
Many-Worlds Browsing for Control of Multibody Dynamics

Christopher D. Twigg∗

Carnegie Mellon University

Doug L. James†

Cornell University

Abstract

Animation techniques for controlling passive simulation are com-
monly based on an optimization paradigm: the user provides goals
a priori, and sophisticated numerical methods minimize a cost
function that represents these goals. Unfortunately, for multibody
systems with discontinuous contact events these optimization prob-
lems can be highly nontrivial to solve, and many-hour offline op-
timizations, unintuitive parameters, and convergence failures can
frustrate end-users and limit usage. On the other hand, users are
quite adaptable, and systems which provide interactive feedback via
an intuitive interface can leverage the user’s own abilities to quickly
produce interesting animations. However, the online computation
necessary for interactivity limits scene complexity in practice.

We introduce Many-Worlds Browsing, a method which circumvents
these limits by exploiting the speed of multibody simulators to com-
pute numerous example simulations in parallel (offline and online),
and allow the user to browse and modify them interactively. We
demonstrate intuitive interfaces through which the user can select
among the examples and interactively adjust those parts of the scene
that do not match his requirements. We show that using a combina-
tion of our techniques, unusual and interesting results can be gen-
erated for moderately sized scenes with under an hour of user time.
Scalability is demonstrated by sampling much larger scenes using
modest offline computations.

CR Categories: I.3.5 [COMPUTER GRAPHICS]: Computational
Geometry and Object Modeling—Physically based modeling;
I.6.8 [SIMULATION AND MODELING]: Types of Simulation—
Animation

Keywords: interactive animation, rigid body dynamics, control,
browsing, data-driven animation

1 Introduction

The use of physically based simulation has greatly simplified the
creation of effects such as water, fire, and interacting solids. How-
ever, tuning these simulations to get the desired results can be a dif-
ficult and time-consuming process. A number of techniques have
been developed that allow users to specify what the desired result
should look like, and then solve for the simulation parameters that
produce good approximations while maintaining physical realism.
While these techniques have been successfully applied to fluid ani-
mation [Treuille et al. 2003; Shi and Yu 2002; Fattal and Lischinski

∗e-mail: cdtwigg@cs.cmu.edu
†e-mail: djames@cs.cornell.edu

Figure 1: Spelling SIGGRAPH: Using our parallel refinement with spatial

queries and metrics enables a user to generate this animation spelling out

“SIGGRAPH” from an arbitrarily chosen starting configuration.

2004], very little progress has been made in the control of multi-
body dynamics since 2003. There is moreover no reason to be-
lieve that recent advances in controlling fluids can be transferred
over to complicated multibody systems, since gradient-based tech-
niques struggle with the bifurcations in the parameter space that
result from rigid body collision handling. Gradient-based methods
such as those developed by Popović and colleagues [2000; 2003]
either resort to random sampling in these cases or rely on a good
initial guess to ensure convergence.

On the other hand, great strides have been made in the simulation of
multibody dynamics in recent years. In addition to the impressive
results seen in several recent academic papers [Guendelman et al.
2003; Kaufman et al. 2005; Weinstein et al. 2006], rigid dynamics
have become ubiquitous in video games. A number of fast, stable
solvers are available both commercially (e.g., Havok, Ageia) and as

open source (e.g., Open Dynamics Engine, Bullet Physics Library).
Even more recently, we have begun to see the hardware acceleration
of rigid dynamics, producing impressive real-time demonstrations
involving thousands of interacting bodies on both the Havok FX
and Ageia PhysX platforms.

This particular confluence of extremely fast simulation but slow
continuous optimization would seem to suggest using a sampling-
based approach to find animations that satisfy user constraints. This
is especially true for larger scenes; having many collisions will
cause gradient-based techniques to grind to a halt but can actually
make sampling easier by increasing the variability in the data set.
However, naı̈ve sampling fails to find solutions to all but the most
simple constraint problems. Chenney and Forsyth [2000] demon-
strated that it is possible to address this through the use of more
sophisticated sampling algorithms, but these algorithms require a
substantial amount of per-problem tuning and user expertise to en-
sure convergence.

Even if we knew of some hypothetical optimization technique that
was general enough to solve any arbitrary set of user constraints,
there are still valid reasons for keeping the user in the loop. The
specification of constraints precise enough to use in unattended op-
timization is itself time-consuming and error-prone in the absence
of useful feedback. Since the sampling algorithm is only obligated
to produce exactly what the user asked for, failure to specify implic-
itly understood constraints such as “look exciting” or “land right-
side up” will produce undesired results. Furthermore, keeping the
user in the loop enables him to respond quickly if preliminary re-
sults reveal that his pre-specified constraints are not going to pro-
duce the desired animation, rather than require him to await the
result of a long optimization process. This is especially impor-
tant during the process of pre-visualization, where rapid feedback
is more important than guaranteeing that the resulting simulation be
optimal with respect to any particular metric.

We therefore advocate a substantially different approach. We will
perform sampling in parallel on a cluster of machines to keep the
entire approach interactive. We will give the user tools to steadily
guide the sampling toward the result he seeks by telling the system
which parts of the produced motion to keep and which to discard,
and the system ensures that physical realism is maintained. We
also describe how the data is compressed to increase the number of
examples that can be stored locally on the user’s machine.

To make this system feasible, the user must be able to easily sort
through the hundreds of example motions without having to exam-
ine each one individually. For inspiration, we look to the extremely
successful searching interface made ubiquitous by Google, which
takes the enormous amount of data present in the World Wide Web
and makes it palatable. Google does this through two basic means:
keywords, which constrain the set of pages that can be returned,
and the Google PageRank metric [Page et al. 1998], which ranks
the remaining results. Our system has two similar components:
screen-space queries, which allow the user to quickly limit the set
of results returned, and metrics, which allow users to choose the
“best” among the remaining examples.

We will show how these techniques can be used interactively to
get specific results from scenes containing complicated articulated
structures. We will also show that with the addition of offline com-
putation, these methods can be scaled up to scenes involving hun-
dreds of rigid bodies.

1.1 Related work

Control techniques were first applied to rigid bodies through ac-
tuated joints in the context of character animation, such as in

Spacetime Optimization [Witkin and Kass 1988]. Tang and col-
leagues [1995] extended these techniques to passive simulation,
using a genetic algorithm to search for the initial conditions that
would produce the desired end goal, but only applied their algo-
rithm to frictionless bodies in two dimensions. Barzel and col-
leagues [1996] introduced the idea of “plausibility,” allowing ad-
ditional control through the perturbation of collision normals. They
also suggested a simple algorithm to search for simulations that sat-
isfy constraints, but it is unlikely that it would scale far beyond the
2-dimensional pool ball simulations they present.

Chenney and Forsyth [2000] used the Markov Chain Monte Carlo
algorithm (MCMC) to find solutions to pre-specified constraint
problems. While their approach was successful in finding solu-
tions to a variety of problems, it took many hours to run, which
would make it impractical for many production situations. Further-
more, MCMC can be difficult to tune since good results depend on
the Markov chain having rapid mixing [Wasserman 2004]; in the
case of Chenney and Forsyth, this meant that the proposal mech-
anism which guided the sampling process was selected indepen-
dently for each example. Popović and colleagues [2003] demon-
strated a gradient-based method using multiple shooting that con-
verged in 10-20 minutes for simulations involving several objects.
It is not clear how well this technique would scale to simulations
involving hundreds of interacting objects.

Popović and colleagues [2000] presented a particularly compelling
interface in which the user could interact directly with the simu-
lation to produce desired results. In their system, the user can se-
lect an object at any point during the simulation and manipulate it.
A rapid gradient descent algorithm is combined with some limited
random sampling where necessary to find solutions that satisfy user
constraints. If no such solution can be found at interactive rates, the
user is notified immediately and can attempt to apply different con-
straints. The primary drawback of this approach is that it cannot be
applied to very large systems, as gradient computation is linear in
the number of collisions and complicated scenes may involve thou-
sands of collisions. It is also tied to the particular simulator used;
in particular, it is unclear how to accommodate non-differentiable
friction models in common use [Baraff 1994].

A number of papers deal with the control of smoke and liquid an-
imations involving thousands of degrees of freedom. These tech-
niques generally rely on either the computation of simulation gra-
dients [Treuille et al. 2003; McNamara et al. 2004] or the appli-
cation of small, local forces at every time step [Shi and Yu 2002;
Fattal and Lischinski 2004; Shi and Yu 2005a; Shi and Yu 2005b].
These methods have limited applicability for multibody dynamics
due to the large numbers of discontinuities that occur at collision
events. Moreover, unlike smoke control, where increased control
forces can always move free-space smoke into desired configura-
tions (albeit less subtly), increased control forces in multibody dy-
namics cannot ignore configuration space obstacles, e.g., slamming
two objects together harder will not make them pass through.

Some methods for generating 3D fluid animation start with a col-
lection of examples of 2D motion and use a subset of these to gen-
erate the final 3D motion [Rasmussen et al. 2003; Mihalef et al.
2004]; however, these methods do not address the problem of how
to assist the user in selecting which examples to use. Pighin and
colleagues [2004] convert an Eulerian fluid simulation into a set
of path lines, which can then be selected and edited. There is no
guarantee that the resulting edit will be physically plausible.

Our work on user interfaces for selecting among the computed
examples is most closely related to Design Galleries [Marks
et al. 1997]. In this approach, examples are arranged in a two-
dimensional layout using an algorithm which attempts to main-

tain distances in the low-dimensional embedding. The approach
is demonstrated on a simple particle system, a 2D double pen-
dulum, and a controlled 24-DOF “hopper dog.” Chenney and
Forsyth [2000] suggest that such a system could be used to browse
examples of rigid body motion generated using their sampling ap-
proach. For multibody dynamics involving dozens or even hun-
dreds of bodies, however, to try to capture all the complicated inter-
body interactions in a single 2D arrangement would not be feasi-
ble. Here we again draw on the Google analogy; imagine finding
a 2D layout for even a small portion of the web and then asking
a user to locate the ACM SIGGRAPH homepage. Ever-changing
user requirements make the task even more difficult, since “similar-
ity” between two scenes will be dependent on, e.g., which part of
the scene the user is focusing on.

The idea of bringing the user into the optimization process has been
exploited by Cohen [1992], who demonstrated that even a relatively
unintuitive interface can, if it provides good feedback, leverage hu-
man capabilities to improve the results of spacetime optimization.
Laszlo and colleagues [2000] give their users an even simpler set of
basic keyboard controls, to which they rapidly adapt and are soon
able to control a physically based character without the need for an
optimizer.

2 Sampling plausible worlds

Before we can compute examples, the user must specify the objects
in the scene and their initial state. Users can randomize the initial
conditions of objects (or any other property in the system) using a
simple interface. To allow scenes to be built up, the user is permit-
ted to insert or remove objects even after much of the motion has
been computed; we will discuss how this is handled in Section 5.

Plausibility: It is important that all the samples we generate be ac-
ceptable as answers to user queries, since it would be unreasonable
to expect users of our system to sort through the figurative haystack
of hundreds of poor-quality simulations to find their ‘needle.’ To
ensure this, we rely on studies of plausibility performed by other
researchers. Specifically, O’Sullivan and colleagues [2003] exam-
ined people’s ability to detect perturbations applied during impacts
and found that people were unable to detect distortions of the post-
collision linear velocity of up to 40% in magnitude and 20 degrees
in angle (depending on various other factors). Similar tests for an-
gular velocity found that distortions of up to 20% went undetected,
depending somewhat on object shape.

Most optimization techniques attempt to maintain plausibility by
minimizing a scalar metric integrated over the entire simulation.
For example, Chenney and colleagues [2000] define the plausibil-
ity function as the product of Gaussian distributions over surface

normals during collision events, p ∝ ∏i e−(θi/10)2/2 where θi is
the angular displacement of the normal from its unmodified value.
The advantage of such a metric is that it can prevent a sequence
of “unlikely” collision events from occurring. However, we are
aware of no evidence that a series of smaller perturbations will ap-
pear less likely than a single larger perturbation. Barzel and col-
leagues [1996] suggest one possible example: if an object takes a
series of odd bounces that are all biased in the same direction, the
observer might conclude that things have been somehow “rigged.”
If we select each impulse independently, though, this will happen
with exponentially small probability. We therefore define plausibil-
ity as follows: if each collision is individually plausible according
to the criteria developed by O’Sullivan and colleagues [2003], then
the entire animation is considered plausible. We limit velocity per-
turbation magnitudes to a fraction α of the original instantaneous
collision impulse (see below), and in our system α = 0.1.

vt+∆t

vt

∆v

d̂

Figure 2: Applying Perturbations: We apply a perturbation impulse md̂ to

the post-impact velocity vt+1 to produce the initial state for the next time

step. The perturbation is sampled from a distribution about ∆v.

Applying perturbations: The instantaneous state of a rigid body
i is specified completely by its position xi (assumed to specify the
body’s center of mass), its orientation Θi (commonly represented
using quaternions), its linear velocity vi and its angular velocity
ωi. A complete simulation of a collection of objects consists of a
sequence of states as a function of time, s

t = {xt
i ,Θ

t
i ,v

t
i ,ω

t
i }, for

objects i = 1 . . .n. We assume that we have a simulator capable of
taking a collection of rigid body states s

t and producing the states
s
t+∆t . We note that, for the purposes of this discussion, we do not

assume any further knowledge about the simulator (e.g., contact
information) which should make this approach very flexible. Ac-
cording to our definition of plausibility, we can treat each impact
event independently; we therefore suggest the following simple al-
gorithm for sampling plausible simulations. We define the instan-
taneous change in velocity ∆vi as

∆vi = (vt+∆t
i −vt

i)/∆t (1)

and analogously, for angular velocity,

∆ωi = (ωt+∆t
i −ωt

i)/∆t (2)

Suppose we have generated the simulation up to state s
t . We use

our solver to generate the state s
t+∆t . The result of our algorithm

will be the perturbed state s̃
t+∆t . For each object in the scene, we

examine the changes in linear and angular velocities, ∆vi and ∆ωi.
We look for “significant” impacts by comparing ∆vi and ∆ωi with
two thresholds, Cv and Cω .

Suppose that ||∆vi|| > Cv (angular velocity changes are handled
identically). According to the criterion we defined above, we can

perturb the post-impact velocity vt+∆t
i by up to α times the veloc-

ity change magnitude ||∆vi||. To do this, we first sample a per-

turbation direction d̂ from a sinn distribution (commonly used in
the Phong lighting model) about the original impulse direction ∆vi.
We then sample a perturbation magnitude m uniformly from the

range [−α ||∆vi|| ,α ||∆vi||] (see Figure 2). We add md̂ to vt+1
i to

produce the new post-impact state s̃
t+∆t = {xt+∆t

i ,Θt+∆t
i ,vt+∆t

i +

md̂,ωt+∆t
i }, which is then used as input to the solver in the next

time step. This continues until all the objects in the scene come to
rest or until a user-specified end time has been reached.

Parallelization: Because each example motion is computed inde-
pendently, we can easily parallelize this computation across many
machines. In our case, we use a 24-node cluster; objects and initial
conditions are transferred to each compute node and the resulting
animation examples are transferred back as they are computed.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

1

2

3

4

5

6

7

8

9

10

11

a1t2 +b1t + c1

a2t2 +b2t + c2

position error (measured in `2 norm)

ra
te

(b
it

s/
fr

am
e/

o
b
je

ct
)

Figure 3: Rate-distortion curve for the position component in our com-

pression scheme; the blue curve corresponds to a collection of objects in

free flight while the red curve corresponds to an articulated character. No-

tice that storage cost for the articulated character is significantly higher.

Inset: For compression, we fit piecewise quadratic splines to object mo-

tions.

3 Compressed in-core representation

A single animation consisting of several hundred objects can take
a significant amount of memory to store and transmit, and we want
to store hundreds of these examples in core so that they can be re-
trieved, displayed, and queried quickly. If we maintain sufficiently
high quality in the compressed version, it will save us from need-
ing to maintain an extra copy of the data on disk, although this is
also an option. To this end, we have developed a simple compres-
sion scheme which significantly reduces the storage cost of each
animation while placing an absolute per-frame, per-object limit on
the amount of error introduced by the approximation.

Rigid-body motion is generally quite smooth between collision
events. We have therefore chosen to use splines to represent the
motion. An added benefit of this approach is that we can store mo-
tion at 120 frames per second, which will give us enough temporal
resolution to render correct motion blur for impacts.

We compress the object’s position and rotation components sep-
arately. For position, we simply fit piecewise-quadratic splines
f (t) = ait

2 + bit + ci to the motion of the object’s center of mass,

with a,b,c ∈ R
3, as shown in Figure 3. To improve the compres-

sion ratio, we then quantize the spline coefficients. Adjacent coef-
ficients are differenced, and the resulting residuals are stored using
an encoding scheme known as Rice codes [Salomon 2004] that uses
fewer bits for smaller numbers. However, there are a few details that
make a sizable difference in the compression.

• First, we know that the paths are C0 continuous, so we can
assume that each piecewise quadratic segment starts where
the previous one ends. This allows us to discard the constant
term ci for all but the first segment, reducing space usage by
33%.

• Quantizing the quadratic coefficient ai produces sizable er-
rors, since t2 grows much faster than t which magnifies quan-
tization error. However, the quadratic coefficient of trans-
lational motion tends to be constant during free flight (this
would not be the case, however, in the presence of aerody-
namic drag). We can therefore use a single quadratic coeffi-

FIT-SEGMENT(F , tstart,emax)
1 tend← tstart +1
2 (a,b,c)← (0,0,0)
3 while tend < SIZE(F)
4 switch
5 case tend− tstart < 10 :
6 (a′,b′,c′)← FIT-SPLINE(F [tstart . . .tend])
7 e←max[t∈tstart,tend]

∣

∣

∣

∣F [t]− (a′t2 +b′t + c′)
∣

∣

∣

∣

8 case default :
9 e←

∣

∣

∣

∣F [tend]− (at2
end +btend + c)

∣

∣

∣

∣

10 if e > emax

11 then return (a,b,c), tend

12 (a,b,c)← (a′,b′,c′)

Figure 4: Algorithm for fitting spline segments: For performance rea-

sons, we only perform a full least-squares spline fit (using QR decomposi-

tion) for the first 10 points in any spline segment. The algorithm takes as

input the series of object positions F = [xt1 ,xt2 , . . .xtn], the start time of the

current segment (which is also the end time of the previous segment), and

the maximum allowed `∞ error emax, and produces as output the segment

length tend− tstart and the spline coefficients a, b, and c. Spline errors are

computed with respect to the quantized coefficients to get a more accurate

estimate of the display error.

cient for the entire animation; in most cases this will be h2g/2
for gravitational constant g and time step size h. This has the
added benefit of reducing the quadratic coefficient to a single
bit, dropping space usage by another 33%.

• Finally, we only need to retain the quadratic coefficient for the
vertical component of the object’s position.

To maintain quality, we place a limit emax on the `∞ norm of
each segment. To fit a polynomial segment to the object positions
[xt1 ,xt2 , . . .xtn] recorded at times [t1, t2 . . .tn] we chose standard least
squares over more expensive algorithms that explicitly minimize
the `∞ norm. Selecting where to place transitions between splines
is a harder problem. While it is possible to compute the optimal fit
using dynamic programming [Nygaard and Haugland 1998; Haug-
land et al. 1997], these methods are expensive, and we use the much
simpler greedy algorithm described in Figure 4 in our work.

Although it is possible to construct higher-order splines on rotation
spaces using quaternions [Shoemake 1985], we found a piecewise
linear approximation to be sufficient. Let {Θt0

i ,Θt1
i , . . .Θtn

i } be a
sequence of rotation matrices. Using the logarithm map [Grassia
1998], we can represent the matrix Θ

tn
i (Θt0

i)−1 by the matrix ex-

ponential e[ω], where [ω] is the skew-symmetric matrix [Kaufman
et al. 2005]

[ω] =





0 −ω2 ω1

ω2 0 −ω0

−ω1 ω0 0



 (3)

We can approximate intermediate rotations as Θ
ti
i ≈

e[(ti−t0)ω/(tn−t0)]Θ
t0
i . The algorithm in Figure 4 is essentially

unchanged, except that we replace the FIT-SEGMENT function
with the algorithm just described, and our norm is the quaternion

argument of the rotational error (Θti
i)
−1e[(ti−t0)ω/(tn−t0)].

4 Interactive browsing

Once we have computed a sufficient number of example anima-
tions, we need to provide ways for the user to interact with and
select among the possibilities. We provide two basic modes of in-
teraction: queries and metrics.

Input Positive Negative

Figure 5: Spatial queries in screen space are used to include and exclude

simulation examples. (left) All input simulation examples for a single body

example; (middle) Positive simulation constraint boxes (green) include sim-

ulation worlds with motion inside; (right) Negative simulation constraint

boxes (red) exclude simulation worlds with motion inside.

4.1 Spatial queries

Many requests the user could make, such as “make sure the charac-
ter falls all the way down the stairs” or “have the car flip off the
bridge and into the water,” can be satisfied using simple spatial
queries. We model our query interface on the work of Hochheiser
and Shneiderman [2004]. Their approach was originally developed
for use with time-series data, and we will summarize it here.

Suppose we have a large number of functions f1(t), f2(t), . . . fn(t),
defined for t ∈ [0, tfinal]. The user would like to explore this data set
to find specific trends, e.g., functions fk(t) that start low at t = 0 and
finish high at time t = tfinal. Rather than specifying this query using
a text query interface such as SQL, users of this system can simply
draw boxes of the form [t1, t2], [y1,y2], and the system returns all
functions fk such that y1 ≤ fk(t)≤ y2 for all t1 ≤ t ≤ t2. Feedback is
immediate, and the user can specify more complex queries using the
conjunction of simpler queries. Sherbondy and colleagues [2004]
applied a similar paradigm in the context of diffusion tensor imag-
ing, using queries to select among pathways in the brain.

Our queries will be similar but will operate on the center-of-mass
trajectories of simulated objects, as shown in Figure 5. Focusing
on the center of mass allows us to easily visualize large numbers of
paths without overloading users; however, it means that users can
only visualize rotations by selecting a particular path and playing
back the motion. Popović and colleagues [2000] addressed this by
showing the paths of two distinct points on the object surface, but
when many paths are being displayed the user cannot easily deter-
mine which pairs of points are in correspondence. The simultane-
ous visualization of many rotational motions is an interesting area
of future work.

To work with simulation data, we modify the method of Hochhei-
ser and Shneiderman slightly. First, to keep the interface as sim-
ple as possible, queries are drawn in screen space. This lacks the
precision of the 3D query prisms introduced by Sherbondy and col-
leagues, but allows for much faster interaction on the user’s part.
The resulting query volumes correspond to frustums in world space.
Queries can be either positive or negative, where positive queries re-
turn only simulations that pass through the query volume and neg-
ative queries return only simulations that do not pass through the
selected volume. We also by default discard temporal information
about object motion when evaluating queries; that is, queries are
satisfied by simulations that pass through the query region at any
point during the object’s motion. One could override this behavior
by painting an appropriate region on the time slider.

To improve the descriptive power of queries, we allow them to be
evaluated for any user-chosen subset of the scene objects. Thus,
queries such as “require that one of these objects pass through re-
gion R” can be easily satisfied by selecting the particular group of

objects and drawing the desired query.

4.2 Accelerating query handling

In order for our system to be useful, it is vital that the interface be
responsive even when processing massive data sets. Rapid evalua-
tion of queries is particularly important, as their usefulness depends
largely on the user’s ability to quickly adjust the queries depending
on the responses retrieved from the database.

The first method for ensuring that queries can be answered quickly
is to retain an uncompressed and down-sampled version of each
object’s path in memory at all times. We can visualize paths and
evaluate queries using this low-resolution version, but use the more
accurate compressed representation when displaying actual object
motion.

To evaluate whether an individual path satisfies a query, we need
to quickly check whether the path intersects the frustum defined by
the query. A variety of acceleration structures could be used here,
but because paths have no volume, many forms of bounding geom-
etry represent them poorly. Sphere trees, for example, proved to
be slower than a simple brute force check in our tests. We found
that oriented bounding boxes (OBBs) provide a good balance of
efficiency and representational power. OBB-frustum tests can be
made quite fast, as described by Assarsson and Möller [2000]. To
reduce the memory overhead of the structure, we restrict the tree
depth to be at most three, and piecewise linear segments of the path
are stored in the leaf nodes. We note that we can always reconstruct
the entire path from its tree representation, so the OBB tree repre-
sentation of the path obviates the need to store the down-sampled
path separately. In our tests, using this hierarchy speeds up query
evaluation by a factor of about three.

4.3 Ranking metrics

In many cases, the constraints the user places on the result will be
very loose, and as a result many example simulations will satisfy
them. If there are only a few such examples, the user can easily sort
through them by iterating through each individually. If there are a
large number, however (> 100), it will be burdensome for the user
to view them all. In this case, we provide simulation metrics to aid
in the search.

The intuition behind these metrics is that the user may wish to
find the simulation satisfying the specified constraints that is “most
exciting” or “least distracting,” or perhaps the user has a specific
frame budget for the simulation to come to rest. We suggest a num-
ber of metrics here, but there are many other possibilities that could
be explored.

• Angular velocity: One measure of how dynamic a simula-
tion looks is how much objects rotate, which we compute by
integrating angular velocity across the entire simulation.

• Running time: We measure the amount of time it takes a
specific object or set of objects to come to rest. This can help
to keep simulations within frame budgets, or to look for the
simulation that keeps a motorcycle upright and rolling as long
as possible.

• Collisions: We can count the number of collisions in the
scene using the same thresholding technique we used to deter-
mine when to apply impulse perturbations; this can produce
interesting results such as a character hitting every stair on the
way down.

• Orientation: Our simple screen-space constraints do not give
us any control over orientation. One way to compensate for

(a)

(b)

Figure 6: Refining objects: If we refine the original (dotted) path taken by

the blue box (left), we must ensure that other objects in the scene still have

physically valid motion. Specifically, if the new motion interacts with other

objects in the scene (as at point (a), right), we must simulate new motion for

these objects; additionally, if in the newly computed motion the box fails to

interact with some object that it interacted with in the original motion (point

(b), bottom), we must compute new motion for this object as well.

this is to add a metric that measures the difference between
an object’s final orientation and a particular goal orientation
specified by the user. A more sophisticated variant would also
allow the user to specify a time. Our preliminary implemen-
tation simply uses the object’s starting orientation as the goal
orientation, which was sufficient for our examples.

• Satisfied constraints: In many situations, the user may start
out with a set of constraints that is not satisfied by any ex-
ample. In this case, further refinement will be necessary to
produce the desired result, but we should give the user some
feedback on which paths to refine. One simple technique is
to simply count how many constraints each example satisfies
and sort using this. For this to be effective, we need to change
the behavior of our viewer slightly to show all examples and
not just the set that satisfy user constraints.

Relevant metrics can be computed on a per-object basis to allow
for more precision; the user simply selects which objects should
be measured. We can precompute the results of the metrics (ex-
cept the “satisfied constraints” metric) for each object individually.
When sorting, we simply look up the metric value for each object
and take the sum/supremum as appropriate over all such values.
The sorting is quite fast and the results are displayed in our “metric
sorter” view, which is essentially identical to list boxes commonly
found in modern GUI applications.

5 Refinement

One drawback of the approach described thus far is that for each
example the entire simulation is computed before being shown to
the user, who must respond with a binary accept/reject decision
whether one of the displayed examples is acceptable. For scenes
with large numbers of objects or long running times, the probabil-
ity that any one simulation will match all the user’s objectives can
be prohibitively small. It would be useful to be able to take simula-
tions which are mostly correct and fix the parts which are not; we
call this process “refinement.”

To indicate that he wants to refine the path of a particular object, the
user simply selects the object i and draws a box (in screen space, as
before) indicating which part of the path he wishes to change. We
find the smallest time tmin such that the object’s position x

tmin

i (as
defined by the selected example) is contained within the frustum
defined by the box, and begin computing new examples which start
at time tmin with state s

tmin . If he wants, the user can select more than
one object, in which case we simply compute the smallest tmin such

REFINE(Oa,Oi,Og, tmin)
1 t← tmin

2 while Simulating
3 C← DETECT-INTERACTIONS(Oa∪Oi∪Og)
4 for each (i, j) in C
5 switch
6 case i, j ∈ (Oa∪Oi) :
7 Oa← Oa∪{i, j};Og← Og∪{i

′, j′}
8 Oi← Oi−{i, j}
9 HANDLE-INTERACTION(i, j)

10 case i ∈Oi and j ∈Og : Symm. case is identical
11 Oa← Oa∪{i};Og← Og∪{i

′}
12 SIMULATION-STEP(Oa)
13 COMPUTE-PERTURBATIONS(Oa)
14 for each i in Oi

15 s
i← LOAD-STORED-MOTION(i)

16 for each i′ in Og

17 s
i′ ← LOAD-STORED-MOTION(i)

Figure 7: Algorithm for motion refinement: Starting with the initial set of

active objects Oa, we expand Oa to include other objects in the scene that

interact either with objects in Oa or their corresponding objects in Og.

that the center of mass position x
tmin

i of any of the selected objects
is contained within the frustum.

Because the user specifies precisely the set of objects to refine, we
attempt to keep the paths of other objects in the scene unchanged. In
certain cases, however, physical accuracy will force us to compute
new motion for these other objects. Specifically, if one of the re-
fined objects interacts with another object, we will need to compute
new dynamics in which the other object responds in a physically
accurate way (see Figure 6(a)). Moreover, if the refined object in-
teracted with another scene object in the original motion but does
not in the newly computed motion, we must compute new dynamics
that accurately reflect this (see Figure 6(b)).

To ensure that we handle these scenarios correctly, we maintain
three sets of objects during simulation:

Oa Actively simulated objects: at the beginning of simulation,
this consists of only those objects marked by the user for re-
finement.

Oi Inactive objects whose paths simply track the stored motion.
Initially, this set consists only of objects not marked by the
user for refinement, but as they interact with actively simu-
lated objects we move them into Oa so that they respond real-
istically (Figure 6(a)).

Og Ghost objects: for each object i∈Oa, we add a corresponding
“ghost object” i′ to Og whose motion tracks the original (pre-
refinement) motion of i. This ensures that we catch objects
that collided with i in the original motion but may no longer
do so in the newly generated motion (see Figure 6(b)); these
must be added to Oa to guarantee physical validity.

The algorithm for updating these sets is shown in Figure 7. Note
that it requires slightly more information from the simulator than
we needed in our original sampling algorithm: specifically, we need
to detect all interactions between objects in the scene. Simulators
commonly make this information available through some form of
callback interface.

For objects in Og, we expand the collision geometry slightly to en-
sure that we catch interactions that might have been missed due to
quantization errors in the stored motion data. Because we do not

Figure 8: Browsing trajectories: (left) In our refrigerator toy example,

rotating buckets can be added even after sampling has begun; (right) after

precomputation, over 1500 simulations with this trebuchet and tower can

be loaded and browsed interactively.

need to compute dynamics for objects in Oi, refinement can be sig-
nificantly faster than the original simulation for scenes whose sim-
ulation cost is not dominated by collision checking. Much as with
the generation of the initial examples, we can compute the new mo-
tion on our cluster, and the fact that we only need to transfer the
changed parts of the object motion cuts down on storage and band-
width requirements significantly.

One useful extension to this technique can be developed by noting
that there is nothing about the REFINE algorithm described above
that necessitates that the sets Oa and Og be in perfect correspon-
dence. We could for example add a new object to the scene by
simply inserting it into Oa at the beginning of the simulation. Sim-
ilarly, if we wanted to remove an object i from the scene, we could
add i′ to Og without adding i to Oa (or Oi). This will ensure that the
resulting motion accounts correctly for the removal of i’s interac-
tions with other objects. Changes to scene objects (e.g., modifying
an object’s starting velocity) can be interpreted as the combination
of an object removal and an object addition, giving us wide latitude
in the kinds of adjustments we can make to the scene even as we
are browsing through available simulations. Users could decide that
an explosion needs more shrapnel, for example, without changing
the motion of most objects already in the scene. Such changes are
demonstrated in the refrigerator toy example shown in the accom-
panying video.

6 Results

We applied our technique to several examples. Our interactions
with the system can be seen in the accompanying videos (longer
versions are available on the project website listed in section
7). Dynamics were computed using the Open Dynamics Engine
(ODE) [Smith 2006].

Refrigerator Toy: We mocked up a popular physics toy where the
goal is to roll a marble down a complicated path involving vari-
ous types of chutes and rotating buckets (see Figure 8). Using our
system it is easy to create such examples; we can continually add
objects to the scene and place them to lie in the path of the marble.
Sampling is used to find animations where, for example, the cup
rotates in the desired direction. The user is able to build a particular
chain of four rotating cups in just under five and a half minutes.

Spelling SIGGRAPH: The large number of collisions in this
Pachinko-style environment (see Figure 1) means that we see a
great deal of variation in each particular letter’s individual mo-
tion. Nonetheless, getting all eight letters to land in their particular
spots would be very difficult to do with simple random sampling–
a simple estimate based on optimistically independent left/right
Bernoulli trials suggests a probability on the order of 10−11. Em-
powered with the ability to refine individual paths as independently

as possible (subject to physical constraints), a user can guide the
simulation toward the desired solution. This example took a few
seconds more than an hour to generate; the user was forced to back-
track several times when it proved impossible to get the last few
letters in without disturbing the rest. The user was able to quickly
pick up on several strategies such as first handling the objects that
had the farthest horizontal distance to travel and refining objects in
pairs at a time. It would be possible to develop algorithms that used
these same insights, but hard to develop an algorithm that could
generalize as quickly as a person can.

Spiral staircase: The goal was to generate an
animation where a simple articulated character
model falls all the way down a three-level spi-
ral staircase without falling off. Finding a sin-
gle sample where the character falls all the way
down the staircase would be extremely unlikely,
but by using refinement we can generate im-
probable sequences of events by seeking out rare
events and chaining them. Here the user is also
able to cull out feasible yet uninteresting anima-
tions where the character simply slides down the
staircase on his tail bone. For this animation,
we applied a simple set-point controller to the
character causing him to try to cover his head.
This example took 25 minutes to generate, dur-
ing which the user applied the refinement opera-
tor 18 times.

Trebuchet and tower: Our approach can be
easily scaled up to larger models, but some mod-
els may require offline computation. We demon-
strate this on a model consisting of a tower
built from 192 stacked blocks being demolished
by a functioning trebuchet mechanism. Due
to ODE’s relatively slow performance handling
large object stacks, precomputing the 1549 sam-
ples in the dataset took 14 computing hours in
total (which were spread across a cluster). Using
a much faster solver, or even better hardware-
accelerated physics, would eliminate this prob-
lem. Once the examples are computed, however,
the user can easily browse the data set interac-
tively using our system (see Figure 8). By ran-
domizing various trebuchet parameters such as the release time for
the thrown rock and the orientation of the base we reduced the
amount of parameter fine-tuning required to produce useful results.
Due to the high cost of computing for this data set, we were unable
to perform refinement in real time, so our interactions with it were
limited to making exploratory queries such as: “give me all exam-
ples where the rock hits the tower” or “... where the falling blocks
miss the bystanders.”

7 Conclusion and Discussion

We have presented a simple interactive technique for extending the
control of multibody dynamics to problems involving large num-
bers of collisions and articulated bodies. We believe that much of
the power of our method lies in its simplicity, which will hopefully
facilitate wider adoption, and its leveraging of human capabilities.

Our method has several limitations. First, more difficult problems
require user involvement in the sampling process, which could be
seen as a step back from previous methods that run unattended once
user goals have been specified. Especially improbable scenes might
require a great deal of user interaction. Furthermore, it is not clear
how intuitive refinement may be for the inexperienced user. While

the authors were able to quickly pick up how to use the system,
more users (and/or user studies) are needed to establish how intu-
itive or useful Many-Worlds Browsing really is. To facilitate this
exploration, we have made our application available at

http://graphics.cs.cmu.edu/projects/mwb

Our browsing interface could be extended in several directions.
Currently constraints apply only to center of mass positions rather
than swept volumes, which leads to unintuitive results, e.g., the user
draws a constraint expecting that the object will never pass through
a region, and is surprised to discover that the constraint does not
apply to the object’s corner. Fixing this would be a straightfor-
ward application of collision handling techniques, although it might
slow down query processing somewhat. More generally, we could
make the constraints have limited time scope, for example, or de-
sign some form of orientation constraint to make problems like get-
ting the SIGGRAPH letters upright easier to solve. Finally, as sim-
ulators for phenomena such as cloth and hair become faster it may
become possible to extend our work to these domains, but substan-
tial work may be required to enable the storage of and interaction
with such high-dimensional data.

Acknowledgments: The authors would like to thank the anony-
mous reviewers for their helpful comments; Chris Cameron for help
rendering; James Kuffner for helpful discussions; and Matthias
Müller, Emmanuel Marquez, and Philipp Hatt for assistance with
the Ageia PhysX SDK. This work was supported in part by by a
NVIDIA Graduate Fellowship, National Science Foundation grant
CAREER-0430528, Pixar, the Alfred P. Sloan Foundation, The
Boeing Company, hardware donations by NVIDIA and Intel, and
Maya licenses donated by Autodesk.

References

ASSARSSON, U., AND MÖLLER, T. 2000. Optimized view frustum culling
algorithms for bounding boxes. Journal of Graphics Tools 5, 1, 9–22.

BARAFF, D. 1994. Fast contact force computation for nonpenetrating rigid
bodies. In Proceedings of ACM SIGGRAPH 1994, 23–34.

BARZEL, R., HUGHES, J. F., AND WOOD, D. 1996. Plausible motion sim-
ulation for computer animation. In EGCAS ’96: Seventh International

Workshop on Computer Animation and Simulation.

CHENNEY, S., AND FORSYTH, D. A. 2000. Sampling plausible solutions
to multi-body constraint problems. In Proceedings of ACM SIGGRAPH

2000, 219–228.

COHEN, M. F. 1992. Interactive spacetime control for animation. In Com-

puter Graphics (Proceedings of SIGGRAPH 92), 293–302.

FATTAL, R., AND LISCHINSKI, D. 2004. Target-driven smoke animation.
ACM Transactions on Graphics 23, 3 (Aug.), 441–448.

GRASSIA, F. S. 1998. Practical parameterization of rotations using the
exponential map. Journal of Graphics Tools 3, 3, 29–48.

GUENDELMAN, E., BRIDSON, R., AND FEDKIW, R. P. 2003. Nonconvex
rigid bodies with stacking. ACM Transactions on Graphics 22, 3 (July),
871–878.

HAUGLAND, D., HEBER, J. G., AND HUSØY, J. H. 1997. Optimisation
algorithms for ECG data compression. Medical and Biological Engi-

neering and Computing 35, 420–424.

HOCHHEISER, H., AND SHNEIDERMAN, B. 2004. Dynamic query tools
for time series data sets: Timebox widgets for interactive exploration.
Information Visualization 3, 1–18.

KAUFMAN, D. M., EDMUNDS, T., AND PAI, D. K. 2005. Fast frictional
dynamics for rigid bodies. ACM Transactions on Graphics 24, 3 (Aug.),
946–956.

LASZLO, J., VAN DE PANNE, M., AND FIUME, E. L. 2000. Interactive
control for physically-based animation. In Proceedings of ACM SIG-

GRAPH 2000, 201–208.

MARKS, J., ANDALMAN, B., BEARDSLEY, P. A., FREEMAN, W., GIB-
SON, S., HODGINS, J. K., KANG, T., MIRTICH, B., PFISTER, H.,
RUML, W., RYALL, K., SEIMS, J., AND SHIEBER, S. 1997. Design
galleries: A general approach to setting parameters for computer graph-
ics and animation. In Proceedings of ACM SIGGRAPH 1997, 389–400.

MCNAMARA, A., TREUILLE, A., POPOVIĆ, Z., AND STAM, J. 2004.
Fluid control using the adjoint method. ACM Transactions on Graphics

23, 3 (Aug.), 449–456.

MIHALEF, V., METAXAS, D., AND SUSSMAN, M. 2004. Animation and
control of breaking waves. In Proceedings of the 2004 ACM SIGGRAPH

/ Eurographics Symposium on Computer Animation, 315–324.

NYGAARD, R., AND HAUGLAND, D. 1998. Compressing ECG signals by
piecewise polynomial approximation. In Proceedings of the 1998 IEEE

International Conference on Acoustics, Speech, and Signal Processing,
vol. 3, 1809–1812.

O’SULLIVAN, C., DINGLIANA, J., GIANG, T., AND KAISER, M. K.
2003. Evaluating the visual fidelity of physically based animations. ACM

Transactions on Graphics 22, 3 (July), 527–536.

PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. 1998. The
PageRank Citation Ranking: Bringing Order to the Web. Tech. Rep.
SIDL-WP-1999-0120, Stanford Digital Libraries.

PIGHIN, F., COHEN, J. M., AND SHAH, M. 2004. Modeling and editing
flows using advected radial basis functions. In Proceedings of the 2004

ACM SIGGRAPH / Eurographics Symposium on Computer Animation,
223–232.

POPOVIĆ, J., SEITZ, S. M., ERDMANN, M., POPOVIĆ, Z., AND WITKIN,
A. P. 2000. Interactive manipulation of rigid body simulations. In
Proceedings of ACM SIGGRAPH 2000, 209–218.

POPOVIĆ, J., SEITZ, S. M., AND ERDMANN, M. 2003. Motion sketching
for control of rigid-body simulations. ACM Transactions on Graphics

22, 4 (Oct.), 1034–1054.

RASMUSSEN, N., NGUYEN, D. Q., GEIGER, W., AND FEDKIW, R. P.
2003. Smoke simulation for large-scale phenomena. ACM Transactions

on Graphics 22, 3 (July), 703–707.

SALOMON, D. 2004. Data Compression, third ed. Springer-Verlag New
York, Inc.

SHERBONDY, A., AKERS, D., MACKENZIE, R., DOUGHERTY, R., AND

WANDELL, B. 2004. Exploring connectivity of the brain’s white matter
with dynamic queries. In Proceedings of IEEE Visualization 2004, 377–
384.

SHI, L., AND YU, Y. 2002. Object modeling and animation with smoke.
Tech. Rep. UIUCDCS-R-2002-2262, University of Illinois at Urbana-
Champaign, Jan.

SHI, L., AND YU, Y. 2005. Controllable smoke animation with guiding
objects. ACM Transactions on Graphics 24, 1 (Jan.), 140–164.

SHI, L., AND YU, Y. 2005. Taming liquids for rapidly changing targets. In
Proceedings of the 2005 ACM SIGGRAPH / Eurographics Symposium

on Computer Animation, 229–236.

SHOEMAKE, K. 1985. Animating rotation with quaternion curves. In
Computer Graphics (Proceedings of SIGGRAPH 85), 245–254.

SMITH, R. 2006. Open Dynamics Engine v0.5 Users Guide, Feb.

TANG, D., NGO, J. T., AND MARKS, J. 1995. N-body spacetime con-
straints. The Journal of Visualization and Computer Animation 6, 3
(July–Sept.), 143–154.

TREUILLE, A., MCNAMARA, A., POPOVIĆ, Z., AND STAM, J. 2003.
Keyframe control of smoke simulations. ACM Transactions on Graphics

22, 3 (July), 716–723.

WASSERMAN, L. 2004. All of Statistics. Springer-Verlag New York, Inc.

WEINSTEIN, R., TERAN, J., AND FEDKIW, R. 2006. Dynamic simulation
of articulated rigid bodies with contact and collision. IEEE Transactions

on Visualization and Computer Graphics 12, 3 (May), 365–374.

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. In Computer

Graphics (Proceedings of SIGGRAPH 88), 159–168.

