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I. INTRODUCTION

Many real-world processes, as diverse as speech signals, the human genome, and financial time-series,

can be modeled via a hidden Markov model (HMM). The HMM assumes that observations are generated

by a hidden, discrete-valued Markov process representing the system’sstateevolution. An extension to

the HMM is the switching linear dynamic system (SLDS), whichallows for more complicated dynamics

generating the observations, but still follows the Markov state-switching of the HMM. For both the HMM

and the SLDS, the state sequence’s Markov structure accounts for the temporal persistence of certain

regimes of operation.

Recently, the hierarchical Dirichlet process (HDP) [1] hasbeen applied to the problem of learning

hidden Markov models (HMM) with unknown state space cardinality, and is referred to as a HDP-HMM.

A Dirichlet process is a distribution over random probability measures on infinite parameter spaces. This

process provides a practical, data-driven prior towards models whose complexity grows as more data is

observed. A specific hierarchical layering of these Dirichlet processes results in the HDP. When applied as

a prior on the parameters of an HMM, the Dirichlet process encourages simple models of state dynamics,

but allows additional states to be created as new behaviors are observed. The hierarchical structure allows

for consistent learning of temporal state dependencies. Inaddition, the HDP has a number of properties

that allow for computationally efficient learning algorithms, even on large datasets.

The original HDP-HMM addresses the statistical issue of coping with an unknown and potentially

infinite state space, but allows for learning models with unrealistically rapid dynamics. For many ap-
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plications, the state sequence’s Markov structure is an approximation to a system with more complex

temporal behavior, perhaps better approximated as semi-Markov with some non-exponentially distributed

state duration. Setting a high probability of self-transition is a common approach to modeling states that

persist over lengthy periods of time. One of the main limitations of the original HDP-HMM formulation

is that it cannot be biased towards learning transition densities that favor such self-transitions. This

results in a large sensitivity to noise, since the HDP-HMM can explain the data by rapidly switching

among redundant states. Although the Dirichlet process induces a weak bias towards simple explanations

employing fewer model components, when state-switching probabilities are unconstrained there can be

significant posterior uncertainty in the underlying model.

Existing learning algorithms for HDP-HMMs are based on Markov chain Monte Carlo (MCMC)

methods, such as Gibbs sampling, with an implementation that sequentially samples the state for each

time step [1]. This sequential sampler leads to a slow mixingrate since global assignment changes

are constrained to occur coordinate by coordinate, making it difficult to transition between different

modes of the posterior. Existing HMM algorithms, such as theforward-backward algorithm [2], provide

efficient methods for jointly sampling the entire state sequence conditioned on the observations and model

parameters. While the original MCMC algorithm marginalized out the infinite set of infinite dimensional

transition densities, we explore the use of truncated approximations to the Dirichlet process to make joint

sampling tractable.

In this paper we revisit the HDP-HMM, and develop methods which allow more efficient and effective

learning from realistic time series. In Sec. II, we begin by presenting some of the theoretical background

of Dirichlet processes. Then, in Sec. III, we briefly describe the hierarchical Dirichlet process and, in

Sec. IV, how it relates to learning HMMs. The revised formulation is described in Sec. V while Section

V-C outlines the procedure for the blocked resampling of thestate sequence. In Sec.??, we offer a model

and inference algorithm for an HDP-HMM with non-standard emission distributions. We present results

from simulated datasets in Sec. VII.

II. D IRICHLET PROCESSES

A Dirichlet process defines a distribution over probabilitymeasures on a parameter spaceΘ, which

might be countably or uncountably infinite. This stochasticprocess is uniquely defined by a concentration

parameter,α, and base measure,H, on the parameter spaceΘ; we denote it by DP(α,H). Consider a

random probability measureG ∼ DP(α,H). The Dirichlet process is formally defined by the property
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that for any finite partition1 {A1, . . . , AK} of the parameter spaceΘ,

(G(A1), . . . , G(AK)) ∼ Dir(αH(A1), . . . , αH(AK)). (1)

That is, the measure of a random probability distributionG ∼ DP(α,H) on every finite partition of the

parameter spaceΘ follows a specific Dirichletdistribution. The Dirichlet process was first introduced by

Ferguson [3] using Kolmogorov’s consistency conditions. Amore practically insightful definition of the

Dirichlet process was given by Sethuraman [4]. Consider a probability mass function (pmf){πk}
∞
k=1 on

a countably infinite set, where the discrete probabilities are constructively defined as follows:

β′k ∼ Beta(1, α) k = 1, 2, . . .

πk = β′k

k−1
∏

ℓ=1

(1− β′ℓ) k = 1, 2, . . . . (2)

In effect, we have divided a unit-length stick by the weightsπk. Thekth weight is a random proportion

β′k of the remaining stick after the previous(k − 1) weights have been defined. Thisstick-breaking

constructionis typically denoted byπ ∼ GEM(α). Sethuraman showed that with probability one, a

random drawG ∼ DP (α,H) can be expressed as

G(θ) =

∞
∑

k=1

πkδ(θ − θk) θk ∼ H, k = 1, 2, . . . , (3)

where the notationδ(θ − θk) indicates a Dirac delta atθ = θk.

From this definition, we see that the Dirichlet process actually defines a distribution over discrete

probability measures. The stick-breaking construction also gives us insight into how the concentration

parameterα controls the relative proportion of the mixture weightsπk, and thus determines the model

complexity in terms of the expected number of components with significant probability mass.2

The Dirichlet process has a number of properties which make inference using this nonparametric

prior computationally tractable. Because random probability measures drawn from a Dirichlet process

are discrete, there is a strictly positive probability of multiple observations̄θi ∼ G taking identical values.

For each observation̄θi ∼ G, let zi be an indicator random variable for the unique valuesθk such that

θ̄i = θzi
. Blackwell and MacQueen [6] introduced a Pólya urn representation of the Dirichlet process,

1A partition of a setA is a set of disjoint, non-empty subsets ofA such that every element ofA is contained in exactly one
of these subsets. More formally,{Ak}

K
k=1 is a partition ofA if ∪kAk = A and for eachj 6= k, Ak ∩Aj = ∅.

2If the value ofα is unknown, the model may be augmented with a gamma prior distribution onα, so that the parameter is
learned from the data [5]. See Section V-D.
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which can be equivalently described by the following predictive distribution on these indicator random

variables:

p(zN+1 = z | z1:N , α) =
α

α+N
δ(z, k̃) +

1

α+N

K
∑

k=1

Nkδ(z, k). (4)

Here,Nk is the number of indicator random variables taking the valuek, and k̃ is a previously unseen

value. We use the notationδ(z, k) to indicate the Kronecker delta. This representation can beused to

sample observations from a Dirichlet process without explicitly constructing the countably infinite random

probability measureG ∼ DP(α,H).

The predictive distribution of Eq. (4) is commonly referredto as theChinese restaurant process. The

analogy is as follows. Takēθi to be a customer entering a restaurant with infinitely many tables, each

serving a unique dishθk. Each arriving customer chooses a table, indicated byzi, in proportion to how

many customers are currently sitting at that table. With some positive probability proportional toα, the

customer starts a new, previously unoccupied tablek̃. From the Chinese restaurant process, we see that

the Dirichlet process has a reinforcement property that leads to favoring simpler models.

We have shown that ifzi ∼ π and π ∼ GEM(α), then we can integrate outπ to determine the

predictive likelihood ofzi. Another important distribution is that over the numberK of unique values of

zi drawn fromπ given the total number ofN draws. Whenπ is distributed according to a stick-breaking

construction with concentration parameterα, this distribution is given by [7]:

p(K | N,α) =
Γ(α)

Γ(α+N)
s(N,K)αK , (5)

wheres(n,m) are unsigned Stirling numbers of the first kind.

The Dirichlet process is most commonly used as a prior distribution on the parameters of a mixture

model when the number of mixture components is unknowna priori. Such a model is called aDirichlet

process mixture modeland is depicted by the graphs of Fig.1(a)-(b). The parameterwith which an

observation is associated implicitly partitions or clusters the data. In addition, the Chinese restaurant

process representation indicates that the Dirichlet process provides a prior that makes it more likely to

associate an observation with a parameter to which other observations have already been associated. This

reinforcement property is essential for learning finite, representative mixture models. It can be shown

under mild conditions that if the data are generated by a finite mixture, then the Dirichlet process posterior

is guaranteed to converge (in distribution) to that finite set of mixture parameters [8].

We now describe how the Dirichlet process mixture model can be derived as the limit of a sequence
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(a) (b) (c) (d)

Fig. 1. Dirichlet process (left) and hierarchical Dirichlet process (right) mixture models represented by two graphs.(a) Indicator
variable representation in whichπ ∼ GEM(α), θk ∼ H(λ), zi ∼ π, andyi ∼ f(y | θzi

). (b) Alternative representation with
G ∼ DP(α,H), θ̄i ∼ G, and yi ∼ f(y | θ̄i). (c) Indicator variable representation in whichβ ∼ GEM(γ), πk ∼ DP(α, β),
θk ∼ H(λ), zji ∼ πj , andyji ∼ f(y | θzji

). (d) Alternative representation withG0 ∼ DP(γ,H), Gj ∼ DP(α,G0), θ̄ji ∼ Gj ,
andyji ∼ f(y | θ̄ji). Plate notation is used to compactly represent replicated variables of the graph [9].

of finite mixture models. Let us assume that there areL components to our finite mixture model and we

place a Dirichletdistribution prior on these mixture weights. Our finite mixture model is described by:

π ∼ Dir(α/L, . . . , α/L) zi ∼ π

θk ∼ H(λ) yi ∼ F (θzi
).

(6)

Let GL(θ) =
∑L

k=1 πkδ(θ − θk). Then, it can be shown that for every measurable functionf integrable

with respect to the measureH, this finite distributionGL converges in distribution to a countably infinite

distributionG distributed according to a Dirichletprocess[10], [11]. That is,

∫

θ

f(θ)dGL(θ)
D
→

∫

θ

f(θ)dG(θ), (7)

asL→∞ for G ∼ DP (α,H).

III. H IERARCHICAL DIRICHLET PROCESSES

There are many scenarios in which groups of data are thought to be produced by related, yet unique,

generative processes. For example, take a sensor network monitoring an environment where time-varying

conditions may influence the quality of the data. Data collected under certain conditions should be grouped

and described by a similar, but disparate model from that of other data. In such scenarios we can take a

hierarchical Bayesian approach and place a global Dirichlet process priorDP (α,G0) on the parameter

spaceΘ. We then draw group specific distributionsGj ∼ DP (α,G0), which will be discrete so that

parameters are shared within the group. However, if the basemeasureG0 is absolutely continuous with
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respect to the Lebesgue measure, parameters will not be shared between groups. Only in the case where the

base measureG0 is discrete will there be a strictly positive probability ofthe group specific distributions

having overlapping support (i.e. sharing parameters between groups.) To overcome this difficulty, the base

measureG0 should itself be a random measure distributed according to aDirichlet processDP (γ,H).

This results in what is termed ahierarchical Dirichlet process(HDP) [1] and is depicted by the graphs

of Fig. 1(c)-(d).

We now describe the HDP with a bit more formality. Let(yj1, . . . , yjNj
) be the set of observations in

groupj. We assume there areJ such groups of data. Then, the generative model can be written as:

G0(θ) =
∑∞

k=1 βkδ(θ − θk) β ∼ GEM(γ)

θk ∼ H(λ) k = 1, 2, . . .

Gj(θ) =
∑∞

t=1 π̃jtδ(θ − θ̃jt) π̃j ∼ GEM(α) j = 1, . . . , J

θ̃jt ∼ G0 t = 1, 2, . . .

θ̄ji ∼ Gj yji ∼ F (θ̄ji) j = 1, . . . , J, i = 1, . . . ,Nj .

(8)

See Fig. 1(d).

The Chinese restaurant process analogy of the Dirichlet process can be extended to aChinese restaurant

franchisefor the HDP. The analogy is as follows. There areJ restaurants, each with infinitely many tables.

Each customer is pre-assigned to a given restaurant determined by its groupj. Upon entering thejth

restaurant, a customeryji sits at a tabletji ∼ π̃j. Each table then chooses a dishθ̃jt ∼ G0, or equivalently,

an index for a dishkjt ∼ β. Therefore, customeryji eats dish̄θji = θ̃jtji
= θkjtji

. The generative model

is summarized below and is depicted in the graph of Fig. 2(a):

β ∼ GEM(γ) kjt ∼ β

π̃j ∼ GEM(α) tji ∼ π̃j

θk ∼ H(λ) yji ∼ F (θkjtji
).

(9)

Let ñjt be the number ofcustomersin restaurantj sitting at tablet andmjk be the number oftables

in restaurantj serving dishk. As with the Chinese restaurant process, the stick-breaking densitiesπ̃j
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(a) (b)

Fig. 2. Graph of the (a) Chinese restaurant franchise, and (b) tempered Chinese restaurant franchise. For the Chinese restaurant
franchise, each customer (observation)yji is assigned to a tabletji ∼ π̃j in restaurantj, whereπ̃j ∼ GEM(α). Each tablet
then chooses a global dish indexkjt ∼ β, whereβ ∼ GEM(γ). The likelihood of the observation is given byyji ∼ F (θkjtji

).
For the tempered franchise, there is anactual restaurant serving disheskjt, which may have either arisen from the dishk̄jt

served in theunderlyingrestaurant ifwjt = 0 or from having been overridden by dishj if wjt = 1.

andβ may be marginalized to yield the following predictive distributions:

p(tji | tj1, . . . , tji−1, α) ∝

Tj
∑

t=1

ñjtδ(tji, t) + αδ(tji, t̃j) (10)

p(kjt | k1, k2, . . . , kj−1, kj1, . . . , kjt−1, γ) ∝
K
∑

k=1

m.kδ(kjt, k) + γδ(kjt, k̃), (11)

wherem.k =
∑

j mjk andkj = (kj1, . . . , kjTj
). Here,Tj is the number of currently occupied tables in

restaurantj, andK is the total number of unique dishes being served in the franchise. The variables̃tj

and k̃ represent choosing a currently uninstantiated table or dish, respectively.

Since each distributionGj uses a discrete base measureG0, multiple θ̃jt may take an identical value

θk for multiple unique values oft implying that multiple tables in the same restaurant may be serving

the same dish, as depicted in Fig. 3. We can writeGj as a function of these unique dishes:

Gj(θ) =

∞
∑

k=1

πjkδ(θ − θk), πj ∼ DP(α, β), θk ∼ H, (12)

whereπj now defines a restaurant-specific density over dishes servedrather than over tables with

πjk =
∑

t|kjt=k

π̃jt. (13)

Let zji be the indicator random variable for the unique dish that observationyji eats. That is,zji = kjtji
.
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Fig. 3. Chinese restaurant franchise withJ = 2 restaurants. The currently occupied tables each choose a dish θ̃jt ∼ Gj , where
Gj ∼ DP(α,G0) is a discrete probability measure so that multiple tables may serve the same dish. SinceG1 has overlapping
support withG2, parameters (i.e. dishes) are shared between restaurants.

A third equivalent representation of the generative model is in terms of these indicator random variables:

β ∼ GEM(γ)

πj ∼ DP(α, β) zji ∼ πj

θk ∼ H(λ) yji ∼ F (θzji
),

(14)

and is shown in Fig. 1(c).

As with the Dirichlet process, the HDP mixture model has an interpretation as the limit of a finite

mixture model. In terms of the parameter indicator random variable representation, we write:

β ∼ Dir(γ/L, . . . , γ/L)

πj ∼ Dir(αβ1, . . . , αβL) zji ∼ πj

θk ∼ H yji ∼ F (θzji
).

(15)

As L→∞, this model converges in distribution to that of the HDP mixture model [1].

IV. HDP-HMM

Hierarchical Dirichlet processes can be applied as a prior on the state values of a HMM with unknown

state space cardinality, as described in [1]. Let us denote the state of the Markov chain at timet by zt.

Here, we have intentionally reused the notationz for this random variable for reasons that will become

clear. Assume there are potentially countably infinitely many HMM state values. For each of these HMM

states, there is a countably infinite transition density over the next HMM state. Letπk be the transition

density for HMM statek. Then, the Markov structure on the state sequence dictates that zt ∼ πzt−1
. In

terms of the previous HDP description, we see thatzt−1 specifies the group with whichyt is associated.
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Namely, all observationsyt with zt−1 = j are assigned to groupj sincezt ∼ πj. The current HMM

statezt then determines which of the global parametersθk are used to generate the observationyt. The

HDP-HMM is depicted by the graph in Fig. 4(a).

(a) (b)

Fig. 4. Graph of the (a) HDP-HMM and (b) tempered HDP-HMM. Thestatezt, taking values within a potentially countably
infinite state space, indexes the transition densityπk from which the subsequent statezt+1 is drawn. That is,zt+1 ∼ πzt .
These transition densities have a hierarchical Dirichlet process prior. The HDP-HMM takesπk ∼ DP(α, β) with the global
base measure defined asβ ∼ GEM(γ). The tempered HDP-HMM instead employsπk ∼ DP(α+ κ, βk) with a state-specific
base measureβk = (αβ + κδk)/(α+ κ), which is a deterministic function of the global base measure β ∼ GEM(γ) and the
hyperparametersα andκ. The observation likelihood distributions are defined by the parametersθk so thatyt ∼ F (θzt).

This model can also be described in terms of the Chinese restaurant franchise. We will refer tozt as the

parent andzt+1 as the child. The parent enters a restaurantj determined by its parent (the grandparent),

zt−1 = j. We assume there is a bijective mapping of indicesf : t → ji. The parent then chooses a

table tji ∼ π̃j and that table is served a dish indexed bykjt ∼ β. The index of the dish the parent is

eating,kjtji
= zji = zt, determines the parameter of the parent’s likelihood distribution, θzt

, as well

as the restaurant (or group) of the childzt+1. This analogy is not very intuitive or useful for the basic

HDP-HMM, but will be important in developing the tempered HDP-HMM.

A. Inference for HDP-HMM

In this section we describe one of the three Markov chain Monte Carlo (MCMC) HDP sampling

algorithms presented in [1]. Specifically, we consider the direct assignment Rao-Blackwellized Gibbs

sampler, which is cited as the best-suited to the HDP-HMM application. In the Chinese restaurant

franchise, an observationyji is assigned to a tabletji, and each table is then assigned a dishkjt so

that yji is indirectly associated with parameterθkjtji
. The direct assignment sampler circumvents this

complicated bookkeeping by directly associating an observation yji with a parameter via the indicator
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random variablezji, where in the HDP-HMM we havezt = zji. In this sampler, a set of auxiliary

variablesmjk must be added, as will be discussed subsequently.

Throughout the remainder of the paper, we will use the following notational conventions. Given a

random sequence{x1, x2, . . . , xT }, we use the shorthandx1:t to be the sequence{x1, x2, . . . , xt} and

x\t to be the set{x1, . . . , xt−1, xt+1, . . . , xT }. Also, for random variables with double subindices, such

asxa1a2
, we will usex to denote the entire set of such random variables,{xa1a2

,∀a1, a2}.

To derive the direct assignment sampler, we first assume thatwe sample: table assignments for each

observation,tji; dish assignments for each of these tables,kjt; and the global mixture weights,β. Because

of the properties of the HDP, and more specifically the stick-breaking densities, we are able to marginalize

the group-specific densities̃πj and parametersθk and still have closed-form distributions from which to

sample (since exchangeability implies that we may treat every table and dish as if it were the last,

as in Eq. (11).) The marginalization of these variables is referred to asRao-Blackwellization[12]. The

assumption of havingtji andkjt is a stronger assumption than that of havingzji sincezji can be uniquely

determined fromtji andkjt, though not vice versa. We then proceed to show that directlysamplingzji

instead oftji andkjt is sufficient when a set of auxiliary variables is additionally sampled.

1) Samplingβ: We begin by examining the posterior distribution ofβ. Recall the HDP mixture model

defined in Eq. (8). At any given iteration of the sampler, let us assume that there areK unique dishes

being served and let us consider the finite partition{θ1, θ2, . . . , θK , θk̃
} of the parameter spaceΘ, where

θ
k̃

= Θ\
⋃K

k=1{θk} is the set of all currently unrepresented parameters. By definition of the Dirichlet

process,G0 has the following distribution on this finite partition:

(G0(θ1), . . . , G0(θK), G0(θk̃
)) ∼ Dir(γH(θ1), . . . , γH(θK), γH(θ

k̃
))

∼ Dir(0, . . . , 0, γ), (16)

where we have used the fact thatH is absolutely continuous with respect to the Lebesgue measure.

For every currently instantiated tablet, kjt associates the table-specific dishθ̃jt with one among the

unique set of dishes{θ1, . . . , θK}. We have usedmjk to denote how many of the table-specific dishes in

restaurantj are dishθk. Therefore, we havem.k observations̃θjt ∼ G0 in the franchise that fall within

the single-element partition{θk}. By the properties of the Dirichlet distribution we have,

p((G0(θ1), . . . , G0(θK), G0(θk̃
))|{θ̃jt}, γ) ∝ Dir(m.1, . . . ,m.K , γ). (17)

Since(G0(θ1), . . . , G0(θK), G0(θk̃
)) are by definition equal to(β1, . . . , βK , βk̃

) and from the conditional
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independencies illustrated in Fig. 2, the desired posterior distribution ofβ is

p((β1, . . . , βK , βk̃
) | t,k, y1:T , γ) ∝ Dir(m.1, . . . ,m.K , γ). (18)

From the above, we see that{m.k}
K
k=1 is a set of sufficient statistics for re-samplingβ defined on this

partition.

2) Samplingzt: We now determine the posterior distribution ofzt:

p(zt = k | z\t, y1:T , β, α, λ) ∝ p(zt = k | z\t, β, α)p(yt | y\t, zt = k, z\t, λ) (19)

The properties of the Dirichlet process dictate that on the finite partition{1, . . . ,K, k̃} we have the

following form for the group-specific transition densities:

p(πj | α, β) ∝ Dir(αβ1, . . . , αβK , αβk̃
). (20)

We use the above definition ofπj and the Dirichlet distribution’s conjugacy to the multinomial observa-

tions zt to marginalizeπj and derive the following conditional distribution over thestates assignments:

p(zt = k | z\t, β, α) ∝











(αβk + n−t
zt−1k

)(
αβzt+1

+n−t

kzt+1
+δ(zt−1,k)δ(k,zt+1)

α+n−t

k. +δ(zt−1,k)
) k ∈ 1, . . . ,K

αβ
k̃
βzt+1

k = k̃.

(21)

For a detailed derivation, see Appendix I-A. The notationnjk represents the number of Markov chain

transitions from statej to k, which can be computed fromz1:T . Furthermore, we usenj. to indicate the

number of transitions fromj to any other state (i.e.nj. =
∑

k njk) andn−t
jk the number of transitions

from statej to k not counting the transition fromzt−1 to zt or from zt to zt+1. Let zt−1 = j and

zt+1 = ℓ. The intuition behind this distribution is that we choose a state k with prior probability as a

function of how many times we have seen otherj to k andk to ℓ transitions. Note that there is a minor

dependency on whether either or both of these transitions correspond to a self-transition (i.e.k = j or

k = ℓ.)

The conditional distribution of the observationyt given an assignmentzt = k and given all other

observationsyτ , having marginalized outθk, can be written as follows:

p(yt | y\t, zt = k, z\t, λ) ∝

∫

θk

p(yt | θk)p(θk | {yτ | zτ = k, τ 6= t}, λ)dθk. (22)

Note that the set{yτ | zτ = k, τ 6= t} denotes all the observationsyτ other thanyt that were drawn

from the observation likelihood distribution parameterized by θk. By placing a conjugate prior on the
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parameter space, there is a closed form distribution for this marginal likelihood. Further details may be

found in Appendix I-B.

From the above conditional distributions forβ andzt, we see that the only effect oftji andkjt is via

mjk, the number of tables serving dishk in restaurantj. Thus, it is sufficient to samplemjk instead of

tji andkjt, when given the state indexzt.

3) Samplingmjk: Having the state index assignmentsz1:T effectively partitions the data (customers)

into both restaurants and dishes, though the table assignments are unknown. For example,zt−1 = j and

zt = k tells us that customeryt is in restaurantj and eating dishk, though there may be multiple tables

serving this dish so that the customer’s table cannot be disambiguated. Thus, samplingmjk is in effect

equivalent to sampling table assignments for each customerafter knowing the dish assignment. This

conditional distribution given by:

p(tji = t | kjt = k, t−ji,k−jt, y1:T , β, α) ∝ p(tji | tj1, . . . , tji−1, tji+1, . . . , tjTj
, α)p(kjt = k | β)

∝







ñ−ji
jt , t ∈ {1, . . . , Tj};

αβk, t = t̃j .
(23)

Here, ñ−ji
jt is the number of customers sitting at tablet in restaurantj, not counting customeryji.

Similarly, t−ji are the table assignments for all customers exceptyji andk−jt are the dish assignments

for all tables except tablet in restaurantj. The form of this distribution implies that a customer’s table

assignment conditioned on a dish assignmentk follows a Dirichlet process with concentration parameter

αβk. That is,

tji | kjtji
= k, t−ji,k−jtji , y1:T , β, α ∼ π̃

′, π̃′ ∼ GEM(αβk).

Then, Eq. (5) provides the form for the density over the number of unique components (i.e. tables)

generated by samplingnjk times from this conditional stick-breaking density:

p(mjk = m | njk, β, α) =
Γ(αβk)

Γ(αβk + njk)
s(njk,m)(αβk)m. (24)

In terms of the Chinese restaurant franchise, the number of transitions from statej to k, njk, is the total

number of customers in restaurantj eating dishk (i.e. njk =
∑

t|kjt=k ñjt.) For largenjk, it is often

more efficient to samplemjk by simulating the table assignments of the Chinese restaurant, as described

by Eq. (23), rather than having to compute a large array of Stirling numbers. See Algorithm 1 for an

outline of the HDP-HMM direct assignment Gibbs sampler.
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V. TEMPEREDHDP-HMM

For the sake of argument, let us assume that we have continuous observations of our discrete state

space, such as generated by a Gaussian likelihood distribution. Let us also assume that the state of

the HMM typically persists over a period of time. In such scenarios, the unconstrained nature of the

HDP-HMM transition probabilities obscures the learning procedure and results in a sensitivity to the

within-state variations in the observations. This sensitivity is especially pronounced when the degree of

the state-specific variation is an unknown parameter of the model. For example, with Gaussian likelihoods

parameterized by unknown means and covariances, the sampler may divide the observations generated

from a single state into two states with slightly different expected means, each with small expected

covariances, and then quickly switch between these two states. The HDP-HMM reinforces this assignment

since the predictive distribution of state transitions dictates that if the system is in one state at a given

time, it is likely to be in the other state at the next time stepbased on having already seen many of these

transitions. This scenario is depicted in Fig. 5.
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Fig. 5. Qualitative plots showing the sensitivity of the original HDP-HMM direct assignment sampler to variations in the
observations. (a) Observation sequence; (b) true HMM statesequence; and (c) estimated HMM state sequence after 100 iterations
of the Gibbs sampler. In plot (c), we see that individual truestates are divided into multiple estimated states, each with high
probability of switching to one of the others.

Although the MCMC sampler is guaranteed to converge to the true posterior distribution, many fast

state-switching sequences have large posterior probability in the standard HDP-HMM, thus slowing the

rate at which the sampler explores the entire sequence space. The true state sequence might have only

marginally larger posterior probability than these other explanations of the observations. Furthermore,

when observations are high-dimensional, this fragmentation of data into redundant states may reduce

predictive performance. For scenarios where the HMM is actually approximating a semi-Markov process,

one would like to be able to incorporate the fact that slow state-switching is preferable to fast state-

switching. That is, the probability of a self-transition should be biased towards larger values. To this end,
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we modify the standard HDP-HMM as follows:

β ∼ GEM(γ)

πj ∼ DP

(

α+ κ,
αβ + κδj
α+ κ

)

, (25)

where (αβ + κδj) indicates that an amountκ is added to thejth component ofαβ. Now, each state-

specific transition density has a unique base measure with anadditional weight, determined byκ, on a

transition to that given state. See Fig. 4(b).

The concept behind thisκ parameter is reminiscent of the self-transition bias parameter in the infinite

HMM [13]. The infinite HMM employs a two-level urn model. The top-level process places a probability

on transitions to existing states in proportion to how many times these transitions have been seen, with

an added bias towards a self-transition even if this has not previously occurred. With some remaining

probability an oracle is called, representing the second-level urn. This oracle chooses an existing state

in proportion to how many times the oracle previously chose that state, regardless of the state transition

involved, or chooses a previously unvisited state. The oracle is included so that newly instantiated states

may be visited from all currently instantiated states. In [13], only a heuristic approximation to a Gibbs

sampling algorithm was presented for inference in this model. The full connection between the infinite

HMM and the HDP formulation, as well as developing a globallyconsistent inference algorithm, was

made in [1]. However, in the HDP-HMM formulation of [1], there was no mention of the self-transition

bias parameter.

To better understand the form of Eq. (25), it is useful to return to the formal definition of the Dirichlet

process. Consider a finite partition(Z1, . . . , ZK) of the positive integersZ+. Then

(πj(Z1), . . . , πj(ZK)) ∼ Dir(αβ(Z1) + κδj(Z1), . . . , αβ(ZK) + κδj(ZK)) (26)

so thatκ is only added to the Dirichlet parameter of the arbitrarily small partition containingj, which

corresponds to a self-transition.

We will refer to this model as thetemperedHDP-HMM.

A. Chinese Restaurant Franchises with Loyal Customers

We further abuse the analogy of the Chinese restaurants by extending it to the tempered HDP-HMM,

where we now have a franchise of restaurants that each have a loyal set of customers. Each restaurant

in the franchise has a specialty dish with the same index as that of the restaurant. Although this dish is
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also served in other restaurants, it is more popular in the dish’s namesake restaurant. We can see this

increased popularity in the specialty dish from the fact that

kjt ∼
αβ + κδj
α+ κ

. (27)

Noting thatzt = zji = kjtji
and zt+1 ∼ πzt

, we see that children are more likely to eat in the same

restaurant as their parent and, in turn, more likely to eat the restaurant’s specialty dish. This develops

family loyalty to a given restaurant in the franchise. However, if the parent chooses a dish that is not the

house specialty, the child will then go to the restaurant where this dish is the specialty and will in turn

be more likely to eat this dish, too. One might say that for thetempered HDP-HMM, the children have

similar tastebuds to their parents and will always go the restaurant that prepares their parent’s dish best.

Often, this keeps many generations eating in the same restaurant.

The inference algorithm, which is derived in Sec. V-B, is simplified if we introduce a set of auxiliary

random variables̄kjt andwjt as follows:

k̄jt ∼ β

wjt ∼ Ber

(

κ

α+ κ

)

(28)

kjt =







k̄jt, wjt = 0;

j, wjt = 1,

where Ber(p) represents the Bernoulli distribution withp the probability of success. We will describe this

formulation in terms of anunderlyingand anactual restaurant. Theunderlyingrestaurant corresponds

to the process of choosing a dish without taking the restaurant’s specialty into consideration (i.e. the

original Chinese restaurant franchise.) With some probability, the considered decision to order a given

dish is overridden (perhaps by a waiter’s suggestion) and the table is served the specialty dish. The

dishes the waiters actually serve the tables correspond to theactual restaurant. This generative process is

depicted in Fig. 6(a). We refer tōkjt as theconsidereddish index andwjt as theoverridevariable. Our

inference algorithm, described in Sec. V-B, will aim to infer these variables conditioned on knowledge

of the serveddisheskjt. For example, if the served dish of tablet in restaurantj is indexed byj, the

house specialty, the origin of this dish may either have beenfrom considerinḡkjt = j or having been

overridden bywjt = 1. See Fig. 6(b).

This formulation is equivalent to the original formulation, which can be clearly seen if we rewrite the
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(a) Generative (b) Inference

Fig. 6. (a) Generative model of the dish indicesk̄jt of underlying restaurant (top) being converted to indiceskjt in the actual
restaurant (bottom) via override variableswjt. (b) Inference perspective of trying to infer̄kjt andwjt given kjt. If kjt 6= j,
then the override variablewjt is automatically0 and the underlying restaurant serves dishk̄jt = kjt, as indicated by the jagged
arrow. If the actual restaurantj serves dishkjt = j then this could have arisen from the considered dishk̄jt being overridden
(wjt = 1) or not (wjt = 0). These scenarios are indicated by the dashed arrow. If the considered dish was not overridden, then
the considered dish is alsōkjt = kjt = j. However, if the considered dish was overridden, then that dish k̄jt could have taken
any value, as denoted by the question mark.

base measure as:

kjt ∼
K
∑

k=1

α

α+ κ
βkδ(kjt, k) +

α

α+ κ
β

k̃
δ(kjt, k̃) +

κ

α+ κ
δ(kjt, j). (29)

The graphical model of the Chinese restaurant franchise forthe tempered HDP-HMM is shown in

Fig. 2(b). Although not explicitly present in this graph, the tempered HDP-HMM still has a Markov

structure on the indicator random variableszt, which based on the value of their parentzt−1 are mapped to

a group-specific indexji. As with the HDP-HMM, during the MCMC inference procedure the assignments

of observations to groups is dynamically changing with the sampled value of the parent indicator random

variable.

B. Direct Assignment Method for the Tempered HDP-HMM

In this section, we derive the tempered HDP-HMM direct assignment Gibbs sampler. Throughout

this section, we will refer to the random variables in the graph of Fig. 2(b). As before, let us begin

by assuming that we sample all the assignment random variables of the Chinese restaurant franchise.

In the tempered HDP-HMM, this now includes: table assignments for each customer,tji; served dish

assignments for each table,kjt; considered dish assignments,k̄jt; and dish override variables,wjt. We

still sample the global weights,β, as well. We then show, as we did for the HDP-HMM, that we can

rely solely on sampling the state variableszt instead of assignment variablestji, kjt and k̄jt if we add

auxiliary variables to our sampler.
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1) Samplingβ: Previously, we derived that the number of tablesmjk was a set of sufficient statistics

for samplingβ. Now, sincek̄jt is drawn fromβ, we have

p(β | t,k, k̄,w, y1:T , γ) ∝ p(β | γ)
∏

p(k̄jt | β)

∝ Dir(m̄.1, m̄.2, . . . , m̄.K , γ), (30)

wherem̄jk represents the number of tables that considered ordering a dish k.

2) Jointly Samplingmjk, wjt, and m̄jk: The auxiliary variablesmjk, wjt, and m̄jk can be jointly

sampled given the state sequencez1:T and global densityβ. The joint conditional density can be

decomposed as follows:

p(m,w, m̄ | z1:T , β, α, κ) = p(m̄ |m,w, z1:T , β, α, κ)p(w |m, z1:T , β, α, κ)p(m | z1:T , β, α, κ) (31)

We start by examiningp(m | z1:T , β, α, κ), wheremjk is the number of tables withserveddish

k. This distribution is derived as in the original HDP-HMM by using Eq. (5). However, we now have

concentration parameterα+ κ and base measure(αβ + κδj)/(α + κ) so that

p(mjk = m | njk, β, α, κ) =
Γ(αβk + κδ(j, k))

Γ(αβk + κδ(j, k) + njk)
s(njk,m)(αβk + κδ(j, k))m. (32)

Note that this distribution only differs from that of Eq. (24) whenj = k.

We now derive the conditional distributionp(w | m, z1:T , β) over the override variableswjt. The

table countsmjk inform us that for each tablet ∈ Tjk, where |Tjk| = mjk, the dish assignment is

kjt = k. Thus, we can equivalently examine the distributionp(wjt | kjt, β) over each override variable

independently since

p(w |m, z1:T , β, α, κ) = p(w | k, β, α, κ) =
∏

j,t

p(wjt | kjt, β, α, κ). (33)

Note that we only need to consider the tablest with served dishkjt = j, corresponding to that restaurant’s

specialty, since these are the tables where the considered dish k̄jt may have been overridden viawjt = 1.

For all other tables, we can automatically deduce thatwjt = 0.

For the tables withkjt = j, we start by assuming we know the considered dish indexk̄jt, from which

inference of the override parameter is trivial. We then marginalize over all possible values of this index.
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If we defineρ = κ
α+κ

to be the prior probability thatwjt = 1, then

p(wjt | kjt = j, β, ρ) =

K
∑

k̄jt=1

p(k̄jt, wjt | kjt = j, β) + p(k̄jt = k̃, wjt | kjt = j, β)

∝
K
∑

k̄jt=1

p(kjt = j | k̄jt, wjt)p(k̄jt | β)p(wjt | ρ)

+p(kjt = j | k̄jt = k̃, wjt)p(k̄jt = k̃ | β)p(wjt | ρ)

∝







βj(1− ρ), wjt = 0;

ρ, wjt = 1.
(34)

The above distribution implies that having observed a served dishkjt = j makes it more likely that the

considered dish̄kjt was overridden via choosingwjt = 1 than the prior suggests. This is justified by the

fact that ifwjt = 1, the considered dish̄kjt could have taken any value and the served dish would still be

kjt = j. The only other explanation of the observationkjt = j is that the dish was not overridden, namely

wjt = 0 occurring with prior probability(1− ρ), and the table considered a dish̄kjt = j, occurring with

probability βj . These events are independent resulting in the above distribution.

Let Tjj = {t|kjt = j}. For each tablet ∈ Tjj, that is, each table served dishj in the actual restaurant

j, we independently draw a sample ofwjt from the above distribution. Thus, in total we drawmjj i.i.d.

samples ofwjt, with the total number of dish overrides in restaurantj given bywj. =
∑

twjt. The sum

of these Bernoulli random variables results in a binomial random variable.

Givenmjk for all j andk andwjt for each of these instantiated tables, we can now deterministically

computem̄jk, the number of tables that considered ordering dishk in the underlyingrestaurantj. Any

table that was overridden is an uninformative observation for the posterior ofm̄jk so that

m̄jk =







mjk, j 6= k;

mjj − wj., j = k.
(35)

Note that we are able to subtract off the sum of the override variables within a restaurant,wj., since the

only timewjt = 1 is if table t is served dishj.

3) Samplingzt: Finally, we need the predictive distribution ofzt for the tempered HDP-HMM. We

first note that the prior distribution ofπj is now

πj ∼ Dir(αβ1, . . . , αβj + κ, . . . , αβ
k̃
). (36)
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Using this tempered group-specific transition density, onecan re-derive the predictive distribution ofzt

to be:

p(zt = k | z\t, β, α, κ)

∝















(αβk + n−t
zt−1k

+ κδ(zt−1, k))

(

αβzt+1
+n−t

kzt+1
+κδ(k,zt+1)+δ(zt−1,k)δ(k,zt+1)

α+n−t

k. +κ+δ(zt−1,k)

)

k ∈ 1, . . . ,K

α2βk̃βzt+1

α+κ
k = k̃

(37)

See Appendix I-A for a complete derivation. The resulting tempered HDP-HMM direct assignment Gibbs

sampler is outlined in Algorithm 1.

C. Exploiting the HMM Structure

The tempered HDP-HMM reduces the posterior uncertainty caused by fast state-switching explanations

of the data; however, the bias towards self-transitions introduces a mixing rate problem for the MCMC

sampler. Specifically, two continuous periods of observations of a given state that are separated in time

may be individually grouped into separate states (see Fig. 7.) If this occurs, the high probability of self-

transition within each state makes it challenging for the sequential sampler to group those two examples

into a single state. In this section, we consider a method of leveraging the Markov structure of the

HDP-HMM to mitigate this problem.

0 50 100 150 200 250 300 350 400
−80

−60

−40

−20

0

20

40

60

80

O
bs

er
va

tio
n 

S
eq

ue
nc

e

Time
0 50 100 150 200 250 300 350 400

0

1

2

3

4

5

6

Time

T
ru

e 
M

od
e 

S
eq

ue
nc

e

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

Time

E
st

im
at

ed
 M

od
e 

S
eq

ue
nc

e
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Fig. 7. Qualitative plots showing the sequential Gibbs sampler splitting two temporally separated examples of the sametrue
state into two states. (a) Observation sequence; (b) true HMM state sequence; (c) estimated HMM state sequence for a given
iteration of the Gibbs sampler. In plot (c), we see that a single true state was divided into two estimated states, each with high
probability of self-transition.

A variant of the HMM forward-backward procedure [2] allows us to jointly sample the state sequence

z1:T given the observation sequencey1:T , transitions densitiesπj, and model parametersθk. With the

sequential sampler, we were not exploiting the simple Markov structure of the graphical model. Note,
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Given a previous set of state assignmentsz
(n−1)
1:T and the global transition densityβ(n−1):

1) Setz1:T = z
(n−1)
1:T andβ = β(n−1). For eacht ∈ {1, . . . , T}, sequentially

a) Decrementnzt−1zt
andnztzt+1

and removeyt from the cached statistics for the current
assignmentzt = k:

(µ̂k, Σ̂k)← (µ̂k, Σ̂k)⊖ yt

b) For each of theK currently instantiated states, determine the predictive likelihood

fk(yt) = (αβk + nzt−1k)

(

αβzt+1
+ nkzt+1

+ κδ(k, zt+1)

α+ nk. + κ

)

N (yt; µ̂k, Σ̂k)

for zt−1 6= k, otherwise see Eq. (37). Also determine likelihoodf
k̃
(yt) of a new statẽk.

c) Sample the new state assignmentzt:

zt ∼
K
∑

k=1

fk(yt)δ(zt, k) + fk̃(yt)δ(zt, k̃)

If zt = k̃, then incrementK and transformβ as follows. Sampleb ∼ Beta(1, γ) and assign
βK ← bβ

k̃
andβ

k̃
← (1− b)β

k̃
.

d) Incrementnzt−1zt
andnztzt+1

and addyt to the cached statistics for the new assignment
zt = k:

(µ̂k, Σ̂k)← (µ̂k, Σ̂k)⊕ yt

2) Fix z(n)
1:T = z1:T . If there exists aj such thatnj. = 0 andn.j = 0, removej and decrementK.

3) Sample auxiliary variablesm, w, andm̄ as follows:

a) For each(j, k) ∈ {1, . . . ,K}2, defineJjk = {τ | zτ−1 = j, zτ = k}. Setmjk = 0 andn = 0
and for eachτ ∈ Jjk, sample

x ∼ Ber

(

αβk + κδ(j, k)

n+ αβk + κδ(j, k)

)

Incrementn, and if x = 1 incrementmjk.

b) For eachj ∈ {1, . . . ,K}, sample the number of override variables in restaurantj:

wj. ∼ Binomial

(

mjj,
ρ

ρ+ βj(1− ρ)

)

,

Set the number of informative tables in restaurantj considering dishk to:

m̄jk =

{

mjk, j 6= k;
mjj − wj., j = k.

4) Sample the global transition distribution from
β(n) ∼ Dir(m̄.1, . . . , m̄.K , γ)

Algorithm 1: Direct assignment Rao–Blackwellized Gibbs sampler for thetempered HDP-HMM. The
algorithm for the HDP-HMM follows directly by settingκ = 0. Here, we assume Gaussian observations
with a normal-inverse-Wishart prior on the parameters of these distributions (see Appendix I-B). The⊕
and⊖ operators update cached mean and covariance statistics as assignments are added or removed from
a given component. Hyperparameters may be resampled, according to the formulas in Appendix V-D, as
a final step.
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however, that in order to take advantage of this procedure, we must sample the transition densities and

model parameters, which were previously integrated out.

To sample the transition densities in practice, we must somehow approximate these theoretically

countably infinite distributions. One approach is to terminate the stick-breaking construction after some

portion of the stick has already been broken and assign the remaining weight to a single component.

This approximation is referred to as thetruncated Dirichlet process. Another method is to consider the

degreeL weak limit approximationto the Dirichlet process,

GEML(α) , Dir(α/L, . . . , α/L), (38)

whereL is a number that exceeds the total number of expected HMM states. Note that both of these

approximations, which are presented and compared in [10], [11], encourage learning models with fewer

thanL components while allowing the generation of new components, upper bounded byL, as new data

is observed. We choose to use the second approximation because of its simplicity and computational

efficiency.

The weak limit approximation to the Dirichlet process givesus the following form for the prior

distribution on the global weightsβ:

β ∼ Dir(γ/L, . . . , γ/L). (39)

On this partition, the prior distribution over the transition densities are Dirichlet with parametrization:

πj ∼ Dir(αβ1, . . . , αβj + κ, . . . , αβL). (40)

The posterior distributions are then given by:

β ∼ Dir(γ/L+ m̄.1, . . . , γ/L+ m̄.L)

πj ∼ Dir(αβ1 + nj1, . . . , αβj + κ+ njj, . . . , αβL + njL). (41)

Depending on the form of the observation likelihood distribution and prior distribution on the parameters

θk of this likelihood, we sample our model parameters, one for each currently instantiated state, from

the updated posterior distribution:

θj ∼ p(θ | {yt | zt = j}, λ) (42)

Now that we are samplingθj directly rather than marginalizing these parameters as in the direct assign-
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ment sampler, we can use a non-conjugate base measure on the parameter spaceΘ (see Appendix II.)

To derive the forward-backward procedure for jointly sampling z1:T given y1:T , we first note that the

chain rule and Markov structure allows us to decompose the joint distribution as follows:

p(z1:T | y1:T ,π,θ) = p(zT | zT−1, y1:T ,π,θ)p(zT−1 | zT−2, y1:T ,π,θ)

. . . p(z2 | z1, y1:T ,π,θ)p(z1 | y1:T ,π,θ).

Thus, we may first samplez1 from p(z1 | y1:T ,π, β,θ), then condition on this value to samplez2 from

p(z2 | z1, y1:T ,π,θ), and so on. The conditional distribution ofz1 is derived as:

p(z1 | y1:T ,π,θ) ∝ p(z1)p(y1 | θz1
)
∑

z2:T

∏

t

p(zt | πzt−1
)p(yt | θzt

)

∝ p(z1)p(y1 | θz1
)
∑

z2

p(z2 | πz1
)p(y2 | θz2

)m3,2(z2)

∝ p(z1)p(y1 | θz1
)m2,1(z1), (43)

wheremt,t−1(zt−1) is the backward message passed fromzt to zt−1 and for an HMM is given by:

mt,t−1(zt−1) ∝







∑

zt
p(zt | πzt−1

)p(yt | θzt
)mt+1,t(zt), t ≤ T ;

1, t = T + 1;
(44)

∝ p(yt:T | zt−1,π,θ).

The general conditional distribution ofzt is:

p(zt | zt−1, y1:T ,π,θ) ∝ p(zt | πzt−1
)p(yt | θzt

)mt+1,t(zt). (45)

If the kth state-specific observation likelihood distribution is Gaussian with meanµk and covariance

Σk, then the above distributions are given by:

p(zt = i | zt−1, y1:T ,π,θ) ∝ πzt−1
(i)N (yt;µi,Σi)mt+1,t(i) (46)

mt+1,t(i) =

L
∑

j=1

πi(j)N (yt+1;µj ,Σj)mt+2,t+1(j) (47)

mT+1,T (i) = 1 i = 1, . . . , L. (48)

The Gibbs sampler using blocked re-sampling ofz1:T is outlined in Algorithm 2.
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Given a previous set of state-specific transition densitiesπ(n−1), the global transition densityβ(n−1),
and observation likelihood parametersθ(n−1):

1) Setπ = π(n−1) andθ = θ(n−1). Working sequentially backwards in time, for each
t ∈ {T, . . . , 1} calculate messagesmt,t−1(k) :

a) For eachk ∈ {1, . . . , L}, initialize messages to
mT+1,T (k) = 1

b) For eachk ∈ {1, . . . , L}, compute

mt,t−1(k) =

L
∑

j=1

πk(j)N (yt;µj ,Σj)mt+1,t(j)

2) Sample state assignmentsz1:T working sequentially forward in time, starting withnjk = 0 and
Yk = ∅ for each(j, k) ∈ {1, . . . , L}2:

a) For eachk ∈ {1, . . . , L}, compute the probability

fk(yt) = πzt−1
(k)N (yt;µk,Σk)mt+1,t(k)

b) Sample a state assignmentzt:

zt ∼
L
∑

k=1

fk(yt)δ(zt, k)

c) Incrementnzt−1zt
and addyt to the cached statistics for the new assignmentzt = k:

Yk ← Yk ⊕ yt

3) Sample the auxiliary variablesm, w, andm̄ as in step 3 of Algorithm 1.

4) Update the global transition density by sampling
β ∼ Dir(γ/L+ m̄.1, . . . , γ/L+ m̄.K)

5) For eachk ∈ {1, . . . , L}, sample a new transition density and observation likelihood parameters
based on the sampled state assignments

πk ∼ Dir(αβ1 + nk1, . . . , αβk + κ+ nkk, . . . , αβL + nkL)

θk ∼ p(θ | λ,Yk)

See Appendix II for details on resamplingθk.

6) Fix π(n) = π, β(n) = β, andθ(n) = θ.

Algorithm 2: Blocked-z Gibbs sampler for the tempered HDP-HMM. The algorithm for the HDP-HMM
follows directly by settingκ = 0. Here, we assume Gaussian observations with an independentGaussian
prior on the mean and inverse-Wishart (IW) prior on the covariance (see Appendix I-B). The quantity
Yk is a set of statistics for the observations assigned to statek that are necessary for updating the
parameterθk = {µk,Σk}. The⊕ operator updates these cached statistics as a new assignment is made.
Hyperparameters may be resampled, according to the formulas in Appendix V-D, as a final step.
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D. Hyperparameter Re-Sampling

In the discussion thus far, we have assumed that the hyperparameter values are known. However, one

may place a prior over these parameters and sample them as well. The sampling equations for the HDP-

HMM can be found in [1]. Our derivation of the tempered sampling equations roughly follows that that

of the original HDP-HMM, the details of which can be found in Appendix III.

Since we have the deterministic relationships

α = (1− ρ)(α+ κ)

κ = ρ(α+ κ), (49)

we can treatρ andα+ κ as our hyperparameters and sample these values instead of sampling α andκ

directly. This greatly simplifies the inference procedure as we will see below.

If we place a Beta(c, d) prior onρ, the posterior distribution given samples ofwjt is simply an updated

beta distribution:

p(ρ | w) ∝ ρ
P

J
j=1

wj.+c−1(1− ρ)m..−
P

J
j=1

wj.+d−1 ∝ Beta(
J
∑

j=1

wj. + c,m.. −
J
∑

j=1

wj. + d), (50)

wherem.. =
∑

km.k is the total number of tables in theactual franchise. Here,m.. represents the

number of draws ofwjt ∼ Ber(ρ) and
∑

j wj. the number of Bernoulli successes.

When given the total number of tables in theactual franchise,m.., the posterior distribution of the

tempered concentration parameterα+ κ follows the same distribution as that ofα in the original HDP-

HMM with auxiliary variablesrj andsj:

p(α+ κ | r, s,m) ∝ (α+ κ)a−1+m..−
P

J

j=1
sje−(α+κ)(b−

P

J

j=1
log rj) (51)

p(rj | α+ κ, nj.) ∝ r
(α+κ)
j (1− rj)

nj.−1 ∝ Beta(α+ κ+ 1, nj.) (52)

p(sj | α+ κ, nj.) ∝

(

nj.

α+ κ

)sj

(53)

Similarly, the posterior distribution ofγ is the same as in the original HDP-HMM formulation if we

now use the total number of tables in theunderlying franchise,m̄.., and the number of unique dishes

considered, K̄, along with auxiliary variableη:

p(γ | η, K̄, m̄..) ∝ πm̄Gamma(a+ K̄, b− log η) + (1− πm̄)Gamma(a+ K̄ − 1, b− log η) (54)

p(η | γ, K̄) ∝ ηγ(1− η)m̄..−1 ∝ Beta(γ + 1, m̄..), (55)
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where,

πm̄ =
a+ K̄ − 1

m̄..(b− log η)
. (56)

VI. T EMPEREDHDP-HMM WITH NON-STANDARD EMISSION DENSITIES

With the tempered HDP-HMM, we may now examine more complicated emission densities. So far, we

have assumed that the state-conditional emission distribution was a simple parametric distribution such

as a Gaussian. Often, however, the underlying state processwe aim to capture may be better described as

generating observations from some multimodal or otherwisemore general emission distribution. We

approximate each of these state-specific non-standard emission distributions by an infinite Gaussian

mixture model with a Dirichlet process prior. This formulation is related to the nested Dirichlet process

of [14], which uses a Dirichlet process to partition data into groups, and then models each group via a

Dirichlet process mixture. What allows us to distinguish between the underlying HDP-HMM states is

the structure on this state sequence and the bias towards self-transitions. If the model was free to both

rapidly switch between HDP-HMM states and associate multiple Gaussians with each state, there would

be a considerable amount of posterior uncertainty. Thus, itis only with the tempered HDP-HMM that

we can effectively learn such models.

The generative model is as follows. We augment the HDP-HMM statezt with a termst, which indexes

the mixture component of thezth
t emission density. The state evolution ofzt is described by the same

Markov process as before:

β ∼ GEM(γ)

πk ∼ DP(α+ κ,
αβ + κδk
α+ κ

)

zt ∼ πzt−1
. (57)

For each HDP-HMM state valuek, there is a unique stick-breaking densityψk defining the mixture

weights of thekth emission density. These state-specific mixture weights andassociated parameters have

a Dirichlet process prior DP(σ,H). Conditioned onzt, the mixture indexst is generated as:

ψk ∼ GEM(σ)

st ∼ ψzt
. (58)

Given the augmented state(zt, st), the observationyt is then generated by the Gaussian mixture compo-
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nent parameterized byθzt,st
:

θk,j ∼ H(λ)

yt ∼ F (θzt,st
). (59)

Note that both the HDP-HMM state index and mixture componentindex are allowed to take values in a

countably infinite set. See Fig. 8 for a graphical model of this process.

Fig. 8. Graphical model of a tempered HDP-HMM with infinite Gaussian mixture observation likelihoods. The model is
as before, but with an added termst indexing the state-specific mixture component generating observationyt. The mixture
component indexst is drawn from thezth

t stick-breaking densityψzt , whereψk ∼ GEM(σ). The parametersθk,j index the
mean and covariance of thejth Gaussian component of thekth mixture density. Thus,yt ∼ F (θzt,st).

A. Direct Assignment Sampler

Much of the direct assignment sampler for the tempered HDP-HMM with infinite Gaussian mixture

emissions remains the same as for the regular tempered HDP-HMM. Specifically, the sampling of global

transition densityβ, number of tables in the actual restaurantsm, override variablesw, and number of

tables in the underlying restaurantsm̄ is as presented in Eq. (30)-(35). The difference arises in how we

sample our augmented state(zt, st).

We can write the conditional distribution on the augmented state, having marginalized out the transition

densitiesπk and mixture component densitiesψk, as:

p(zt = k, st = j | z\t, s\t, y1:T , β, α, σ, κ, λ) = p(st = j | zt = k, z\t, s\t, y1:T , σ, λ)

p(zt = k | z\t, s\t, y1:T , β, α, κ, λ). (60)
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The terms of this distribution, derived in Appendix I-C, aregiven by:

p(zt = k | z\t, s\t, y1:T , β, α, κ, λ) ∝ p(zt = k | z\t, β, α, κ)

∑

st

p(st | {sτ | zτ = k, τ 6= t}, σ)p(yt | {yτ | zτ = k, st, τ 6= t}, λ) (61)

p(st = j | zt = k, z\t, s\t, y1:T , σ, λ) ∝ p(st = j | {sτ | zτ = k, τ 6= t}, σ)

p(yt | {yτ | zτ = k, st = j, τ 6= t}, λ). (62)

The componentp(zt = k | z\t, β, α, κ) of this pmf is as in Eq. (37) whilep(st | {sτ | zτ = k, τ 6= t}, σ)

is simply the Chinese restaurant process for the Dirichlet process associated with the statezt = k. Let

n′kj be the number of observations with(zτ = k, sτ = j). Then,

p(st = j | {sτ | zτ = k, τ 6= t}, σ) ∝











n
′
−t

kj

σ+n
′
−t

k.

, j ∈ {1, . . . ,K ′
k};

σ

σ+n
′
−t

k.

, j = k̃′k,
(63)

whereK ′
k are the number of currently instantiated mixture components for thekth emission density and̃k′k

represents a new, previously unseen component. The component p(yt | {yτ | zτ = k, st = j, τ 6= t}, λ) is

the observation likelihood ofyt given an assignment(zt = k, st = j) conditioned on all other observations

with this assignment, having marginalized out the parameter θk,j. This distribution is further discussed

in Appendix I-C.

The direct assignment sampler blocks the sampling of(zt, st) and first drawszt from the pmf defined

by Eq. (61) and thenst from the pmf of Eq. (62), conditioned on the sampled value ofzt. See Algorithm

3 for an outline of the direct assignment sampler for the tempered HDP-HMM with infinite Gaussian

mixture emissions.

B. Blocked Sampler

In order to implement a blocked sampling of(z1:T , s1:T ), we once again use the weak limit approxi-

mation to the Dirichlet process. Our derivations in this section are similar to those of Sec. V-C. For the

tempered HDP-HMM with infinite Gaussian mixture emissions,the prior distributions onβ, πk, andψk

are defined as:

β ∼ Dir(γ/L, . . . , γ/L)

πk ∼ Dir(αβ1, . . . , αβk + κ, . . . , αβL)

ψk ∼ Dir(σ/L′, . . . , σ/L′), (64)
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Given a previous set of augmented state assignments(z
(n−1)
1:T , s

(n−1)
1:T ) and the global transition density

β(n−1):

1) Set(z1:T , s1:T ) = (z
(n−1)
1:T , s

(n−1)
1:T ) andβ = β(n−1). For eacht ∈ {1, . . . , T}, sequentially

a) Decrementnzt−1zt
, nztzt+1

, andn′ztst
and removeyt from the cached statistics for the

current assignment(zt, st) = (k, j):

(µ̂k,j, Σ̂k,j)← (µ̂k,j, Σ̂k,j)⊖ yt

b) For each of theK currently instantiated HDP-HMM states compute

i) The predictive conditional likelihood for each of theK ′
k currently instantiated mixture

components associated with this HDP-HMM state

f ′k,j(yt) =

(

n′kj

σ + n′k.

)

N (yt; µ̂k,j, Σ̂k,j)

and for a new mixture componentk̃′k
f ′

k,k̃′

k

(yt) =
σ

σ + n′k.

N (yt; µ̂0, Σ̂0).

ii) The predictive conditional likelihood of the HDP-HMM state without knowledge of the
current mixture component

fk(yt) = (αβk + nzt−1k)

(

αβzt+1
+ nkzt+1

+ κδ(k, zt+1)

α+ nk. + κ

)





K′

k
∑

j=1

f ′k,j(yt) + f ′
k,k̃′

k

(yt)





for zt−1 6= k, otherwise see Appendix I-C. Repeat this procedure for a newHDP-HMM
statek̃ with K ′

k̃
initialized to 0, implying we only consider mixture component k̃′

k̃
.

c) Sample the new augmented state assignment(zt, st) by first samplingzt:

zt ∼
K
∑

k=1

fk(yt)δ(zt, k) + f
k̃
(yt)δ(zt, k̃).

Then, conditioned on a new assignmentzt = k, samplest:

st ∼

K′

k
∑

j=1

f ′k,j(yt)δ(st, j) + f ′
k,k̃′

k

(yt)δ(st, k̃
′
k).

If zt = k̃, then incrementK and transformβ as follows. Sampleb ∼ Beta(1, γ) and assign
βK ← bβ

k̃
andβ

k̃
← (1− b)β

k̃
. If st = k̃′zt

, then incrementK ′
zt

.

d) Incrementnzt−1zt
, nztzt+1

, andn′ztst
and addyt to the cached statistics for the new

assignment(zt, st) = (k, j):

(µ̂k,j, Σ̂k,j)← (µ̂k,j, Σ̂k,j)⊕ yt

2) Fix (z
(n)
1:T , s

(n)
1:T ) = (z1:T , s1:T ). If there exists ak such thatnk. = 0 andn.k = 0, removek and

decrementK. Similarly, if there is a(k, j) such thatn′kj = 0 then removej and decrementK ′
k.

3) Sample auxiliary variablesm, w, andm̄ as in step 3 of Algorithm 1.

4) Sample the global transition densityβ(n) as in step 4 of Algorithm 1.

Algorithm 3: Direct assignment Rao–Blackwellized Gibbs sampler for thetempered HDP-HMM with
infinite Gaussian mixture emissions. Hyperparameters may be resampled, according to the formulas in
Appendix V-D, as a final step.
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whereL′ is the approximation level for the Gaussian mixture emissions. The posterior distributions are

given by:

β ∼ Dir(γ/L+ m̄.1, . . . , γ/L+ m̄.L)

πk ∼ Dir(αβ1 + nk1, . . . , αβk + κ+ nkk, . . . , αβL + nkL)

ψk ∼ Dir(σ/L′ + n′k1, . . . , σ/L
′ + n′kL′). (65)

For this model, the parameterθk,j defines the mean and covariance for thejth Gaussian mixture com-

ponent of thekth emission distribution. The posterior of this parameter is determined by the observations

assigned to this component, namely,

θk,j ∼ p(θ | {yt | (zt = k, st = j)}, λ). (66)

We now examine how to sample this augmented state(zt, st). The conditional distribution of(zt, st)

for the forward-backward procedure is derived as:

p(zt, st | zt−1, y1:T ,π,ψ,θ) ∝ p(zt | πzt−1
)p(st | ψzt

)p(yt | θzt,st
)mt+1,t(zt). (67)

Since the Markov structure is only on thezt component of the augmented state, the backward message

mt,t−1(zt−1) from (zt, st) to (zt−1, st−1) is solely a function ofzt−1. These messages are given by:

mt,t−1(zt−1) ∝







∑

zt

∑

st
p(zt | πzt−1

)p(st | ψzt
)p(yt | θzt,st

)mt+1,t(zt), t ≤ T ;

1, t = T + 1.
(68)

More specifically, since each componentj of the kth state-specific observation likelihood distribution

is a Gaussian with parametersθj,k = {µk,j,Σk,j}, we have,

p(zt = k, st = j | zt−1, y1:T ,π,ψ,θ) ∝ πzt−1
(k)ψk(j)N (yt;µk,j,Σk,j)mt+1,t(k) (69)

mt+1,t(k) =
L
∑

i=1

L′

∑

ℓ=1

πk(i)ψi(ℓ)N (yt+1;µi,ℓ,Σi,ℓ)mt+2,t+1(i) (70)

mT+1,T (k) = 1 k = 1, . . . , L. (71)

Algorithm 4 outlines the blocked-state sampler for the tempered HDP-HMM with infinite Gaussian

mixture emissions.
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Given a previous set of state-specific transition densitiesπ(n−1) and likelihood mixture weightsψ(n−1),
the global transition densityβ(n−1), and observation likelihood parametersθ(n−1):

1) Setπ = π(n−1), ψ = ψ(n−1) andθ = θ(n−1). Working sequentially backwards in time, for each
t ∈ {T, . . . , 1} calculate messagesmt,t−1(k) :

a) For eachk ∈ {1, . . . , L}, initialize messages to

mT+1,T (k) = 1

b) For eachk ∈ {1, . . . , L}, compute

mt,t−1(k) =

L
∑

i=1

L′

∑

ℓ=1

πk(i)ψi(ℓ)N (yt+1;µi,ℓ,Σi,ℓ)mt+2,t+1(i)

2) Sample augmented state assignments(z1:T , s1:T ) working sequentially forward in time. Start with
nik = 0, n′kj = 0, andYk,j = ∅ for (i, k) ∈ {1, . . . , L}2 and(k, j) ∈ {1, . . . , L} × {1, . . . , L′}.

a) For each(k, j) ∈ {1, . . . , L} × {1, . . . , L′}, compute the probability

fk,j(yt) = πzt−1
(k)ψk(j)N (yt;µk,j,Σk,j)mt+1,t(k)

b) Sample an augmented state assignment(zt, st):

(zt, st) ∼
L
∑

k=1

L′

∑

j=1

fk,j(yt)δ(zt, k)δ(st, j)

c) Incrementnzt−1zt
andn′ztst

and addyt to the cached statistics for the new assignment
(zt, st) = (k, j):

Yk,j ← Yk,j ⊕ yt

3) Sample the auxiliary variablesm, w, andm̄ as in step 3 of Algorithm 1.

4) Update the global transition densityβ by sampling as in step 4 of Algorithm 2.

5) For eachk ∈ {1, . . . , L}, sample a new transition densityπk and likelihood mixture weightsψk:

πk ∼ Dir(αβ1 + nk1, . . . , αβk + κ+ nkk, . . . , αβL + nkL)

ψk ∼ Dir(σ/L′ + n′k1, . . . , σ/L
′ + n′kL′)

a) For eachj ∈ {1, . . . , L′}, sample the parameters associated with thejth mixture component
of the kth emission distribution:

θk,j ∼ p(θ | λ,Yk,j)

See Appendix II for details on resamplingθk,j.

6) Fix π(n) = π, ψ(n) = ψ, β(n) = β, andθ(n) = θ.

Algorithm 4: Blocked-state Gibbs sampler for the tempered HDP-HMM with infinite Gaussian mixture
emissions. Here, we use an independent Gaussian prior on themean and inverse-Wishart (IW) prior on
the covariance (see Appendix I-B). The quantityYk,j is a set of statistics for the observations assigned
to augmented state(k, j) that are necessary for updating the parameterθk,j = {µk,j,Σk,j}. The ⊕
operator updates these cached statistics as a new assignment is made. Hyperparameters may be resampled,
according to the formulas in Appendix V-D, as a final step.
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VII. R ESULTS

To analyze the performance of the tempered HDP-HMM as compared to the original, we generated

test data and applied the direct assignment and blocked-z sampler to both model variants (i.e. the HDP-

HMM with and without theκ term.) The test data sequence is shown in Fig. 5(a) and was generated by

a three-state HMM with 0.97 probability of self-transitionand equally likely transitions to the other two

states. The Gaussian observation likelihood densities hadmeans 50, 0, and -50 and variances 50, 10, and

50, respectively. We ran 100 iterations of each of the Gibbs samplers with 200 different initializations.

For the blocked-z sampler, we used a truncation level ofL = 15, though the sampler learns to use a

strict subset of the pool of available states.
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Fig. 9. Plots of Hamming distance between true and estimatedstate sequences over 100 iterations for the: (a) blocked-z sampler
for the tempered HDP-HMM, (b) direct assignment sampler forthe tempered HDP-HMM, (c) blocked-z sampler for the original
HDP-HMM, and (d) direct assignment sampler for the originalHDP-HMM. These plots show the median (solid blue) and10th

and90th quantiles (dashed red) from 200 initializations of the sampler.

In Fig. 9, we plot the 10, 50, and 90-quantiles of the Hamming distance between the true and estimated

state sequences over the 100 Gibbs iterations for each of thefour samplers. To calculate the Hamming

distance, we first map the randomly chosen indices of the estimated state sequence to the set of indices

that maximize the overlap with the true sequence. We do this in a greedy fashion by starting with the

most frequent state index of the true sequence and finding thecorresponding state index of the estimated

sequence with the most overlap. We use this corresponding state index to relabel the index of the true

sequence and add it to the list of used indices. We then iterate with the next most frequent state index. If
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the estimated state sequence has fewer states than the true state sequence, the extra true states are labeled

with one of the remaining unused indices in{1, . . . , L}.

In Fig. 10, we plot the 10, 50, and 90-quantiles of the log-likelihood of the observation sequence

given the estimated set of parametersθ, π, z1:T , β, and the hyperparameters. For the direct assignment

samplers, whereπ andθ are integrated out, these parameters are sampled from the posterior distributions

p(π | z1:T , β) andp(θ | z1:T , y1:T ), respectively.
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Fig. 10. Plots of log-likelihood of the observation sequence given the estimated set of parameters over 100 iterations for the:
(a) blocked-z sampler for the tempered HDP-HMM, (b) direct assignment sampler for the tempered HDP-HMM, (c) blocked-z
sampler for the original HDP-HMM, and (d) direct assignmentsampler for the original HDP-HMM. These plots show the
median (solid blue) and10th and90th quantiles (dashed red) from 200 initializations of the sampler.

From these plots, we see the performance gain of the blocked-z sampler for the tempered HDP-HMM

as compared to the other samplers, both in terms of Hamming error and estimated model likelihood. As

expected, the tempered HDP-HMM with the sequential, directassignment sampler has the next largest

likelihood of the estimated model (due to avoiding the fast state-switching sequences), but gets stuck

in state sequence assignments that are hard to move away from, as conveyed by the flatness of the

Hamming error versus iteration number plot in Fig. 9(b). Forexample, the estimated state sequence of

Fig. 7(c) might have similar parameters associated with states four and five so that the model likelihood

is in essence the same as if these states were grouped, but this sequence has a large error in terms of

Hamming distance and it would take many iterations to move away from this assignment. Incorporating

the blocked-z sampler with the original HDP-HMM improves the Hamming distance performance relative
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to the sequential, direct assignment sampler for both the original and tempered HDP-HMM; however,

the likelihood of the models estimated by both of the original HDP-HMM samplers are dramatically

worse than those for the tempered HDP-HMM due to poor parameter estimates associated with the fast

state-switching assignments (see Fig. 5(c).)

Now that we have established the benefit of the tempered HDP-HMM for modeling processes where

the underlying state persists for lengthy periods of time, we may analyze extensions of this model to

non-standard emission densities, as discussed in Sec. VI. To test the model of Sec. VI, we generated

data from a two-state HMM, where each state had a two-Gaussian mixture emission distribution. For

one state, the Gaussian mixture components were defined by means 0 and 10 while the other state’s

components had means -7 and 7. Each Gaussian mixture component had variance 10 and was equally

weighted in the mixture. The choice of these parameter values enabled each emission distribution to be

sufficiently multimodal while still maintaining significant overlap in the observation spaces of these two

states. The probability of self-transition was set to 0.98.The large probability of self-transition is what

disambiguates this process from one with four states, each with a single Gaussian emission distribution.

The resulting observation and true state sequences are shown in Fig. 11(a) and (b), respectively. In

Fig. 11(c) we plot an estimated state sequence from the sampler using the tempered HDP-HMM when

constrained to single Gaussian emissions. With such a model, a good explanation of the data is to create a

state for each mixture component and then quickly switch between these states. Although not the desired

effect in this scenario, this behavior demonstrates the flexibility of the tempered HDP-HMM: if the best

explanation of the data according to the model is fast state-switching, the tempered HDP-HMM still

allows for this by learning a small bias towards self-transitions.
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Fig. 11. Qualitative plots showing the performance of the tempered HDP-HMM with single Gaussian emissions when the data
was generated by an HMM with Gaussian mixture emissions. (a)Observation sequence; (b) true HMM state sequence; and (c)
estimated HMM state sequence using the tempered HDP-HMM model. In plot (c), we see that since the model is constrained
to single Gaussian emission distribution, the best explanation of the data is to separate into the components of the Gaussian
mixture emissions and quickly switch between this set of states.
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We tested the performance of the tempered HDP-HMM with infinite Gaussian mixture emissions

against that of the tempered HDP-HMM with single Gaussian emissions. We then compared these results

to those corresponding to the original HDP-HMM (i.e. no biastowards self-transitions.) We only present

results from blocked-state sampling since we have seen the clear advantages of this method over the

sequential, direct assignment sampler. For both the HDP-HMM portion of the model and the Dirichlet

process mixture model emissions, we use a truncation level of L = L′ = 15. The resulting performance,

in terms of the Hamming distance metric, are summarized in Fig. 12.
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Fig. 12. Plots of Hamming distance between true and estimated state sequences over 100 iterations of the blocked-state
sampler for the: (a) tempered HDP-HMM with infinite Gaussianmixture emissions, (b) original HDP-HMM with infinite
Gaussian mixture emissions, (c) tempered HDP-HMM with single Gaussian emissions, and (d) original HDP-HMM with single
Gaussian emissions. These plots show the median (solid blue) and10th and90th quantiles (dashed red) from 200 initializations
of the sampler.

The results are rather intuitive and can be explained as follows. When the original HDP-HMM is

constrained to single Gaussian emissions, the best explanation of the data is to associate each true

Gaussian mixture component with a separate state and then quickly switch between these states, resulting

in the large Hamming distances of Fig. 12(d). When using the tempered HDP-HMM with single Gaussian

emissions, the bias towards self-transitions occasionally leads to more accurate state sequence estimates

by grouping an individual true state’s Gaussian mixture components into a single Gaussian with large

variance. This behavior explains why the10th quantile of Fig. 12(c) is lower than that of the original

HDP-HMM. The initial dip of the median and10th quantile is explained by the tempered HDP-HMM
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initially grouping Gaussian mixture components and then preferring the split assignment. The original

HDP-HMM with infinite Gaussian mixture emissions has improved performance over either of the models

constrained to single Gaussian emissions. However, the tempered HDP-HMM with infinite Gaussian

mixture emissions has by far the best performance due to the incorporated bias towards self-transitions

so that fast state-switching is a less preferable explanation of the data.

VIII. D ISCUSSION

We have demonstrated that the original HDP-HMM is underconstrained in describing processes where

the underlying state persists for lengthy periods of time. As an alternative, we have presented a tempered

HDP-HMM, which allows for efficiently learning representative models of such processes. We have also

extended the HDP-HMM to allow for non-standard emission densities approximated by infinite Gaussian

mixtures. We are able to disambiguate such models because ofthe tempered HDP-HMM’s bias towards

self-transitions. We are currently investigating more challenging datasets such as using the tempered

HDP-HMM for speaker diarization, the problem of partitioning an audio segment into homogeneous

regions corresponding to an unknown number of distinct speakers.

APPENDIX I

PREDICTIVE DISTRIBUTION OF STATE ASSIGNMENTS

In this appendix we derive the predictive distribution for state assignments,p(zt = k | z\t, y1:T , β, α, κ),

as used by the direct assignment sampler. For these derivations we will include theκ term of the tempered

HDP-HMM, though the derivations for the original HDP-HMM follow directly by settingκ = 0. We

derive the desired predictive distribution by consideringthe joint distribution over all random variables

in the model and then marginalizing the transition densities π and parametersθ:

p(zt = k | z\t, y1:T , β, α, κ) ∝

∫

π

∏

i

p(πi | α, β, κ)
∏

τ

p(zτ | πzτ−1
)dπ (72)

∫

θ

∏

k

p(θk | λ)
∏

τ

p(yτ | θzτ
)dθ

∝ p(zt = k | z\t, β, α, κ)p(yt | y\t, zt = k, z\t, λ)

The termp(zt = k | z\t, β, α, κ), which arises from integration overπ, is the Chinese restaurant franchise

while p(yt | y\t, zt=k, z\t, λ) is the observation likelihood of an assignmentzt = k having marginalized

the parameterθk. These distributions are further examined in the followingtwo sections. We then examine

the predictive distribution for the tempered HDP-HMM with infinite Gaussian mixture emission densities.
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A. Chinese Restaurant Franchise

Let β
k̃

=
∑∞

k=K+1 βk, whereK is the number of currently instantiated states andK + 1 indexes

a potentially new state. Then,πj ∼ Dir(αβ1, . . . , αβj + κ, . . . , αβ
k̃
). Marginalizing overπ induces a

prior predictive distribution onzt that is a variant of the Chinese restaurant franchise. Our result differs

from that of the standard Chinese restaurant franchise because the indicator random variableszt have a

Markov structure. We analyze this distribution by continuing from the integration overπ in Eq. (72):

p(zt = k | z\t, β, α, κ) ∝

∫

π

∏

i

p(πi | α, β, κ)
∏

τ

p(zτ | πzτ−1
)dπ (73)

∝

∫

π
p(zt+1 | πk)p(zt = k | πzt−1

)
∏

i

(p(πi | α, β, κ)
∏

τ |zτ−1=i,τ 6=t,t+1

p(zτ | πi))dπ

∝

∫

π
p(zt+1 | πk)p(zt = k | πzt−1

)
∏

i

p(πi | {zτ | zτ−1 = i, τ 6= t, t+ 1}, β, α, κ)dπ.

Let zt−1 = j. By marginalization of the transition densityπj, the proposed state assignmentzt = k is

affected by all other states that were also drawn fromπj. In addition, this proposed assignment affects

the likelihood ofzt+1, which is now considered to have been drawn fromπk, as dictated byzt. We need

to examine two scenarios:k = j, in which casezt andzt+1 are both distributed according to the same

transition density; andk 6= j, where these states are sampled from independent transition densities. We

start by consideringk 6= j, that is, an assignment of the state changing fromj to k at time t:

p(zt = k | z\t, β, α, κ) ∝

∫

πk

p(zt+1 | πk)p(πk | {zτ | zτ−1 = k, τ 6= t, t+ 1}, β, α, κ)dπk

∫

πj

p(zt = k | πj)p(πj | {zτ | zτ−1 = j, τ 6= t, t+ 1}, β, α, κ)dπj

∝ p(zt+1 | {zτ | zτ−1 = k, τ 6= t, t+ 1}, β, α, κ) (74)

p(zt = k | {zτ | zτ−1 = j, τ 6= t, t+ 1}, β, α, κ).

When considering the probability of a self-transition (i.e. k = j), we have

p(zt = j | z\t, β, α, κ) ∝

∫

πj

p(zt+1 | πj)p(zt = j | πj)p(πj | {zτ | zτ−1 = k, τ 6= t, t+ 1}, β, α, κ)dπj

∝ p(zt = j, zt+1 | {zτ | zτ−1 = k, τ 6= t, t+ 1}, β, α, κ). (75)

These predictive distributions can be derived by standard results arising from having placed a Dirichlet

prior on the parameters defining these multinomial observationszτ . Consider the distribution of a generic
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set of observations generated from a single transition density πi given the hyperparametersα, β, andκ:

p({zτ | zτ−1 = i} | β, α, κ) =

∫

πi

p(πi, {zτ | zτ−1 = i} | β, α, κ)dπi

=

∫

πi

p(πi | β, α, κ)p({zτ | zτ−1 = i} | πi)dπi

=

∫

πi

Γ(
∑

k αβk + κδ(k, i))
∏

k Γ(αβk + κδ(k, i))

K+1
∏

k=1

π
αβk+κδ(k,i)−1
jk

K+1
∏

k=1

π
njk

jk dπi

=
Γ(
∑

k αβk + κδ(k, i))
∏

k Γ(αβk + κδ(k, i))

∫

πi

K+1
∏

k=1

π
αβk+κδ(k,i)+njk−1
jk dπi

=
Γ(
∑

k αβk + κδ(k, i))
∏

k Γ(αβk + κδ(k, i))

∏

k Γ(αβk + κδ(k, i) + njk)

Γ(
∑

k αβk + κδ(k, i) + njk)

=
Γ(α+ κ)

Γ(α+ κ+ ni.)

∏

k

Γ(αβk + κδ(k, i) + njk)

Γ(αβk + κδ(k, i))
. (76)

We use Eq. (76) to determine that the first component of Eq. (74) is

p(zt = k | {zτ | zτ−1 = j, τ 6= t, t+ 1}, β, α, κ) =
p({zτ | zτ−1 = j, τ 6= t+ 1, zt = k} | β, α, κ)

p({zτ | zτ−1 = j, τ 6= t, t+ 1} | β, α, κ)

=
Γ(α+ κ+ n−t

j. )

Γ(α+ n−t
j. + 1)

Γ(αβk + κ+ n−t
jk + 1)

Γ(αβk + n−t
jk )

=
αβk + n−t

jk

α+ n−t
j.

. (77)

wheren−t
jk is the number of transitions from maneuverj to maneuverk not counting the transition from

zt−1 to zt or from zt to zt+1. Similarly, the second component of Eq. (74) is derived to be

p(zt+1 | {zτ | zτ−1 = k, τ 6= t, t+ 1}, β, α, κ) =
αβℓ + κδ(ℓ, k) + n−t

kl

α+ κ+ n−t
k.

, (78)
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wherezt+1 = ℓ. For k = j, the distribution of Eq. (75) reduces to

p(zt = j, zt+1 | {zτ | zτ−1 = j, τ 6= t, t+ 1}, β, α, κ) =
p({zτ | zτ−1 = j} | β, α, κ)

p({zτ | zτ−1 = j, τ 6= t, t+ 1} | β, α, κ)

=











Γ(α+κ+n−t
j. )

Γ(α+κ+n−t
j. +2)

Γ(αβj+κ+n−t
jj +1)

Γ(αβj+κ+n−t
jj )

Γ(αβℓ+n−t

jℓ +1)

Γ(αβℓ+n−t

jℓ )
, zt+1 = ℓ, ℓ 6= j;

Γ(α+κ+n−t
j. )

Γ(α+κ+n−t
j. +2)

Γ(αβj+κ+n−t
jj +2)

Γ(αβj+κ+n−t
jj )

, zt+1 = j.

=











(αβj+κ+n−t
jj )(αβℓ+n−t

jℓ )

(α+κ+n−t
j. +1)(α+κ+n−t

j. )
, zt+1 = ℓ, ℓ 6= j;

(αβj+κ+n−t
jj +1)(αβj+κ+n−t

jj )

(α+κ+n−t
j. +1)(α+κ+n−t

j. )
, zt+1 = j.

=
(αβj + κ+ n−t

jj )(αβℓ + n−t
jℓ + (κ+ 1)δ(j, ℓ))

(α+ κ+ n−t
j. )(α+ κ+ n−t

j. + 1)
(79)

Combining these cases, the prior predictive distribution of zt is:

p(zt = k | z\t, β, α, κ)

∝











(αβk + n−t
zt−1k

+ κδ(zt−1, k))(
αβzt+1

+n−t

kzt+1
+κδ(k,zt+1)+δ(zt−1,k)δ(k,zt+1)

α+n−t

k.
+κ+δ(zt−1,k)

) k ∈ 1, . . . ,K

α2βK+1βzt+1

α+κ
k = K + 1

(80)

B. Observation Likelihoods

We now further examine the observation likelihood term of Eq. (72). The conditional distribution of

the observationyt given an assignmentzt = k and given all other observationsyτ , having marginalized

out θk, can be written as follows:

p(yt | y\t, zt = k, z\t, λ) ∝

∫

θk

p(yt | θk)p(θk | λ)
∏

τ |zτ=k,τ 6=t

p(yτ | θk)dθk

∝

∫

θk

p(yt | θk)p(θk | {yτ | zτ = k, τ 6= t}, λ)dθk

∝ p(yt | {yτ | zτ = k, τ 6= t}, λ). (81)

Note that the set{yτ | zτ = k, τ 6= t} denotes all the observationsyτ other thanyt that were drawn from

the observation likelihood distribution parameterized byθk.

If we consider Gaussian observation likelihoods, the conjugate distribution for the unknown mean

and covariance parameters is the normal-inverse-Wishart,which we denote byNIW(ζ, ϑ, ν,∆). Here,

λ = {ζ, ϑ, ν,∆}. Via conjugacy, the posterior distribution ofθk = {µk,Σk} given a set of Gaussian

observationsyt ∼ N (µk,Σk) is distributed as an updated normal-inverse-WishartNIW(ζ̄, ϑ̄, ν̄, ∆̄),
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where

ζ̄ = ζ + |{ys | zs = k, s 6= t}| , ζ + |Yk| (82)

ν̄ = ν + |Yk| (83)

ζ̄ ϑ̄ = ζϑ+
∑

ys∈Yk

ys (84)

ν̄∆̄ = ν∆ +
∑

ys∈Yk

ysy
T
s + ζϑϑT − ζ̄ ϑ̄ϑ̄T . (85)

Marginalizingθk induces a multivariate Student-t predictive distributionfor yt, which can be approximated

by a moment-matched Gaussian,

p(yt | {yτ | zτ = k, τ 6= t}, ζ, ϑ, ν,∆) ≃ N (yt; ϑ̄,
(ζ̄ + 1)ν̄

ζ̄(ν̄ − d− 1)
∆̄) , N (yt; µ̂k, Σ̂k). (86)

C. Tempered HDP-HMM with Infinite Gaussian Mixture Emissions

In this section we derive the predictive distribution on theaugmented state(zt, st) of the tempered

HDP-HMM with infinite Gaussian mixture emissions. We use thechain rule to write:

p(zt = k, st = j | z\t, s\t, y1:T , β, α, σ, κ, λ) = p(st = j | zt = k, z\t, s\t, y1:T , σ, λ)

p(zt = k | z\t, s\t, y1:T , β, α, κ, λ). (87)

We can examine each term of this distribution by once again considering the joint distribution over all

random variables in the model and then integrating over the necessary parameters. For the conditional

distribution ofzt = k whennot given st, this amounts to:

p(zt = k | z\t, s\t, y1:T , β, α, κ, λ) ∝

∫

π

∏

j

p(πj | α, β, κ)
∏

τ

p(zτ | πzτ−1
)dπ (88)

∑

st

∫

ψ

∏

j

p(ψj | σ)
∏

τ

p(sτ | ψzτ
)dψ

∫

θ

∏

i,ℓ

p(θi,ℓ | λ)
∏

τ

p(yτ | θzτ ,sτ
)dθ

∝ p(zt = k | z\t, β, α, κ)
∑

st

p(st | {sτ | zτ = k, τ 6= t}, σ)p(yt | {yτ | zτ = k, st, τ 6= t}, λ).

The componentp(zt = k | z\t, β, α, κ) is as in Eq. (80) whilep(st | {sτ | zτ = k, τ 6= t}, σ) is the Chinese

restaurant process for the Dirichlet process associated with the statezt = k. We similarly derive the
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conditional distribution of an assignmentst = j given zt = k as:

p(st = j | zt = k, z\t, s\t, y1:T , σ, λ) ∝ p(st = j | {sτ | zτ = k, τ 6= t}, σ)

p(yt | {yτ | zτ = k, st = j, τ 6= t}, λ). (89)

The observation likelihood component of these distributions, p(yt | {yτ | zτ = k, st = j, τ 6= t}, λ), is

derived in the same fashion as Eq. (86) where now we only consider the observationsyτ that are assigned

to HDP-HMM statezτ = k and mixture componentsτ = k.

APPENDIX II

NON-CONJUGATE BASE MEASURES AND THEBLOCKED-STATE SAMPLER

Since the blocked-state sampler instantiates the parameters θ, rather than marginalizing them as in the

direct assignment sampler, we can place a non-conjugate base measure on the parameter spaceΘ. Take,

for example, the case of single Gaussian emission distributions where the parameter space is over the

means and covariances of these distributions. Here,θk = {µk,Σk}. In this situation, one may place a

Gaussian priorN (µ0,Σ0) on the meanµk and an inverse-Wishart IW(ν,∆) prior on the covarianceΣk.

At any given iteration of the sampler, there is a set of observationsYk = {yt | zt = k} with cardinality

|Yk|. The posterior distributions over the mean and covariance parameters are:

Σk | µk ∼ IW(νk∆k, νk) (90)

µk | Σk ∼ N (µ̄k, Σ̄k),

where

νk = |Yk|+ ν

νk∆k = ν∆ +
∑

t∈Yk

(yt − µk)(yt − µk)
′

Σ̄k = (Σ−1
0 + |Yk|Σ

−1
k )−1

µ̄k = Σ̂k(Σ
−1
0 µ0 + Σk

∑

t∈Yk

yt).

The sampler alternates between samplingµk givenΣk andΣk givenµk several times before moving on

to the next stage in the sampling algorithm. The equations for the tempered HDP-HMM with infinite

Gaussian mixture emissions follows directly by considering Yk,j = {yt | zt = k, st = j} when resampling

parameterθk,j = {µk,j,Σk,j}.
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APPENDIX III

HYPERPARAMETERS

In this appendix we expound upon the derivations of the conditional hyperparameter distributions used

for resampling these random variables. The hyperparameters of our model includeα, κ, γ, σ, andλ,

thoughλ is considered fixed. Many of these derivations follow directly from those presented in [5], [1].

We have shown that it is sufficient to parameterize our model by α + κ and ρ = κ/α + κ instead

of by α and κ independently. This greatly simplifies the resampling of these hyperparameters. Let us

assume that there areJ restaurants in the franchise at a given iteration of the sampler. As depicted in

Fig. 2(b), the generative model dictates that for each restaurant j we haveπ̃j ∼ GEM(α + κ), and a

table assignment is determined for each customer bytji ∼ π̃j. In total there arenj. draws from this

stick-breaking construction over table assignments resulting in mj. unique tables. By Eq. (5) and using

the fact that each restaurant is mutually conditionally independent, we may write:

p(α+ κ | m1., . . . ,mJ., n1., . . . , nJ.) ∝ p(α+ κ)p(m1., . . . ,mJ. | α+ κ, n1., . . . , nJ.)

∝ p(α+ κ)

J
∏

j=1

p(mj. | α+ κ, nj.)

∝ p(α+ κ)
J
∏

j=1

s(nj.,mj.)(α + κ)mj.
Γ(α+ κ)

Γ(α+ κ+ nj.)

∝ p(α+ κ)(α + κ)m..

J
∏

j=1

Γ(α+ κ)

Γ(α+ κ+ nj.)

Using the fact that the gamma function has the propertyΓ(z + 1) = zΓ(z) and is related to the beta

function viaβ(x, y) = Γ(x)Γ(y)/Γ(x + y), we rewrite this distribution as

p(α+ κ | m1., . . . ,mJ., n1., . . . , nJ.) ∝ p(α+ κ)(α + κ)m..

J
∏

j=1

(α+ κ+ nj.)β(α+ κ+ 1, nj.)

(α+ κ)Γ(nj.)

= p(α+ κ)(α + κ)m..

J
∏

j=1

(1 +
nj.

α+ κ
)

∫ 1

0
rα+κ
j (1− rj)

nj.−1drj ,

where the second equality arises from the fact thatβ(x, y) =
∫ 1
0 t

x−1(1− t)y−1dt. We introduce a set of

auxiliary random variablesr = {r1, . . . , rJ}, where eachrj ∈ [0, 1]. Now, the integration introduced by

the beta function is over the domain of eachrj so that we can represent the joint distribution ofα+ κ
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andr as

p(α+ κ, r | m1., . . . ,mJ., n1., . . . , nJ.) ∝ p(α+ κ)(α + κ)m..

J
∏

j=1

(1 +
nj.

α+ κ
)rα+κ

j (1− rj)
nj.−1

∝ (α+ κ)a+m..−1e−(α+κ)b
J
∏

j=1

(1 +
nj.

α+ κ
)rα+κ

j (1− rj)
nj.−1

= (α+ κ)a+m..−1e−(α+κ)b
J
∏

j=1

∑

sj∈{0,1}

(
nj.

α+ κ
)sjrα+κ

j (1− rj)
nj.−1.

Here, we have used the fact that we placed a Gamma(a, b) prior on α + κ. We add another set of

auxiliary variabless = {s1, . . . , sJ}, with eachsj ∈ {0, 1}, to further simplify this distribution. The joint

distribution overα+ κ, r, ands is given by

p(α+ κ, r, s | m1., . . . ,mJ., n1., . . . , nJ.) ∝ (α+ κ)a+m..−1e−(α+κ)b
J
∏

j=1

(
nj.

α+ κ
)sjrα+κ

j (1− rj)
nj.−1.

Each conditional distribution is as follows:

p(α+ κ | r, s,m1., . . . ,mJ., n1., . . . , nJ.) ∝ (α+ κ)a+m..−1−
P

J

j=1
sje−(α+κ)(b−

P

J

j=1
log rj)

p(rj | α+ κ, r\j , s,m1., . . . ,mJ., n1., . . . , nJ.) ∝ rα+κ
j (1− rj)

nj.−1

p(sj | α+ κ, r, s\j ,m1., . . . ,mJ., n1., . . . , nJ.) ∝ (
nj.

α+ κ
)sj . (91)

We may similarly derive the conditional distribution ofγ. The generative model depicted in Fig. 2(b)

dictates thatβ ∼ GEM(γ) and that each tablet considers ordering a dish̄kjt ∼ β. From Eq. (35), we see

that the sampled valuēmj. represents the total number of tables in restaurantj where the considered dish

k̄jt was the served dishkjt (i.e. the number of tables with considered dishes that were not overridden.)

Thus,m̄.. is the total number ofinformativedraws fromβ. If K is the number of uniqueserveddishes,

which can be inferred fromz1:T , then the number of uniqueconsidereddishes at the informative tables

is:

K̄ =

J
∑

j=1

1(m̄.j > 0) = K −
J
∑

j=1

1(m̄.j = 0 andmjj > 0). (92)

We use the notation1(A) to represent an indicator random variable that is 1 if the event A occurs and

0 otherwise. The only case wherēK is not equivalent toK is if every instance of a served dishj arose

from an override in restaurantj and this dish was never considered in any other restaurant. That is, there

were no informative considerations of dishj, implying m̄.j = 0, while dish j was served in restaurant
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j, implying mjj > 0 so thatj is counted inK. This is equivalent to counting how many dishesj had

an informative table consider ordering dishj, regardless of the restaurant. We may now use Eq. (5) to

form the condition distribution onγ:

p(γ | K̄, m̄..) ∝ p(γ)p(K̄ | γ, m̄..)

∝ p(γ)s(m̄.., K̄)γK̄ Γ(γ)

Γ(γ + m̄..)

∝ p(γ)γK̄ (γ + m̄..)β(γ + 1, m̄..)

γΓ(m̄..)

∝ p(γ)γK̄−1(γ + m̄..)

∫ 1

0
ηγ(1− η)m̄..−1dη.

As before, we introduce an auxiliary random variableη ∈ [0, 1] so that the joint distribution overγ and

η can be written as

p(γ, η | K̄, m̄..) ∝ p(γ)γK̄−1(γ + m̄..)η
γ(1− η)m̄..−1

∝ γa+K̄−2(γ + m̄..)e
−γ(b−log η)(1− η)m̄..−1.

Here, we have used the fact that there is a Gamma(a, b) prior onγ. The resulting conditional distributions

are:

p(γ | η, K̄, m̄..) ∝ γa+K̄−2(γ + m̄..)e
−γ(b−log η)

∝ πm̄Gamma(a+ K̄, b− log η) + (1− πm̄)Gamma(a+ K̄ − 1, b− log η)

p(η | γ, K̄, m̄..) ∝ ηγ(1− η)m̄..−1 ∝ Beta(γ + 1, m̄..), (93)

whereπm̄ = a+K̄−1
m̄..(b−log η) .

The derivation of the conditional distribution onσ is similar to that ofα + κ in that we haveJ

distributionsψj ∼ GEM(σ). The state-specific mixture component index is generated asst ∼ ψzt

implying that we havenj. total draws fromψj , one for each occurrence ofzt = j. LetK ′
j be the number

of unique mixture components associated with these draws fromψj . Then, after adding auxiliary variables

r′ ands′, the conditional distributions ofσ and these auxiliary variables are:

p(σ | r′, s′,K ′
1., . . . ,K

′
J., n1., . . . , nJ.) ∝ (σ)a+K ′

..−1−
P

J

j=1
s′

je−(σ)(b−
P

J

j=1
log r′

j)

p(r′j | σ, r
′
\j , s

′,K ′
1., . . . ,K

′
J., n1., . . . , nJ.) ∝ r

′σ
j (1− r′j)

nj.−1

p(s′j | σ, r
′, s′\j ,K

′
1., . . . ,K

′
J., n1., . . . , nJ.) ∝ (

nj.

σ
)s

′

j . (94)
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In practice, it is useful to alternate between sampling the auxiliary variables and concentration param-

etersα, γ, andσ for several iterations before moving to sampling the other variables of this model.

Finally, we derive the conditional distribution ofρ. We place a Beta(c, d) prior on ρ and havem..

total draws ofwjt ∼ Ber(ρ), with w.. successes from these draws. Here, each success represents atable’s

considered dish being overridden by the house specialty dish. Using these facts, we have

p(ρ | w) ∝ p(w | ρ)p(ρ)

∝





m..

w..



 ρw
.. (1− ρ)

m..−w..
Γ(c+ d)

Γ(c)Γ(d)
ρc−1(1− ρ)d−1

∝ ρw..+c−1(1− ρ)m..−w..+d−1 ∝ Beta(w.. + c,m.. − w.. + d). (95)
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