) Inference

Fig. 6. (a) Generative model of the dish indides of underlying restaurant (top) being converted to indikgsin the actual
restaurant (bottom) via override variables,. (b) Inference perspective of trying to infé, andw;. given kj.. If kji # 7,
then the override variable;, is automatically0 and the underlying restaurant serves dish= k;;, as indicated by the jagged
arrow. If the actual restauraritserves dishk;; = j then this could have arisen from the considered dishbeing overridden
(wj: = 1) or not (w;: = 0). These scenarios are indicated by the dashed arrow. |fahsidered dish was not overridden, then
the considered dish is aldg, = k;; = j. However, if the considered dish was overridden, then tisit &l;; could have taken
any value, as denoted by the question mark.

base measure as:

K

« e} >
b~ Y Bed(kje, K) + —— ok, k) +

k=1

et )L (29)
The graphical model of the Chinese restaurant franchisehrtempered HDP-HMM is shown in

Fig. 2(b). Although not explicitly present in this graphettempered HDP-HMM still has a Markov

structure on the indicator random variabtgswhich based on the value of their parent; are mapped to

a group-specific indey:. As with the HDP-HMM, during the MCMC inference procedure #ssignments

of observations to groups is dynamically changing with thegled value of the parent indicator random

variable.

B. Direct Assignment Method for the Tempered HDP-HMM

In this section, we derive the tempered HDP-HMM direct amsignt Gibbs sampler. Throughout
this section, we will refer to the random variables in theptyraf Fig. 2(b). As before, let us begin
by assuming that we sample all the assignment random vesiadfl the Chinese restaurant franchise.
In the tempered HDP-HMM, this now includes: table assignisidor each customet,;;; served dish
assignments for each table;;; considered dish assignmenigt; and dish override variables;;;. We
still sample the global weightsi, as well. We then show, as we did for the HDP-HMM, that we can
rely solely on sampling the state variablgsinstead of assignment variableg, k;; and k;; if we add

auxiliary variables to our sampler.
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1) Samplings: Previously, we derived that the number of tableg, was a set of sufficient statistics

for sampling3. Now, sincek;; is drawn fromg, we have

p(B |tk kw,yir,y) o< pB| ) [[pkse | B)

X Dir(m.lam.Za"'7m.K7fY)’ (30)

wherem;;, represents the number of tables that considered orderingha:d
2) Jointly Samplingmni, w;;, and m;,: The auxiliary variablesn;;, w;;, andm;, can be jointly
sampled given the state sequenger and global density3. The joint conditional density can be

decomposed as follows:

p(m7w7m ‘ Zl:T7ﬂ7a7 ’%) :p(m ‘ m,w,ZLT,ﬂ,Oé, ’%)p(w ‘ m721:T757047 ’%)p(m ‘ Zl:T7ﬂ7a7 ’%) (31)

We start by examining(m | zi.7, 3, «, k), wherem;;, is the number of tables witlserveddish
k. This distribution is derived as in the original HDP-HMM bwing Eg. (5). However, we now have
concentration parameter+ ~ and base measufe,s + xd;)/(a + ) so that

L(afy + k(4. k)
afy + ko(j, k) + nji)

p(mjr = m [ njk, 8,0, k) = T s(njk, m)(aBy + k(j, k)™ (32)

Note that this distribution only differs from that of Eq. (2dhenj = k.

We now derive the conditional distributiop(w | m, 2.7, 3) over the override variables;;. The
table countsmj; inform us that for each table € 7, where|T;.| = mj;, the dish assignment is
kj: = k. Thus, we can equivalently examine the distributjdm;; | k;;, 3) over each override variable

independently since

p(w | mazliTaﬁaavK) :p(’w | k7ﬁ>a> H) = Hp(wjt | kjtaﬁaavﬁ)' (33)

7,t
Note that we only need to consider the talil@gth served dislk;; = j, corresponding to that restaurant’s
specialty, since these are the tables where the considisted,d may have been overridden vig; = 1.
For all other tables, we can automatically deduce that= 0.
For the tables withk;; = j, we start by assuming we know the considered dish iriggxfrom which

inference of the override parameter is trivial. We then rimaigze over all possible values of this index.
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If we definep = ;- to be the prior probability thaw;; = 1, then

K
plwje | ke =3,8,p) = Y p(kji,wje | kje = 4, 8) + p(kje = k,wie | kje = 5, 8)
E]‘tzl

R
M=

p(kje =7 | kje,wje)p(kje | B)p(w;e | p)
1

+p(kje = j | kje = k,wie)p(kje = k | B)p(wje | p)
Bi(1—p), wj =0;

P, wjr = 1.

Ejt

(34)

The above distribution implies that having observed a sedishk;, = j makes it more likely that the
considered dislt;; was overridden via choosing;; = 1 than the prior suggests. This is justified by the
fact that ifw;, = 1, the considered dish;; could have taken any value and the served dish would still be
k;: = j. The only other explanation of the observatigin = j is that the dish was not overridden, namely
w; = 0 occurring with prior probability(1 — p), and the table considered a digh; = j, occurring with
probability 3;. These events are independent resulting in the abovebdistmn.

Let 7;; = {t|k;; = j}. For each table € 7;, that is, each table served dighn the actual restaurant
J,» we independently draw a sample©f; from the above distribution. Thus, in total we dram; i.i.d.
samples ofw;,, with the total number of dish overrides in restauramfiven byw; = >, w;;. The sum
of these Bernoulli random variables results in a binomialdm variable.

Givenm,, for all j andk andwj; for each of these instantiated tables, we can now deterically
computem,i, the number of tables that considered ordering dish the underlyingrestaurany. Any
table that was overridden is an uninformative observatartte posterior ofn;;, so that

e = Mk, J#k; (35)
mj; —wj, j=Fk.
Note that we are able to subtract off the sum of the overridabtes within a restauranty; , since the
only time w;; = 1 is if table t is served disly.
3) Samplingz;: Finally, we need the predictive distribution ef for the tempered HDP-HMM. We

first note that the prior distribution of; is now

m; ~ Dir(afy,...,aB; +k,...,ab;). (36)
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Using this tempered group-specific transition density, caie re-derive the predictive distribution of

to be:

p(Zt =k | Z\tvﬁvavli)

aﬁzt+1 +n,;ztt+] +r6(k,ze41)+0(2e—1,k)0(k,ze41)
atng " +r+0(zi—1,k)

(o +n;ilk + k0(2t-1,k)) < ) kel,...K

o (37)

azﬁfcﬁzHJ k — i{}

a+rK

See Appendix I-A for a complete derivation. The resultingpered HDP-HMM direct assignment Gibbs

sampler is outlined in Algorithm 1.

C. Exploiting the HMM Structure

The tempered HDP-HMM reduces the posterior uncertaintgeaiy fast state-switching explanations
of the data; however, the bias towards self-transition®éhices a mixing rate problem for the MCMC
sampler. Specifically, two continuous periods of obseovetiof a given state that are separated in time
may be individually grouped into separate states (see Eidf this occurs, the high probability of self-
transition within each state makes it challenging for thgueatial sampler to group those two examples
into a single state. In this section, we consider a methodewérhging the Markov structure of the

HDP-HMM to mitigate this problem.

True Mode Sequence
Estimated Mode Sequence

Observation Sequence

50 100 T0 200 2% 300 350 200 50 100 150 200 250 300 350 200 50 100 150 200 250 300 350 200
Time Time Time

(@) (b) (€)
Fig. 7. Qualitative plots showing the sequential Gibbs damgplitting two temporally separated examples of the stme
state into two states. (a) Observation sequence; (b) trudHithte sequence; (c) estimated HMM state sequence for a give

iteration of the Gibbs sampler. In plot (c), we see that alsitigie state was divided into two estimated states, eadh higth
probability of self-transition.

A variant of the HMM forward-backward procedure [2] allows 0 jointly sample the state sequence
z1.7 given the observation sequengger, transitions densities;, and model parametess,. With the

sequential sampler, we were not exploiting the simple Markoucture of the graphical model. Note,
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Given a previous set of state assignmezrﬁ‘gl) and the global transition densify(”—1):

1) Setzi.p = zﬂ‘T_l) andg = 8"~ For eacht € {1,...,T}, sequentially

a) Decrement.., .., andn.,., , and removey; from the cached statistics for the current
assignment; = k: oA .
(A 2k) — (s Xk) ©
b) For each of the currently instantiated states, determine the predictkadihood
aﬂzHl + nkzt+1 + K/(S(k7 Zt+1) ~ -
fe(y) = (@B +nz, k) < pE—— (Yt fure, X))
for z;_1 # k, otherwise see Eq. (37). Also determine likelihofdy;) of a new statek.

c) Sample the new state assignment

K
2~ Y fe(un)d( k) + fr(ye)d(zi, k)
k=1

If 2, = k, then incremenfs and transformg as follows. Samplé ~ Beta(1, ) and assign
Ok «— bﬂ]; andﬂl; «— (1 — b)ﬂff
d) Incrementn., ., andn., ., and addy, to the cached statistics for the new assignment
2z =k
(A 2k) — (s Xk) D e
2) Fix z%"T) = z1.7. If there exists g such thatr; = 0 andn ; = 0, remove; and decremenk .

3) Sample auxiliary variables:, w, andm as follows:
a) For each(j,k) € {1,...,K}?, defineJj, = {7 | 2:—1 = j, 2- = k}. Setm;, =0 andn =0
and for eachr € J;;, sample
n+ afk + k6(j, k)
Incrementn, and if z = 1 incrementm ;..

b) For eachj € {1,..., K}, sample the number of override variables in restaufant
. . P
w;, ~ Binomial (m-», —) ,
’ P p+Bi(1—p)
Set the number of informative tables in restauraonsidering dish to:
_ Mik, i #£ k;
mjj — Wi, J =4k

4) Sample the global transition distribution from
A" ~ Dir(my, ..., M.k, ")

Algorithm 1: Direct assignment Rao—Blackwellized Gibbs sampler fortdmpered HDP-HMM. The

algorithm for the HDP-HMM follows directly by setting = 0. Here, we assume Gaussian observations

with a normal-inverse-Wishart prior on the parameters eséndistributions (see Appendix I-B). The
ando operators update cached mean and covariance statistissigaraents are added or removed from
a given component. Hyperparameters may be resampled diaegdo the formulas in Appendix V-D, as
a final step.
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however, that in order to take advantage of this procedueemust sample the transition densities and
model parameters, which were previously integrated out.

To sample the transition densities in practice, we must domeapproximate these theoretically
countably infinite distributions. One approach is to teraménthe stick-breaking construction after some
portion of the stick has already been broken and assign timainéng weight to a single component.
This approximation is referred to as thencated Dirichlet processAnother method is to consider the

degreeL weak limit approximatiorio the Dirichlet process,
GEM (a) £ Dir(a/L,...,a/L), (38)

where L is a number that exceeds the total number of expected HMMsstatote that both of these
approximations, which are presented and compared in [1Q@], Encourage learning models with fewer
than . components while allowing the generation of new componemgper bounded by, as new data
is observed. We choose to use the second approximation e adLts simplicity and computational
efficiency.

The weak limit approximation to the Dirichlet process giues the following form for the prior

distribution on the global weights:
B ~ Dir(y/L,...,v/L). (39)
On this partition, the prior distribution over the transitidensities are Dirichlet with parametrization:
mj ~ Dir(api,...,af; +K,...,afL). (40)
The posterior distributions are then given by:

0 ~ Dil’(’y/L-i-m_l,... ,’y/L-l-m_L)

wj ~ Dir(af +nji1,....a8; + K +njj,...,afL +njL). (41)

Depending on the form of the observation likelihood disttibn and prior distribution on the parameters
0, of this likelihood, we sample our model parameters, one fmhecurrently instantiated state, from

the updated posterior distribution:

93’ ~p(0 | {yt ‘ 2t Zj}7)\) (42)

Now that we are sampling; directly rather than marginalizing these parameters akendirect assign-
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ment sampler, we can use a non-conjugate base measure oarémeeper space (see Appendix Il.)
To derive the forward-backward procedure for jointly samplz,.; giveny.7, we first note that the

chain rule and Markov structure allows us to decompose tim glistribution as follows:

p(zir | yrr,m,0) = pler | zr—1, 917, 7, 0)p(27—1 | 272, Y1.7, 7, )
---p(22 | ZlaylzT,ﬂ',o)p(ﬁ | Z/l:Taﬂ'aO)-

Thus, we may first sample from p(z; | y1.7, 7, 5, 80), then condition on this value to sampie from

p(z2 | z1,y1.7, 7, 0), and so on. The conditional distribution ef is derived as:

p(z1 | yrr, m,0) o p(z)p(yr | 02) > [ p(z | me)p(we | 62,)

zor T

o p(20)p(yr | 62) D p(z2 | 72,)p(y2 | 02,)msa(22)

22

o< p(z1)p(y1 | 0z, )ma1(21), (43)
wherem, ;_1(z—1) is the backward message passed frgnio z;_; and for an HMM is given by:

Do Pz | T )y | 02)mug1e(2e), t < T
mt7t_1(2t_1) XX ¢ (44)

o< pyer | 2-1,7,0).

The general conditional distribution of is:

(2 | ze—1,y1:7,7,0) o p(z | Wztfl)p(yt ’ ezt)mt-i-l,t(zt)- (45)

If the k*" state-specific observation likelihood distribution is Gsian with meanu, and covariance

Yk, then the above distributions are given by:

plet =4 | 21,917, 7,0) o< 7o (N (Ye; piy Xi)mig1,4(0) (46)
L

mepre(i) = > mi( DN e i S meya.e (4) (47)
=1

mror() = 1 i=1,...,L. (48)

The Gibbs sampler using blocked re-sampling:of is outlined in Algorithm 2.
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Given a previous set of state-specific transition densitiés ), the global transition densitg(>~1,
and observation likelihood parametets—"):

1) Setr =« and@ = 8"~1. Working sequentially backwards in time, for each
t € {T,...,1} calculate messages;; (k) :

a) For eacht € {1,..., L}, initialize messages to

mry1r(k) =1

b) For eachk € {1,...,L}, compute

L
M1 (k) = m (DN Wi i, Z5)mes,0()
=

2) Sample state assignmentsy working seauentially forward in time, starting with;;, = 0 and
Vi, = 0 for each(j, k) € {1,...,L}*:
a) For eachk € {1,..., L}, compute the probability
fi(ye) = 7z (BN (yes e, Zie)mig (k)

b) Sample a state assignment
L
z ka(yt)5(2t7 k)
k=1
c) Incrementn,, ,,, and addy, to the cached statistics for the new assignment k:
Vi =V ©ye
3) Sample the auxiliary variables, w, andm as in step 3 of Algorithm 1.

4) Update the global transition density by sampling
B ~Dir(y/L+ma,...,7/L+mK)
5) For eachk € {1,..., L}, sample a new transition density and observation likelihparameters
based on the sampled state assignments
TR~ Dir(aﬂl +ngt, .., 00k + K+ g, ..., a8 —l—nkL)
O~ p(0A Vi)
See Appendix Il for details on resamplirlgy.

6) Fix 7™ =, 3™ = 3, ando™ = 6.

Algorithm 2: Blocked-z Gibbs sampler for the tempered HDP-HMM. The atgor for the HDP-HMM
follows directly by settings = 0. Here, we assume Gaussian observations with an indepe@Gdeissian
prior on the mean and inverse-Wishart (IW) prior on the ciawvare (see Appendix I-B). The quantity
V. is a set of statistics for the observations assigned to dtateat are necessary for updating the
parameted;, = {ux, X }. The @ operator updates these cached statistics as a new assigismesde.
Hyperparameters may be resampled, according to the fosnimlAppendix V-D, as a final step.
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D. Hyperparameter Re-Sampling

In the discussion thus far, we have assumed that the hygengder values are known. However, one
may place a prior over these parameters and sample them kS helsampling equations for the HDP-
HMM can be found in [1]. Our derivation of the tempered samglequations roughly follows that that
of the original HDP-HMM, the details of which can be found ipgendix III.

Since we have the deterministic relationships

a = (1-p)a+nr)

ko= platr), (49)

we can treap anda + x as our hyperparameters and sample these values insteathplirgpa and
directly. This greatly simplifies the inference procedusense will see below.
If we place a Betg, d) prior on p, the posterior distribution given sampleswf; is simply an updated

beta distribution:

J J
plp|w) o pEimviteml(1 - pym mRiwitdl o BetdY wj +e,m. — Y wj +d), (50)
j=1 j=1

wherem_ = )", my is the total number of tables in thectual franchise. Heren  represents the
number of draws ofv;; ~ Ber(p) and}_; w;. the number of Bernoulli successes.

When given the total number of tables in thetual franchise,m_, the posterior distribution of the
tempered concentration parametet ~ follows the same distribution as that afin the original HDP-

HMM with auxiliary variablesr; ands;:

pla+k|r,s,m) x (a+ m)a_Hm“_Z%}:l 81~ (k) (b=307, logrs) (51)

p(rj | a+r,nj) o r§a+'{)(1 — 7)) ! o Betdla + £ + 1,n;.) (52)
nj. %

j j 53

p(sj | a+k,nj) o <Oz—|—/€> (53)

Similarly, the posterior distribution of is the same as in the original HDP-HMM formulation if we
now use the total number of tables in thaderlyingfranchise,m_, and the number of unique dishes

considered K, along with auxiliary variable;:

p(y|n,K,m.) o mnGammda+ K,b—logn)+ (1 —m7)Gammda + K — 1,b —logn) (54)

p(n |7 K) o« n'(1—n)" "'« Betay+1,m.), (55)
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where,

at+K—1
o _aTRT 56
= . (b— logn) (56)

VI. TEMPEREDHDP-HMM WITH NON-STANDARD EMISSION DENSITIES

With the tempered HDP-HMM, we may now examine more compdidatmission densities. So far, we
have assumed that the state-conditional emission diibibuwvas a simple parametric distribution such
as a Gaussian. Often, however, the underlying state precesém to capture may be better described as
generating observations from some multimodal or otherwigge general emission distribution. We
approximate each of these state-specific non-standardsiemislistributions by an infinite Gaussian
mixture model with a Dirichlet process prior. This formiudet is related to the nested Dirichlet process
of [14], which uses a Dirichlet process to partition dataigtoups, and then models each group via a
Dirichlet process mixture. What allows us to distinguishiween the underlying HDP-HMM states is
the structure on this state sequence and the bias towarfdsaswiitions. If the model was free to both
rapidly switch between HDP-HMM states and associate malipaussians with each state, there would
be a considerable amount of posterior uncertainty. Thus, @nly with the tempered HDP-HMM that
we can effectively learn such models.

The generative model is as follows. We augment the HDP-HMaest with a terms;, which indexes
the mixture component of the/” emission density. The state evolution gfis described by the same

Markov process as before:

B ~ GEM(»y)
]
a+ K
2t~ Tz - (57)

For each HDP-HMM state valug, there is a unique stick-breaking density. defining the mixture
weights of thek!” emission density. These state-specific mixture weightsassdciated parameters have

a Dirichlet process prior D&, H). Conditioned org;, the mixture indexs; is generated as:

Y ~ GEM(o)

St~ wzt- (58)

Given the augmented state;, s;), the observation; is then generated by the Gaussian mixture compo-

November 7, 2007 DRAFT



26

nent parameterized b, ,:
Or; ~ H(A)
Y~ F(ezmst)' (59)

Note that both the HDP-HMM state index and mixture componmeéx are allowed to take values in a

countably infinite set. See Fig. 8 for a graphical model of {iocess.

Fig. 8. Graphical model of a tempered HDP-HMM with infinite WSaian mixture observation likelihoods. The model is
as before, but with an added tersn indexing the state-specific mixture component generatingpvationy;. The mixture
component indes; is drawn from thez!" stick-breaking densityp.,, wherev, ~ GEM(c). The parameters;, ; index the
mean and covariance of th&" Gaussian component of thé" mixture density. Thusy; ~ F(6.,.s,).

A. Direct Assignment Sampler

Much of the direct assignment sampler for the tempered HBHwith infinite Gaussian mixture
emissions remains the same as for the regular tempered HDR:$Specifically, the sampling of global
transition density3, number of tables in the actual restauramtsoverride variablesy, and number of
tables in the underlying restaurantsis as presented in Eq. (30)-(35). The difference arises  \we
sample our augmented stdta, s;).

We can write the conditional distribution on the augmentates having marginalized out the transition

densitiest; and mixture component densitigg, as:
p(Zt =k,st =] | RA\ts 8\t7y1:T767 &, 0, R, /\) = p(st =J | z =k, R\ts S\t> Y1.T» O, )‘)
p(Zt =k | Z\tv s\taylzT7ﬁ7O‘7 R, )‘) (60)
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The terms of this distribution, derived in Appendix I-C, ajigen by:

p(Zt =k | Z\t>8\t7y1:T>ﬁ>04> K, )‘) X p(Zt =k | Z\t,ﬁ,()é, K’)
Zp(st | {ST | Rr = kaT 7£ t}va)p(yt | {yT | Rr = k‘,st,T 7é t}7>‘) (61)
p(st =J | t = kaz\tvs\taylzT707 >\) X p(st =7 | {ST | zr =k, 7 # t},O’)

pWe | {yr | 20 = ks = 4,7 # t} ). (62)

The componenp(z; = k | 2\4, 3, a, k) of this pmfis as in Eq. (37) while(s; | {s; | z- = k,7 # t},0)
is simply the Chinese restaurant process for the Dirichtetgss associated with the staie= k. Let
ny; be the number of observations with, = &, s; = j). Then,

n;ft . /
—, je{l,...,K.};
plse=j | {sr | ze = kym £ }0) o { om0 TTTED
g . /

f—t) j—kka

o+n,

(63)

whereK; are the number of currently instantiated mixture compatartthek!” emission density anéyC
represents a new, previously unseen component. The comipene | {y, | z- = k, s = j, 7 #t}, A) is
the observation likelihood af; given an assignmeiit; = k, s; = j) conditioned on all other observations
with this assignment, having marginalized out the paramite. This distribution is further discussed
in Appendix I-C.

The direct assignment sampler blocks the sampling:gfs;) and first draws:; from the pmf defined
by Eq. (61) and ther; from the pmf of Eq. (62), conditioned on the sampled value;oSee Algorithm
3 for an outline of the direct assignment sampler for the g HDP-HMM with infinite Gaussian

mixture emissions.

B. Blocked Sampler

In order to implement a blocked sampling @f..7, s1.7), we once again use the weak limit approxi-
mation to the Dirichlet process. Our derivations in thisteecare similar to those of Sec. V-C. For the
tempered HDP-HMM with infinite Gaussian mixture emissiathe, prior distributions o, m, andyy

are defined as:

8 ~ Dir(y/L...., /L)
T, ~ Dir(af,...,afk +k,...,a0L)

Yy ~ Dir(e/L,...,0/L"), (64)
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Given a previous set of augmented state as&gnn(efﬂis1 (> 1)) and the global transition density
ﬁ(n 1.
1) Set(z1.7,s1.1) = (zﬁ‘;l),sg’:’;l)) andg = =1, For eacht € {1,...,T}, sequentially

a) Decrementi, .., n.,.,.,, andn’ , and removey, from the cached statistics for the
current assignmert;, s;) = (k,7):

(kg Shg) — (kg B g) © e
b) For each of the< currently instantiated HDP-HMM states compute

i) The predictive conditional likelihood for each of thé€/, currently instantiated mixture
components associated with this HDP-HMM state

nh .
fri(ye) = ( & )N(yt§ﬂk,j7zk,j)

o+nj
and for a new mixture componeht

f,g,,;/k (yt)

N(yt7 :&07 20)
o+nj

i) The predictive conditional likelihood of the HDP-HMM a&te without knowledge of the
current mixture component

afs,., +n + ko(k, ze41) il
_ Zt+1 k'Zt+1 ) t+1 / ) ! -
fk(yt) - (aﬂk + nzt,lk) < atng +r ) JZ; ka (yt) + fk,k;c (yt)

for z;_1 # k, otherwise see Appendix I-C. Repeat this procedure for a HBR-HMM
statek with K’ initialized to 0, implying we only consider mixture compcnrhé:’

c) Sample the new augmented state assignrtgnt,) by first samplingz,:

ka Y)0(zt, k) + fr(ye)o (Zt,/;?)-
Then, conditioned on a new as&gnment: k, samples;:
Ky

S Ty @G0, 3) + £ g, () (s, 1),

j=1
If z; = k, then incremen and transform3 as follows. Samplé ~ Beta(1,v) and assign
B «— bB; and By — (1 —b)B;. If s = k., then increment .
d) Incrementn., .., n.,.,,,, andn. . and addy, to the cached statistics for the new
assignmentz, s;) = (k, j):
(A1, Be,j) — (Bokjs Xbeg) © Y
2) Fix (z§ T), s§ }) (z1.7, s1.7)-. If there exists & such thatn,, = 0 andn , = 0, removek and
decrementX. Similarly, if there is a(k, j) such thatngw. = 0 then removej and decremeni;.

3) Sample auxiliary variables:, w, andm as in step 3 of Algorithm 1.

4) Sample the global transition densif{) as in step 4 of Algorithm 1.

Algorithm 3: Direct assignment Rao—Blackwellized Gibbs sampler fortdmpered HDP-HMM with
infinite Gaussian mixture emissions. Hyperparameters neayebampled, according to the formulas in
Appendix V-D, as a final step.
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where L’ is the approximation level for the Gaussian mixture emissidhe posterior distributions are
given by:
B ~ Dir(y/L+ma,...,v/L+m.r)
T Dil’(aﬁl +ng1,. .., 0k + K+ gk, ..., a8 —l—nkL)
Yy ~ Dir(o/L' +njy,...,0/L +nj.). (65)
For this model, the parametéy ; defines the mean and covariance for jHeGaussian mixture com-

ponent of thek** emission distribution. The posterior of this parameteretedmined by the observations

assigned to this component, namely,

Ok ~pO [ {ye | (ze =k, 50 =)}, N). (66)

We now examine how to sample this augmented dtates;). The conditional distribution ofz;, s;)

for the forward-backward procedure is derived as:

p(zt,5¢ | ze—1, 911, 7, ,0) o< p(z | 7o )P(St | Vo) PWi | Ozys )41, (20)- (67)

Since the Markov structure is only on the component of the augmented state, the backward message

my—1(2e—1) from (z, s¢) t0 (2,—1,s¢—1) is solely a function ofz;_;. These messages are given by:

Do 2os, P2 | o )P(St | V2 )P | 02y s )meg10(20), < T
mt,t_l(zt_l) XX (68)

1, t=T+1.

More specifically, since each compongnof the k*" state-specific observation likelihood distribution

is a Gaussian with parametefs, = {u ;, Xk ;}, We have,

Pz =k,si =7 | z—1, 91107, 9,0) o o (B)Yr ()N (e ke gr e j) M1, (k) (69)
L I

mepre(k) = )Y me(@Vi(ON (Yera; i Sie) g2 (i) (70)
=1 =1

mT+1,T(/€) =1 k= 1, ‘e ,L. (71)

Algorithm 4 outlines the blocked-state sampler for the tered HDP-HMM with infinite Gaussian

mixture emissions.
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Given a previous set of state-specific transition densiti#s ) and likelihood mixture weightg)"~ 1,
the global transition densitg("~1), and observation likelihood paramete&té—"):

1) Setw = w1 4 =™ andg = 6"V, Working sequentially backwards in time, for each
t e {T,...,1} calculate messages;; (k) :

a) For eacht € {1,..., L}, initialize messages to
mr1,r(k) =1

b) For eachk € {1,...,L}, compute
L L

my—1(k) = Z Z Tk ()i (ON (Y15 a0, X o) M2, 441 (2)

i=1 (=1
2) Sample augmented state assignménts-, si.7) working sequentially forward in time. Start with
i, = 0, nj; =0, andYy; = 0 for (i,k) € {1,...,L}* and (k,j) € {1,..., L} x {1,..., L'},
a) Foreachk,j)e{1,...,L} x{1,..., L'}, compute the probability
frej () = o, (R)UR (N (Y5 1,55 Xk )My 1,6(K)

b) Sample an augmented state assignnient;):
L U

(z080) ~ > Fr (W2, k)3(s1, 7)

k=1 j=1
c) Incrementn., .., andn, , and addy, to the cached statistics for the new assignment
(22, 8¢) = (k. J):
Vij < Vij © Ut

3) Sample the auxiliary variables, w, andm as in step 3 of Algorithm 1.
4) Update the global transition densifiyby sampling as in step 4 of Algorithm 2.

5) For eachk € {1,...,L}, sample a new transition density, and likelihood mixture weightg:
T~ Dir(aﬂl+nk1,...,aﬂk+ﬁ+nkk,...,aﬂL+nkL)
tYp ~ Dir(oc/L' +njy,...,0/L +n))

a) For eachj € {1,..., L'}, sample the parameters associated with;themixture component
of the k*" emission distribution:

Ocj ~ pO]AVkj)
See Appendix Il for details on resamplirfyg ;.

6) Fix n(") =, ™ = ¢, 80 = 3, ande™ = 6.

Algorithm 4: Blocked-state Gibbs sampler for the tempered HDP-HMM wiifinite Gaussian mixture
emissions. Here, we use an independent Gaussian prior andha and inverse-Wishart (IW) prior on
the covariance (see Appendix I-B). The quanfly ; is a set of statistics for the observations assigned
to augmented stat€k, j) that are necessary for updating the paraméjer = {u j, Xr;}. The ®
operator updates these cached statistics as a new assigammeale. Hyperparameters may be resampled,
according to the formulas in Appendix V-D, as a final step.
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VIl. RESULTS

To analyze the performance of the tempered HDP-HMM as coadpsr the original, we generated
test data and applied the direct assignment and blockedipleato both model variants (i.e. the HDP-
HMM with and without thex term.) The test data sequence is shown in Fig. 5(a) and wasated by
a three-state HMM with 0.97 probability of self-transitiand equally likely transitions to the other two
states. The Gaussian observation likelihood densitieqteahs 50, 0, and -50 and variances 50, 10, and
50, respectively. We ran 100 iterations of each of the Gildmpers with 200 different initializations.
For the blocked-z sampler, we used a truncation level 6t 15, though the sampler learns to use a

strict subset of the pool of available states.

Normalized Hamming Distance
Normalized Hamming Distance
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8ri
3

8
3
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3
8
g
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/

Normalized Hamming Distance

Normalized Hamming Distance
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I

“ ) rsnion © te rsan’ n ©
(€) (d

Fig. 9. Plots of Hamming distance between true and estingtted sequences over 100 iterations for the: (a) blockedrpker

for the tempered HDP-HMM, (b) direct assignment samplettiiertempered HDP-HMM, (c) blocked-z sampler for the origina

HDP-HMM, and (d) direct assignment sampler for the origiH&lP-HMM. These plots show the median (solid blue) a4
and 90*" quantiles (dashed red) from 200 initializations of the stamp

In Fig. 9, we plot the 10, 50, and 90-quantiles of the Hammiistatice between the true and estimated
state sequences over the 100 Gibbs iterations for each dbtinesamplers. To calculate the Hamming
distance, we first map the randomly chosen indices of thenattid state sequence to the set of indices
that maximize the overlap with the true sequence. We do this greedy fashion by starting with the
most frequent state index of the true sequence and findingdtresponding state index of the estimated
sequence with the most overlap. We use this corresponditig stdex to relabel the index of the true

sequence and add it to the list of used indices. We thenétevidh the next most frequent state index. If
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the estimated state sequence has fewer states than thé¢atieiseqjuence, the extra true states are labeled
with one of the remaining unused indices{in, ..., L}.

In Fig. 10, we plot the 10, 50, and 90-quantiles of the loglitkood of the observation sequence
given the estimated set of parametérsr, 2.7, 8, and the hyperparameters. For the direct assignment

samplers, where and@ are integrated out, these parameters are sampled from sterioo distributions

p(m | z1.7, B) andp(0 | zi.7, y1.7), respectively.

8
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Fig. 10. Plots of log-likelihood of the observation sequeigéiven the estimated set of parameters over 100 iteratmrthé:

(a) blocked-z sampler for the tempered HDP-HMM, (b) direstsignment sampler for the tempered HDP-HMM, (c) blocked-z

sampler for the original HDP-HMM, and (d) direct assignmseampler for the original HDP-HMM. These plots show the
median (solid blue) and0** and90*" quantiles (dashed red) from 200 initializations of the stemp

From these plots, we see the performance gain of the blozlszspler for the tempered HDP-HMM
as compared to the other samplers, both in terms of Hammiog @nd estimated model likelihood. As
expected, the tempered HDP-HMM with the sequential, diessignment sampler has the next largest
likelihood of the estimated model (due to avoiding the fastesswitching sequences), but gets stuck
in state sequence assignments that are hard to move away &omonveyed by the flatness of the
Hamming error versus iteration number plot in Fig. 9(b). Egample, the estimated state sequence of
Fig. 7(c) might have similar parameters associated wittestiour and five so that the model likelihood
is in essence the same as if these states were grouped, dgethience has a large error in terms of
Hamming distance and it would take many iterations to movayafrom this assignment. Incorporating

the blocked-z sampler with the original HDP-HMM improves tHamming distance performance relative
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to the sequential, direct assignment sampler for both tiginat and tempered HDP-HMM; however,
the likelihood of the models estimated by both of the origiH®P-HMM samplers are dramatically
worse than those for the tempered HDP-HMM due to poor pammestimates associated with the fast
state-switching assignments (see Fig. 5(c).)

Now that we have established the benefit of the tempered HEIRtHor modeling processes where
the underlying state persists for lengthy periods of time, may analyze extensions of this model to
non-standard emission densities, as discussed in Sec.oMiesE the model of Sec. VI, we generated
data from a two-state HMM, where each state had a two-Gaussigture emission distribution. For
one state, the Gaussian mixture components were defined bypsrie and 10 while the other state’s
components had means -7 and 7. Each Gaussian mixture compua variance 10 and was equally
weighted in the mixture. The choice of these parameter gafuabled each emission distribution to be
sufficiently multimodal while still maintaining significaioverlap in the observation spaces of these two
states. The probability of self-transition was set to 0.Bi8e large probability of self-transition is what
disambiguates this process from one with four states, edttharsingle Gaussian emission distribution.

The resulting observation and true state sequences arenshofig. 11(a) and (b), respectively. In
Fig. 11(c) we plot an estimated state sequence from the samping the tempered HDP-HMM when
constrained to single Gaussian emissions. With such a madglod explanation of the data is to create a
state for each mixture component and then quickly switclween these states. Although not the desired
effect in this scenario, this behavior demonstrates thebiléy of the tempered HDP-HMM: if the best
explanation of the data according to the model is fast saitching, the tempered HDP-HMM sitill

M

"% 10 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 _500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Time Time Time

(@) (b) (©)

Fig. 11. Qualitative plots showing the performance of thagered HDP-HMM with single Gaussian emissions when the data
was generated by an HMM with Gaussian mixture emissionsOfmervation sequence; (b) true HMM state sequence; and (c)
estimated HMM state sequence using the tempered HDP-HMMemd plot (c), we see that since the model is constrained
to single Gaussian emission distribution, the best expilmaf the data is to separate into the components of the s&aus
mixture emissions and quickly switch between this set diesta

allows for this by learning a small bias towards self-tréioas.

10,

o

Observations

True Mode Sequence
Estimated Mode Sequence

Er
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We tested the performance of the tempered HDP-HMM with itdirfGaussian mixture emissions
against that of the tempered HDP-HMM with single Gaussiaisgions. We then compared these results
to those corresponding to the original HDP-HMM (i.e. no biasards self-transitions.) We only present
results from blocked-state sampling since we have seenlda advantages of this method over the
sequential, direct assignment sampler. For both the HDRVHMbrtion of the model and the Dirichlet
process mixture model emissions, we use a truncation ldével-e L’ = 15. The resulting performance,

in terms of the Hamming distance metric, are summarized dn E2.

Normalized Hamming Distance
Normalized Hamming Distance

Normalized Hamming Distance
Normalized Hamming Distance

Fig. 12. Plots of Hamming distance between true and estinstate sequences over 100 iterations of the blocked-state
sampler for the: (a) tempered HDP-HMM with infinite Gaussiaixture emissions, (b) original HDP-HMM with infinite
Gaussian mixture emissions, (c) tempered HDP-HMM with Isir@aussian emissions, and (d) original HDP-HMM with single
Gaussian emissions. These plots show the median (soligl &he10°" and90'" quantiles (dashed red) from 200 initializations
of the sampler.

The results are rather intuitive and can be explained aswsll When the original HDP-HMM is
constrained to single Gaussian emissions, the best exjganef the data is to associate each true
Gaussian mixture component with a separate state and theklygswitch between these states, resulting
in the large Hamming distances of Fig. 12(d). When usingehgpered HDP-HMM with single Gaussian
emissions, the bias towards self-transitions occasipiedlds to more accurate state sequence estimates
by grouping an individual true state’s Gaussian mixture gonents into a single Gaussian with large
variance. This behavior explains why the'" quantile of Fig. 12(c) is lower than that of the original

HDP-HMM. The initial dip of the median and0* quantile is explained by the tempered HDP-HMM
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initially grouping Gaussian mixture components and thesfgrring the split assignment. The original
HDP-HMM with infinite Gaussian mixture emissions has impgrdperformance over either of the models
constrained to single Gaussian emissions. However, theesd HDP-HMM with infinite Gaussian

mixture emissions has by far the best performance due tondwporated bias towards self-transitions

so that fast state-switching is a less preferable explamatf the data.

VIIl. DISCUSSION

We have demonstrated that the original HDP-HMM is undertraited in describing processes where
the underlying state persists for lengthy periods of time.af alternative, we have presented a tempered
HDP-HMM, which allows for efficiently learning represerita&t models of such processes. We have also
extended the HDP-HMM to allow for non-standard emissionsitees approximated by infinite Gaussian
mixtures. We are able to disambiguate such models becaube e¢émpered HDP-HMM's bias towards
self-transitions. We are currently investigating more ligmging datasets such as using the tempered
HDP-HMM for speaker diarization, the problem of partitingi an audio segment into homogeneous

regions corresponding to an unknown number of distinct leprsa

APPENDIX |

PREDICTIVE DISTRIBUTION OF STATE ASSIGNMENTS

In this appendix we derive the predictive distribution faate assignments(z; = k | 2\, y1.7, 3, o, k),
as used by the direct assignment sampler. For these densatie will include the: term of the tempered
HDP-HMM, though the derivations for the original HDP-HMM Ikmw directly by settings = 0. We
derive the desired predictive distribution by considerihg joint distribution over all random variables

in the model and then marginalizing the transition dersitieand parameters:
o=k 2 far) x| T]otm | an) [[oer | 7., )dn (72)
T T
/ TTv0x | ) []pw- | 6-.)d0
0 k T
X p(Zt =k ’ Z\t757a7 ’%)p(yt ’ Yty 2t = k, Z\ta)‘)

The termp(z; = k | 24, 8, a, k), which arises from integration over, is the Chinese restaurant franchise
while p(y: | y\¢, 2=k, 2¢, A) is the observation likelihood of an assignmept= k£ having marginalized
the parameteff,,. These distributions are further examined in the followtiwg sections. We then examine

the predictive distribution for the tempered HDP-HMM wiitifinite Gaussian mixture emission densities.
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A. Chinese Restaurant Franchise

Let 8; = > 32 416k, Where K is the number of currently instantiated states ddt 1 indexes
a potentially new state. Them,; ~ Dir(af,...,a8; + &,...,af;). Marginalizing overr induces a
prior predictive distribution orx; that is a variant of the Chinese restaurant franchise. Gaultrdiffers
from that of the standard Chinese restaurant franchiseusecthe indicator random variableshave a

Markov structure. We analyze this distribution by contirgifrom the integration over in Eq. (72):
s =kl 2nban) o [ ot asn Lo | m)in (73)
T T

x /7r et | mpla =k |7 ) [[0(milasBw) [ pler | m))dn

i T|zr—1=t,7#t,t+1

08 / p(zt—l-l | Wk)p(zt =k | Wzt,l) Hp(ﬂ-i | {ZT | Zr—1= ’L.>T 7é tvt + 1},ﬁ,0[, /{)dﬂ-'
iy ,

i
Let z,_; = j. By marginalization of the transition density;, the proposed state assignment= k is
affected by all other states that were also drawn fromin addition, this proposed assignment affects
the likelihood ofz;, 1, which is now considered to have been drawn fromas dictated by;. We need

to examine two scenariog: = j, in which casez; and z,; are both distributed according to the same
transition density; and # j, where these states are sampled from independent trandgiosities. We
start by considering # 7, that is, an assignment of the state changing frota & at time:

e =k | 2 frank) o / pleess | TPl | {2r | 201 = by # 1.8+ 1}, B, o, k)

Tk

/ plae =k | 1)p(m; | {zr | 21 = jo7 # 1,8+ 1}, B, 0, k)dr;

o plaet | {20 | zro1 = kym # 4,8+ 13, 8,0, k) (74)

p(Zt :k ‘ {Z’T ’ Zr—1 :j77'7ét,t+1}757047/i).

When considering the probability of a self-transition .(ke= j), we have

p(Zt :j ‘ Z\t,ﬂ,a,:‘i) X / p(zt-i-l ‘ Wj)p(Zt :j ‘ ﬂ])p(ﬂ'] ’ {ZT ‘ Zr—1 = k77— 7é t7t+ 1}7/87a7"€)dﬂ—j

i

o< plet =Jozev1 [ {27 | z2rm1 = k7 # 4t + 1} B, k). (75)

These predictive distributions can be derived by standesdlts arising from having placed a Dirichlet

prior on the parameters defining these multinomial obsemsat,. Consider the distribution of a generic
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set of observations generated from a single transitionigens given the hyperparameters 3, andx:
p({ZT | Zr—1 = Z} | ﬁvav K“) = / p(ﬂ-iv {ZT | Zr—1 = Z} | ﬁvav ’i)dﬂ-i

= / p(mi | B, 0, k)p({zr | 2721 =i} | m)dm;

/ w 0B + KO(k, 7)) [ﬁlﬂ_qﬁkﬁ-né(k,i)—l [ﬁl njkdﬂ
[1: D(afBy + ro(k, 7)) ik Z

k=1 k=1
_ IOy aby + wd(k, 1)) p aBr+rd(ki)+nn—1 ;
T D(aBe + K6(k, 1)) /ﬂ kl_Il Tk dm;
_ P raBe + w0k, 1)) [T Db + w0(k, i) + i)
[T T(eB + £6(k, i) (), bk + £6(k, i) + njk)
(

B I'a+ k) I'(afy + k6(k, ) + njk)
- ) 1;[ (76)

I(a+ K+ n; (o + kd(k, 1))
We use Eq. (76) to determine that the first component of EQ. i€74

p({ZT | Rr—1 :j77—§ét+17zt = k} | ﬁ,()é,/{)
p({zT | Zr—1 :jvT #tt—i—l} | ﬁvavli)

T(a+r+n;")T(afy + k405l +1)

I« +nj__t +1) I'(af —I—nj_kt)

p(Zt :k ’ {ZT ‘ Zr—1 :jaT#tat—i_l}wBanK‘)

afy +n:t
= —F. (77)
oa+n;
J-
wheren is the number of transitions from maneuyeto maneuvek not counting the transition from

zi—1 t0 z; or from z; t0 z,4;. Similarly, the second component of Eq. (74) is derived to be

aBy + k(L k) +nyf

z Zr | 21 =k, T £ L+ 1} 68,0,8) =
p(t—l—l‘{r‘ T—1 7& }ﬁ ) a+/€+nlzt

(78)
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wherez, 1 = £. For k = j, the distribution of Eq. (75) reduces to

p({zr | 21 =4} [ B, k)
{zT | Zr_1=17,T #tt—i—l} | ﬁvavli)
D(otr+n; ") D(aBj+rtn; +1) T(aB+n;, +1) 21 = 0,0 4 7
D(atr+n; +2) T(aBj+r+ny)  T(aBetny) ’ t+1 = J5
D(oat+r+n;") TD(afj+r+n; +2)
T(atrtn; '+2) T(af;+rtn;) '

p(Zt :jazt—‘rl | {zT | Zr—1 :j77— 7£ t7t+ 1},ﬁ,0[,/€) = p(

2t41 = J-

(@B +rtn; ) (@Betn;) _ .
(a-l—n-i—n;t—i-l)(oc—i-n—l—n;t)’ Zt+1 _E,E#j7
(af;+r+nt+1)(aB;+r+nt) .
JJ JJ z J—
(atr+n; +1)(atr+n; ") 7’ t+1 = J-

_(aBj+r+ n @B + 3 + (5 +1)6(5,0))

79
(a+r+n ) a+r+n;'+1) (79)
Combining these cases, the prior predictive distributibr,as:
p(Zt =k ’ Z\taﬂaaa "i)
_¢ af:, 1"‘";; Hr6(k,2e41)+6(2e—1,k)6(k,2041)
(af +n." 4 k(21 k) (— ;+ng_‘+n+5(zt,1,k) ) kel,...,K (80)
a?Br 102,44 Ek=K+1

a+kK

B. Observation Likelihoods

We now further examine the observation likelihood term of E£2). The conditional distribution of
the observationy; given an assignment = k£ and given all other observations, having marginalized

out #;,, can be written as follows:

Pyt | Y 2t = Ky 2, A) - X /9 Pl 000 1N I py- | 6k)db
k 7|2, =k, T#t

~ /9 (e | 000Dk | {yr | 20 = ko7 £ £}, \)d6

o Pyt | {yr | 2r =k, 7 # 1}, A). (81)

Note that the sefy. | z. = k, 7 # t} denotes all the observatiops other thany, that were drawn from
the observation likelihood distribution parameterizeddhy

If we consider Gaussian observation likelihoods, the ogaje distribution for the unknown mean
and covariance parameters is the normal-inverse-Wisiwaith we denote byNZW((, 9, v, A). Here,
A ={¢(,v,v,A}. Via conjugacy, the posterior distribution &f, = {ux,>r} given a set of Gaussian
observationsy; ~ N (ux, X5) is distributed as an updated normal-inverse-Wishe@W((, 9,7, A),
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where
C_:C+|{ys|zs:k737ét}|é<+|yk| (82)
v=v+ Y (83)
CI=C0+ > s (84)
yseYk
PA =vA+ >yl + 09" - (90T (85)
yseYk

Marginalizingd, induces a multivariate Student-t predictive distributiony;, which can be approximated

by a moment-matched Gaussian,

(S

p(yt | {yT | Zr = va 7£ t}7C7197 v, A) :N(yh’gv = A) éN(ytaﬂkyik) (86)

((p—d-1)

C. Tempered HDP-HMM with Infinite Gaussian Mixture Emission

In this section we derive the predictive distribution on #neggmented statéz;, s;) of the tempered

HDP-HMM with infinite Gaussian mixture emissions. We use ¢hain rule to write:

p(Zt =k,s¢ =] | z\bs\t?yl:TaﬁaavO-v K, )‘) = p(st =7 | 2z =k, R\ts S\t> Y1.T» O, )‘)

p(Zt =k | z\tv S\tvylzT7ﬁ7O‘> R, )‘) (87)

We can examine each term of this distribution by once agairsidering the joint distribution over all
random variables in the model and then integrating over teegsary parameters. For the conditional

distribution of z; = k£ whennot given s;, this amounts to:

p(zt =k | z\t,S\t7y1;T,ﬁ,a, K, )\) x /ﬂ_ Hp(ﬂj | o, B, /-;) Hp(zT | ﬂzpl)dﬂ o)
j T
Z/ [Ip@i 1 o) []p(s- | =, )du
I :
/OHp(Hi’Z ’ )\) Hp(yT ’ 927787)(10
il p

ocp(zt =k ’ Z\taﬂaaa"i)zp(st ‘ {ST ’ zr =k, T 7& t}aa)p(yt ‘ {yT ’ zr =k, s, 7 7é t}7)‘)

The component(z; = k | z\4, 3, a, k) is as in Eq. (80) while(s; | {s; | z- = k,7 # t},0) is the Chinese

restaurant process for the Dirichlet process associatéd e statez; = k. We similarly derive the
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conditional distribution of an assignmesit= j givenz; = k as:

p(se=7 |z =k, RA\ts S\t; Y1.T, 0, A) o< plse=7j|{sr |2 =k, 7#t},0)

pWe | {yr | 20 = ks = 4,7 # t} ). (89)

The observation likelihood component of these distrimgio(y; | {yr | zr = k, st = j,7 #t},\), is
derived in the same fashion as Eq. (86) where now we only densiie observationg. that are assigned

to HDP-HMM statez, = k and mixture component, = k.

APPENDIXII

NON-CONJUGATE BASE MEASURES AND THEBLOCKED-STATE SAMPLER

Since the blocked-state sampler instantiates the paresweteather than marginalizing them as in the
direct assignment sampler, we can place a non-conjugaterbaasure on the parameter spécelake,
for example, the case of single Gaussian emission dismifisitwhere the parameter space is over the
means and covariances of these distributions. H&rex {ux, 2k }. In this situation, one may place a
Gaussian prioiV (uo, ¥o) on the meanu, and an inverse-Wishart I\, A) prior on the covarianc&j.

At any given iteration of the sampler, there is a set of otet@asY; = {y; | z: = k} with cardinality

|Yx|. The posterior distributions over the mean and covariarecarpeters are:

Ye |k~ W (vpAg, vg) (90)

e | Sk~ N (g, ),

where
v = |Yi|+v
Ay = A+ (g — ) (Y — )
tEYk
S o= (S + YRz
e = Sk(Sg o+ Sk Y )

teYs
The sampler alternates between samplinggiven ¥, and X, given p;, several times before moving on
to the next stage in the sampling algorithm. The equationdtfe tempered HDP-HMM with infinite
Gaussian mixture emissions follows directly by considgiiip ; = {v; | 2 = k, s¢ = j} when resampling

parametely, ; = {ux j, Sk}
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APPENDIX I

HYPERPARAMETERS

In this appendix we expound upon the derivations of the dandil hyperparameter distributions used
for resampling these random variables. The hyperparamefeour model includey, &, v, o, and \,
though\ is considered fixed. Many of these derivations follow digeétom those presented in [5], [1].

We have shown that it is sufficient to parameterize our mogebb- x andp = k/a + k instead
of by a and x independently. This greatly simplifies the resampling afséh hyperparameters. Let us
assume that there atf restaurants in the franchise at a given iteration of the $amps depicted in
Fig. 2(b), the generative model dictates that for each weatd; we haver; ~ GEM(a + «), and a
table assignment is determined for each customet;py- 7;. In total there aren; draws from this
stick-breaking construction over table assignments tieguin m; unique tables. By Eq. (5) and using

the fact that each restaurant is mutually conditionallyejpehdent, we may write:

pla+k|mi,....,mz,ni,...,n5) < pla+r)p(mi,...,mj|a+rKn,...,n5)

J
pla+ k) Hp mj. | a+ K, n;.)

7=1
J
INa+ k)
plo+m) [ ] st mi) e+ m)™ Frm s
1 .
ym. INa+ k)
< pletmesom e ms
J

7j=1
Using the fact that the gamma function has the prop€ity+ 1) = zI'(z) and is related to the beta
function via5(x,y) = I'(z)I'(y)/I'(z + y), we rewrite this distribution as

(a+rK+n;)Ba+k+1,n;)
(a+ )T (n;)

pla+k|mi,....mz,ni,...,n5) < pla+kr)lat+r)™

,’:]u

J 1
= pla+r)(a+r)™ H / O (L — )™y,
i1 0

o} + m
where the second equality arises from the fact that y) = fo t*=1(1 —¢)¥~'dt. We introduce a set of
auxiliary random variables = {ry,...,r;}, where each; € [0,1]. Now, the integration introduced by

the beta function is over the domain of eaghso that we can represent the joint distributioncof-
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andr as
J
pla+r,r|my,...,mjz,ni,....,n5) x pla+k)(a+r)™ H(1 L)7"0'[4%(1_713')7”'_1
J n
at+m. -1 _—(a+k)b J- oFK(1 _ .\ 1
x (a+ k) e H(1+a+f<)Tj (1—r))

Il
—_

J

— (a+ﬁ)a+m —1 —(a+k)b

||’:|g

. s a+/€ n;. —1
g 1-— T
‘o Oé—FI{ ( T])

Here, we have used the fact that we placed a Gafama prior on o + . We add another set of
auxiliary variabless = {s1,..., s}, with eachs; € {0, 1}, to further simplify this distribution. The joint

distribution overa + k, r, ands is given by

pla+k,rys|mi,...,mj,ni,...,n5) x (a+ m)“+m"_1e_(a+“)bjljl(an—#)%jﬁ“(l ;)" -1
Each conditional distribution is as follows:
pla+k]|r,s,mi,...,mj,ny,...,nz5) x (a+ ﬁ)“+m“_1_23":1 sj g (atm)(b=37, logr;)
p(r; |a—l—/{,r\j,s,ml,,...,mJ.,nl,,...,nJ.) x r;‘+“(1—rj)"f-_l
p(sj | a+k,rs\,mi,...,my,ni,...,ny) (oﬁ:m)sj' (91)

We may similarly derive the conditional distribution ¢f The generative model depicted in Fig. 2(b)
dictates tha3 ~ GEM(v) and that each tableconsiders ordering a disty; ~ 3. From Eq. (35), we see
that the sampled value ;. represents the total number of tables in restaujamtere the considered dish
k;; was the served dish;, (i.e. the number of tables with considered dishes that weteoverridden.)
Thus,m_ is the total number oinformativedraws fromg. If K is the number of uniqueerveddishes,
which can be inferred from;.7, then the number of uniqueonsidereddishes at the informative tables

is:
J J
K=Y 1m;>0)=K-Y 1(m;=0andm;; > 0). (92)
7j=1 7j=1

We use the notatiod(A) to represent an indicator random variable that is 1 if thenevieoccurs and
0 otherwise. The only case wheke is not equivalent taK is if every instance of a served digharose
from an override in restaurartand this dish was never considered in any other restaurhat.i§, there

were no informative considerations of dighimplying m ; = 0, while dishj was served in restaurant
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J, implying m;; > 0 so thatj is counted inK. This is equivalent to counting how many dishesad
an informative table consider ordering dighregardless of the restaurant. We may now use Eq. (5) to

form the condition distribution on:

p(v| K,m.) o p(y)p(K |~,m.)

=k ()
o< p(y)s(m ’K)VKr(wm,,)
g(y+m. )B(y+1,m.)
o< p(y)y ST
1

K=1(y +m.) i n' (1 —n)™ " tdn.

As before, we introduce an auxiliary random variahle [0, 1] so that the joint distribution ovey and

n can be written as

p(y.n | K,m.) o p(y)y" Ty +mo)nT(1—n)

m.. —1
o ’7a+[_{_2(’7 + m“)e——y(b—logn)(l _ ,’7)771__—1'
Here, we have used the fact that there is a Gafanba prior on+. The resulting conditional distributions

are:

p(’Y ‘ m, K7 m) XX 7&—}-]?—2(}_}/ + m“)e—’y(b—log n)
x mnGammda + K,b —logn) + (1 — mn)Gamméda + K — 1,b — logn)

p(n|v.K,m.) o« n'(1—n)™ " Betay+1,m.), (93)

wherer,;, = %

The derivation of the conditional distribution an is similar to that ofa + x in that we haveJ
distributions ¢; ~ GEM(c). The state-specific mixture component index is generated; as 1,
implying that we haver; total draws fromy;, one for each occurrence of = j. Let KJ’ be the number
of unique mixture components associated with these drawsr;. Then, after adding auxiliary variables

r’ ands’, the conditional distributions of and these auxiliary variables are:

plo |, Ko Kl ng) o (@) RIS (0R s o)
p(r;-|J,rij,sl,K{_,...,K}_,nl.,...,nJ,) x r;-a(l—r;)"j-_l
n‘. l.
p(s;-|J,r',s'\j,K{_,...,K}_,nl.,...,nJ.) x (7])81. (94)
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In practice, it is useful to alternate between sampling tindliary variables and concentration param-

etersa, v, ando for several iterations before moving to sampling the othaiables of this model.

Finally, we derive the conditional distribution @f We place a Befa,d) prior on p and havem

total draws ofw;; ~ Ber(p), with w_ successes from these draws. Here, each success repretaitssa

considered dish being overridden by the house specialty tising these facts, we have

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]
[10]

[11]

[12]
[13]

[14]

plp|w) o plw ] p)p(p)

m. _w Lle+d) . d—1
x pr(L—=p)™ " s (1= p)
w. I'(e)r(d)
x pterl(1 — pymemwtdl o Betgw, 4 ¢,m.. —w. +d). (95)
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