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W e  present a simple sequential algorithm for the maximum flow problem on a network with n nodes, m arcs, and integer 
arc capacities bounded by U. Under the practical assumption that LT is polynomially bounded in n, our algorithm runs 
in time O(nm + nZlog n). This result improves the previous best bound o f  O(nm log(n2/m)), obtained by Goldberg and 
Tarjan, by a factor o f  log n for networks that are both nonsparse and nondense without using any complex data structures. 
W e  also describe a parallel implementation o f  the algorithm that runs in O(nzlog U log p) time in the PRAM model with 
EREW and uses only p processors where p = Tm/nl. 

The maximum flow problem is one of the most 
fundamental problems in network flow theory 

and has been investigated extensively. This problem 
was first formulated by Fulkerson and Dantzig (1955) 
and Dantzig and Fulkerson (1956), and solved by 
Ford and Fulkerson (1956) using their well known 
augmenting path algorithm. Since then, a number of 
algorithms have been developed for this problem; 
some of them are listed in Table I. In the table, n is 
the number of nodes, m is the number of arcs, and U 
is an upper bound on the integral arc capacities. The 
algorithms whose time bounds involve U assume inte- 
gral capacities, whereas others run on arbitrary 
rational or real capacities. 

Edmonds and Karp (1972) showed that the Ford 
and Fulkerson algorithm runs in time O(nm2)if flows 
are augmented along shortest paths from source to 
sink. Independently, Dinic ( 1  970) introduced the con- 
cept of shortest path networks, called layered net-
works, and obtained an O(n2m) algorithm. This 
bound was improved to O(n3)by Karzanov (1974), 
who introduced the concept of prejows in a layered 
network. A prejlow is similar to a flow except that the 
amount flowing into a node may exceed the amount 
flowing out of a node. Since then, researchers have 
improved the complexity of Dinic's algorithm for 
sparse networks by devising sophisticated data struc- 
tures. Among these contributions, Sleator and 
Tarjan's ( 1  983)dynamic tree data structure is the most 
attractive from a worst-case point of view. 

The algorithms of Goldberg (1985)and of Goldberg 
and Tarjan (1986)are a novel departure from these 
approaches in that they do not construct layered net- 
works. Their method maintains a preflow, as per 
Karzanov, and proceeds by pushing flows to nodes 
estimated to be closer to the sink. To estimate which 
nodes are closer to the sink, it maintains a distance 
label for each node that is a lower bound on the length 
of a shortest augmenting path to the sink. Distance 
labels are a better computational device than layered 
networks because the distance labels are simpler to 
understand, easier to manipulate, and easier to use in 
a parallel algorithm. Moreover, by cleverly using the 
dynamic tree data structure, Goldberg and Tarjan 
obtain the best computational complexity for sparse 
as well as dense networks. 

For problems with arc capacities polynomially 
bounded in n, our maximum flow algorithm is an 
improvement of Goldberg and Tarjan's algorithm and 
uses concepts of scaling introduced by Edmonds and 
Karp for the minimum cost flow problem and later 
extended by Gabow (1985) for other network opti- 
mization problems. The bottleneck operation in the 
straightforward implementation of Goldberg and 
Tarjan's algorithm is the number of nonsuturating 
pushes, which is O(n3).However, they reduce the 
computational time to O(nm log(n2/m)) by a clever 
application of the dynamic tree data structure. We 
show that the number of nonsaturating pushes can be 
reduced to O(n210g U) by using excess scaling. Our 
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Table I 

Running Times of the Maximum Flow 


Algorithms 


No. Due to Running Time 

1 Ford and Fulkerson O(nm U )  

(1956) 


2 Edmonds and Karp O(nm2) 

(1972) 


3 Dinic (1970) O(n2m) 

4 Karzanov (1974) O(n3) 

5 Cherkasky (1977) O(n2m'/2) 

6 Malhotra. Kumar and O(n7) 


Maheshwari ( 1978) 

7 Galil (1980) O(n5/3n~211) 

8 Galil and Naamad O(nm log2n) 


(1 980); Shiloach 

(1978) 


9 Shiloach and Vishkin O(n') 

(1 982) 


10 Sleator and Tarjan O(nm log n) 

(1 983) 


1 1  Tarjan(1984) a n 3 )  

12 Gabow (1985) O(nm log U )  

13 Goldberg (1985) O(n3) 

14 Goldberg and Tarjan O(nm log (n2/m)) 


(1986) 

15 Bertsekas (1986) O(n3) 

16 Cheriyan and O(n2m 'I2) 


Maheshwari (1988) 

17 Ahuja and Orlin O(nm + n210g U )  


(this paper) 

18 Ahuja, Orlin and 


Tarjan (1988) 

-

(b) O(nm + n' Jlog b? 

(c) 0( nm log ("---Jy+ 2)) 

algorithm modifies the Goldberg-Tarjan algorithm as 
follows. It performs log U scaling iterations; each 
scaling iteration requires O(n2) nonsaturating pushes 
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mentary data structures with little computational 
overheads. 

This paper also describes a parallel implementation 
of our maximum flow algorithm. Our algorithm is 
difficult to make massi~.ely parallel because the algo- 
rithm exploits the fact that it pushes flow from one 
node at a time. Nevertheless, in the PRAM (Parallel 
Random Access Machine) model with EREW (Exclu- 
sive Read Exclusive Write) our algorithm runs in 
O(n'1og U log p) time and uses only p proces-
sors where p = rmlnl. This algorithm easily extends 
to an O(((nnz/k) + n'log U)log k) algorithm using 
2 s k s p processors. The existing parallel algorithms 
due to Shiloach and Vishkin (1982) and Goldberg and 
Tarjan (1986) run in O(n210g n) time and use n 
processors. For k s n processors. their algorithms run 
in O((n'/k)log k) time (personal communication with 
Andrew Goldberg). For k s pllog C', our algorithm 
runs in O((nm/k)log k) time and provides a speedup 
of n2/m over the existing algorithms. 

1. NOTATION 

Let G = (l?v; '4) be a directed network with a positive 
integer capacity u,, for every arc(i, j )  E A. Let n = I N I 
and m = IA 1. The source s and sink t are two 
distinguished nodes of the network. It is assumed that 
for every arc(z, j) E A, an arc(/, z) is also contained in 
A, possibly with zero capacity. We assume without 
loss of generality that the network does not contain 
multiple arcs and that capacities of arcs directed into 
the source or directed out from the sink are zero. We 
further assume that none of the paths from the source 
to the sink has infinite capacity as such a path can be 
detected easily in O(m) time. Observe that if the 
network contains some infinite capacity arcs but no 
infinite capacity path, then the capacity of such arcs 
can ,,,,, ,  ,,,,,,be replaced by C , u, . We, therefore, 

if we push flows from nodes with suj$cientl.v large 
excesses to nodes with sz{ficiently small excesses while 
never allowing the excesses to become too large. The 
computational time of our algorithm is O(nm + 
n210g U). 

Under the reasonable assumption that L' = O(nk) 
for some k, our algorithm runs in time O(nm + 
n'log n). On networks that are both nondense and 
nonsparse. i.e., m = 8(n1+') for some e with 0 < e < 1, 
our algorithm runs in time O(nun), which improves 
Goldberg and Tarjan's bound of O(nm log(n2/m)) on 
such networks by a factor of log n. Moreover. our 
algorithm is easier to implement and should be more 
efficient in practice, because it requires only ele-

assume that all arcs have finite capacity. Let U = 

max,,,,, ,(u,,]. 
Ajlow is a function x: A -+ R satisfying 

for all iE N - (s.t ]  (1) 

0 6 x,, s I!,, for all (i, j )  E A (3) 

for some u 3 0. The maximum flow problem is to 
determine a flow x for which u is maximized. 
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A preflow x is a function x:  A +R that satisfies (2),  
(3),and the following relaxation of ( I )  

for all i E N - (s ,  t ). ( 4 )  

The algorithms described in this paper maintain a 
preflow at each intermediate stage. 

For a given preflow x ,  we define for each node 
i E N - (s ,  t ) ,  the excess 

A node with positive excess is referred to as an 
active node. We define the excesses of the source and 
sink nodes to be zero; consequently, these nodes are 
never active. The residual capacity of any arc ( i ,  j )  E 
A, with respect to a given preflow x ,  is given by r,, = 

u,, - x,, + x,,. The residual capacity of arc(i, j )  repre-
sents the maximum additional flow that can be sent 
from node i to node j using the arcs (i ,  j )  and ( j ,  i) .  
The network that consists only of arcs with positive 
residual capacities is referred to as the residual net- 
work. Figure 1 illustrates these definitions. 

We define the arc adjacency list A( i )  of a node 
i E N as the set of arcs directed out of the node i, i.e., 
A(i)  := ( ( i ,k )  E A :k E N ) .  Note that our adjacency 
list is a set of arcs rather than the more conventional 
definition of the list as a set of nodes. 

A distance function d: N +Z +for a preflow x is a 
function from the set of nodes to the nonnegative 
integers. We say that a distance function d is valid if 
it also satisfies the following two conditions: 

C l .  d ( t )= 0; 
C2. d ( i )  < d ( j )  + 1 for every arc (i ,  j )  E A with 

r,, > 0. 

Our algorithm maintains a valid distance function 
at each iteration. We also refer to d ( i )as the distance 
label of node i. It is easy to demonstrate by induction 
that d ( i )is a lower bound on the length of the shortest 
path from i to t in the residual network. Let i = i ,  -
il - . . . -ii - i1,+)= t be any path of length k in the 
residual network from node i to the sink. Then from 
condition C2 we have, d ( i )  = d ( i l )  < d(i2) + 1, 
d(i2)< d(i3)+ 1, . . . , d(il,)< d(i1,+))+ 1 = 1 .  This 
yields d ( i )< k for any path of length k in the residual 
network and, hence, must also hold for the shortest 
path. If for each i, the distance label d ( i )  equals the 
minimum length of any path from i to t in the residual 
network, then we call the distance label exact. For 
example, in Figure lc, d = (0,  0 ,  0,  0 )  is a valid 

a. Network with arc ca acities. 
Node 1 is the source a n i n o d e  4 is 
sink. (Arcs with zero capacities are 
not shown.) 

b. Network with a preflow x 

c. 	 The residual network with 
residual arc capacities 

Figure 1. 	Illustrations of a preflow and the residual 
network. 

distance label, though d = (3,  1 ,  2, 0 )  represents the 
exact distance label. 

An arc (i,j )  in the residual network is called admis-
sible if it satisfies d ( i )= d ( j )  + 1. An arc that is not 
admissible is called an inadmissible arc. The algo- 
rithms discussed in this paper push flow only on 
admissible arcs. Lastly, all algorithms in this paper are 
assumed to be of base 2 unless stated otherwise. 

2. PREFLOW-PUSH ALGORITHMS 

The preflow-push algorithms for the maximum flow 
problem maintain a preflow at every step and proceed 
by pushing the node excesses closer to the sink. The 
first preflow-push algorithm is due to Karzanov. 
Tarjan (1984) has suggested a simplified version of 
this algorithm. The recent algorithms of Goldberg 
( 1985) and Goldberg and Tarjan ( 1986) are based on 
ideas similar to those presented in Tarjan, but they 



use distance labels to direct flows closer to the sink 
instead of constructing layered networks. We refer to 
their algorithm as the (distance-directed) preflow-push 
algorithm. In this section, we review the basic features 
of their algorithm, which for the sake of brevity, we 
simply refer to as the preflow-push algorithm. Here 
we describe the 1-phase version of the preflow-push 
algorithm presented by Goldberg (1987). The results 
in this section are due to Goldberg and Tarjan (1986). 

All operations of the preflow-push algorithm are 
performed using only local information. At each iter- 
ation of the algorithm (except at the initialization and 
at the termination) the network contains at least one 
active node, i.e., a nonsource and nonsink node with 
positive excess. The goal of each iterative step is to 
choose some active node and to send its excess closer 
to the sink, with closer being judged with respect to 
the current distance labels. If excess at this node 
cannot be sent to nodes with smaller distance labels, 
then the distance label of the node is increased. The 
algorithm terminates when the network contains no 
active nodes. The preflow-push algorithm uses the 
following subroutines: 

PREPROCESS. On each arc (s, j )  E A@), send u, 
units of flow. Let d(s) = n and d(t) = 0. Let d(i) = 1 
for each i # s or t. (Alternatively, any valid labeling 
can be used, e.g., the distance label for each node 
i # s, t can be determined by a backward breadth first 
search on the residual network starting at node t.) 

PUSH(i). Select an admissible arc (i, j )  in A(i). Send 
6 = min(e,, r,,) units of flow from node i to j. 

We say that a push of flow on arc (i, j ) is saturating 
if 6 = r,,, and nonsaturating otherwise. 

RELABEL(i). Replace d(i) by min(d(j) + 1 :(i, j )  E 
A(i) and r,, > 0). 

This is called a relabel step. The result of the relabel 
step is to create at least one admissible arc on which 
further pushes can be performed. 

The generic version of the preflow-push algorithm 
is given below. 

algorithm PREFLOW-PUSH; 
begin 

PREPROCESS; 
while there is an active node do 
begin 

select an active node i; 

if there is an admissible arc in A(i) then PUSH(i) 

else RELABEL(i); 


end; 
end. 
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Figure 2 illustrates the steps PUSH(i) and 
RELABEL(i) as applied to the network in Figure la. 
The number beside each arc represents its residual 
capacity. Figure 2a specifies the residual network after 
the PREPROCESS step. Suppose the algorithm selects 
node 2 for examination. Since arc (2,4) has a residual 
capacity r,, = 1 and d(2) = d(4) + 1, the algorithm 
performs a saturating push of value F = min(2, 1) 
units. The push reduces the excess of node 2 to 1. 
Arc (2, 4) is deleted from the residual network and 

(a) The residual network after the pre-processing step. 

(b) After the execution of step PUSH(2). 

(c) After the execution of step RELABEL(2). 

Figure 2. Illustrations of push and relabel steps. 



arc (4, 2) is added to the residual network. Since 
node 2 is still an active node, it can be selected again 
for further pushes. Arcs (2, 3) and (2, 1) have posi- 
tive residual capacities, but they do not satisfy the 
distance condition. Hence, the algorithm performs 
RELABEL(2), and gives node 2 a new distance 
df(2)= minjd(3) + 1, d(1) + 1 )  = minj2, 51 = 2. 

The preprocess step accomplishes several important 
tasks. First, it causes the nodes adjacent to s to have 
positive excess, so that subsequently we can select 
nodes for push or relabel steps. Second, by saturating 
arcs incident to s, the feasibility of setting d(s) = n is 
immediate. Third, since the distance label d(s) = n 
is a lower bound on the length of the minimum path 
from s to t, there is no path from s to t after the 
PREPROCESS step. Furthermore, since distance 
labels are nondecreasing (see Lemma I), we also are 
guaranteed that in subsequent iterations the residual 
network will never contain a directed path from s to 
t, and so there can never be any need to push flow 
from s again. 

In our improvement of the preflow-push algorithm, 
we need a few of the results given in Goldberg and 
Tarjan (1986). We include some of their proofs in 
order to make this presentation more self-contained. 
The interested reader is encouraged to read the origi- 
nal paper by Goldberg and Tarjan which discusses 
other versions of preflow-push algorithms. 

Lemma 1. The generic prepow-push alporithm main- 
tains valid distance labels at each step. Moreover, at 
each relabel step the distance label of some node 
strictly increases. 

Proof. First note that the preprocess step constructs 
valid distance labels. Assume inductively that the dis- 
tance function is valid prior to an operation, i.e., it 
satisfies the validity conditions C1 and C2. A push 
operation on the arc (i,j )  may create an additional 
arc (j, i)  with 5,>0, and an additional condition d( j )  
s d(i)+ I needs to be satisfied. This validity condition 
remains satisfied since d(i) = d ( j )  + 1 by the property 
of the push operation. A push operation on arc (i, j )  
might delete this arc from the residual network, but 
this does not affect the validity of the distance func- 
tion. During a relabel step, the new distance label of 
node i is d'(i) = minjd(j) + 1: ( I ,  j )  E A(i) and 
r, > O),  which again is consistent with the validity 
conditions. The relabel step is performed when there 
is no arc (i, j )  E A(i) with d(i) = d( j )  + 1 and 
r, > 0. Hence, d(i) < minjd(j) + 1: (i, j )  E A(i) and 
I;, >01 = d'(i), thereby proving the second part of the 
lemma. 

Lemma 2. At any stage ~fthepre$70w-push algorithm, 
,for each node i with positive excess, there is a directed 
pathfiom node i to node s in the residual ~zetwork. 

Proof. By the flow decomposition theory of Ford and 
Fulkerson, any preflow x can be decomposed with 
respect to the original network G into thc sum of 
nonnegative flows along: i) paths from s to t, ii) paths 
from s to active nodes, and iii) flows around directed 
cycles. Let i be an active node relative to the preflow 
x in G. Then, there must be a path P from s to i in 
the flow decomposition of x because paths from s to 
t and flows around cycles do not contribute to the 
excess at node i. Then the reversal of P (P with the 
orientation of each arc reversed) is in the residual 
network, and hence, there is a path from i to s in the 
residual network. 

Corollary 1. For each node i E N, d(i) < 2n. 

Proof. The last time node i was relabeled, it had a 
positive excess, and hence, the residual network con- 
tained a path of length at most n - 1 from i to s. The 
fact that d(s) = n and condition C2 imply that d(i) < 
d(s) + n - 1 < 2n. 

Lemma 2 also implies that a relabel step never 
minimizes over an empty set. 

Corollary 2. The number of relabel steps is less than 
2n'. 

Proof. Each relabel step increases the distance label 
of a node by at least one, and by Corollary 1 no node 
can be relabeled more than 272 times. 

Corollary 3. The number of saturating pushes is no 
more than Yzm. 

Proof. Suppose that arc (i, j )  becomes saturated at 
some iteration (at which time d(i) = d( j )  + 1). Then 
no more flow can be sent on (i, j )  until flow is sent 
back from j to i, at which time d ' ( j )  = df( i )+ 1 2 
d(i) + 1 = d ( j )  + 2; this flow change cannot occur 
until d ( j )  increases by at least 2. Thus by Corollary 1, 
arc (i, j )  can become saturated at most n times, and 
the total number of arc saturations is no more than 
Yzm. (Recall that we assume that (i, j )  and ( j , i) are 
both in A, so the number of arcs in the residual 
network is no more than m.) 

Lemma 3. The ~zumber of ~zonsaturating pushes is at 
most 27z21n. 



Proof. See Goldberg and Tarjan (1986). 

Lemma 4. The algorithm terminates with a ~naxilnum 
pow. 

Proof. When the algorithm terminates, each node in 
N - (s ,  tl has zero excess; so the final preflow is a 
feasible flow. Furthermore, since the distance labels 
satisfy conditions C1 and C2 and d(s)= n, it follows 
that upon termination, the residual network contains 
no directed path from s to t. This condition is the 
classical termination criterion for the maximum flow 
algorithm of Ford and Fulkerson. 

The bottleneck operation in many preflow-based 
algorithms, such as the algorithms due to Karzanov; 
Tarjan; and Goldberg and Tarjan (1986),is the num- 
ber of nonsaturating pushes. A partial explanation of 
why the number of nonsaturating pushes dominates 
the number of saturating pushes is as follows: The 
saturating pushes cause structural changes-they 
delete saturated arcs from the residual network. This 
observation leads to a bound of O(nm)on the number 
of saturating pushes-no matter in which order they 
are performed. The nonsaturating pushes do not 
change the structure of the residual network and seem 
more difficult to bound. Goldberg (1985)showed that 
the number of nonsaturating pushes is O(n3)when 
nodes are examined in a first-in first-out order. 
Goldberg and Tarjan (1986)reduced the running time 
of this algorithm by using dynamic trees to reduce the 
average time per nonsaturating push. Cheriyan and 
Maheshwari (1988)showed that the number of non- 
saturating pushes can be decreased to O(n'ml") if 
flow is always pushed from a node with a highest 
distance label, and they showed that this bound is 
tight. They also showed that the bounds O(n2m)and 
O(n3)are, respectively, tight for the generic preflow- 
push and first-in first-out preflow-push algorithms. In 
the next section, we show that by using scaling, we 
can dramatically reduce the number of nonsaturating 
pushes to O(n210g U). We recently discovered new 
scaling algorithms that further reduce the number of 
nonsaturating pushes to O(n210g GT/log log U )  or to 
O(n2m.These results are presented in Ahuja, 
Orlin and Tarjan ( 1988). 

3. THE EXCESS SCALING ALGORITHM 

Our maximum flow algorithm improves the generic 
preflow-push algorithm of Section 2 by using excess 
scaling to reduce the number of nonsaturating pushes 
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from O(?z2m)to O(n210gU).The basic idea is to push 
flow from active nodes with sl~ficient!l, large excesses 
to nodes with szlfficiently s~nall excesses while never 
letting the excesses become too large. We refer to our 
algorithm as the excess scaling algorithm. 

The algorithm performs K = [log U1 + 1 scaling 
iterations. For a scaling iteration, the excess-
dominator is defined to be the least integer A that is a 
power of 2 and satisfies e, s A for all i E N. Further-
more, a new scaling iteration is considered to have 
begun whenever A decreases by a factor of 2. In a 
scaling iteration, we guarantee that each nonsaturating 
push sends at least A/2 units of flow and that the 
excess-dominator does not increase. To ensure that 
each nonsaturating push has a value of at least A/2, 
we consider only nodes with an excess more than 
A/2; and among these nodes with large excess, we 
select a node with a minimum distance label. This 
choice ensures that the flow will be sent to a node 
with a small excess. We show that after at most 
8n2 nonsaturating pushes, the excess-dominator de- 
creases by a factor of at least 2, and a new scaling 
iteration begins. After at most K scaling iterations, all 
node excesses drop to zero and we obtain a maximum 
flow. 

In order to select an active node with excess more 
than A/2 and with a minimum distance label among 
such nodes, we maintain the lists LIST(r) = { iE N :  
e, > A/2 and d ( i )  = r]  for each r = 1 ,  . . . , 2n - 1. 
These lists can be maintained in the form of either 
linked stacks or queues (see, for example, Aho, Hop- 
croft and Ullman 1974),which enables insertion and 
deletion of elements in O(1)time. The variable level 
represents a lower bound on the smallest index r for 
which LIST(r)is nonempty. 

As per Goldberg and Tarjan, we use the following 
data structure to efficiently select the admissible arc 
for pushing flow out of a node. We maintain with 
each node i the list, A(i),  of arcs directed out of it. 
Arcs in each list can be arranged arbitrarily, but once 
the order is decided, it remains unchanged throughout 
the algorithm. A special arc named null is appended 
to the end of each list. Each node i has a current arc 
(i, j ) ,  which is the current candidate for pushing flow 
out of i. Initially, the current arc of node i is the first 
arc in its arc list. This list is examined sequentially, 
and whenever the current arc is found to be inadmis- 
sible for pushing flow, the next arc in the arc list is 
made the current arc. When the arc list has been 
examined completely, the null arc is reached. At this 
time, the node is relabeled and the current arc is again 
set to the first arc in the arc list. 



754 / AHUJAAND OKLIN 

The algorithm can be formally described as 
follows. 

Algorithm MAX-FLOW; 
begin 

PREPROCESS; 
K := I + riog ui; 
f o r k =  1 to Kdo 
begin 

A = 2K-'' 

for each i E N do if el > A/2 then add i to 
LIST(d(i)); 

level := 1; 
while level < 272 do 

if LIST(leve1) = 0 then level := level + 1 
else 
begin 

select a node i from LIST(leve1); 
PUSH/RELABEL(i); 

end; 
end; 

end: 

Procedure PUSH/RELABEL(i); 
begin 

found := false; 
let (i, j )  be the current arc of node i; 
while found = false and (i,j )  # null do 

if d(i) = d( j )  + 1 and r,, > 0 then found := 
true 

else replace the current arc of node i by the next 
arc (i, j);  

if found = true then (found an admissible arc) 
begin 

push min(e,, r,,, A - e,) units of flow on arc 
(i7 J);  
update the residual capacity r,, and the excesses el 

and e,; 
if (the updated excess) el s A/2, then delete node 

i from LIST(d(i)); 
if j # s or t and (the updated excess) e, > A/2, 

then add node j to LIST(d(j)) and set level := 
level - 1; 

end 
else {finished arc list of node i ]  
begin 

delete node i from LIST(d(i)); 
update d(i) := min(d(j)+ 1; (i, j )  EA(i) and 

r,, > 0); 
add node i to LIST(d(i)) and set the current arc 

of node i to the first arc of A(i); 
end; 

end. 

4. COMPLEXITY OF THE ALGORITHM 

In this section, we show that the distance directed 
preflow-push algorithm with excess scaling correctly 
computes a maximum flow in O(nm + n210gU )time. 

Lemma 5. The excess scaling algorithm satisfies the 
following two conditions: 

C3. Each nonsaturatingpush,fiom a node i to a node 
j sends at least A/2  units ~ff low.  

C4. No excess increases above A (i.e., the excess-
dominator does not increase subsequent to a 
push). 

Proof. For every push on arc (i, J )  we have e, > A/2 
and e, < A/2 because node i is a node with the smallest 
distance label among nodes whose excess is more than 
A/2, and d ( j )  = d(i) - 1 < d(i) by the property of 
the push operation. Hence, by sending minie,, r,,, 
A - e,) 3 min(A/2, r,,) units of flow, we ensure that 
in a nonsaturating push the algorithm sends at least 
A /2  units of flow. Furthermore, the push operation 
increases the excess at node j only. Let e; be the excess 
at node j after the push. Then e; = e, + min(e,, r,,, 
A - e,) < e, + A - e, < A. All node excesses thus 
remain less than or equal to A. 

While there are other ways of ensuring that the 
algorithm always satisfies the properties stated in C3 
and C4, pushing flow from a node with excess greater 
than A / 2  and with minimum distance among such 
nodes is a simple and efficient way of enforcing these 
conditions. 

With properties C3 and C4, the push operation may 
be viewed as a kind of restrained greedy approach. 
Property C3 ensures that the push from i to j is 
sufficiently large to be effective. Property C4 ensures 
that the maximum excess never exceeds A during an 
iteration. In particular, rather than greedily getting rid 
of all its excess, node i shows some restraint to prevent 
e, from exceeding A. Keeping the maximum excess 
lower may be useful in practice as well as in theory. 
Its major impact is to encourage flow excesses to be 
distributed fairly equally in the network. This distri- 
bution of flows should make it easier for nodes to 
send flow towards the sink. This also may be impor- 
tant because of the following consideration: suppose 
several nodes send flow to a single node j creating a 
large excess. It is likely that node j is not able to send 
the accumulated flow closer to the sink, in which case, 
its distance label increases and much of its excess has 
to be returned. This phenomenon is prevented by 
maintaining condition C4. 



Lemma 6. If each push satisfies conditions C3 and 
C4, then the number of nonsaturating pushes per 
scaling iteration is at most 8n2. 

Proof. Consider the potential function F = C,El e, 
d(i)/A. The initial value of F at the beginning of the 
A-scaling iteration is bounded by 272' because e> is 
bounded by A and d(i) is bounded by 2n. When the 
algorithm examines node i, one of the following two 
cases must apply. 

Case 1. The algorithm is unable to find an arc along 
which flow can be pushed. This case occurs when the 
current arc of node i reaches the end of A(i). Observe 
that if an arc (i, j )  is found to be inadmissible earlier, 
then it remains inadmissible until d(i) increases 
because d ( j )  is nondecreasing. Hence, there exists no 
admissible arc emanating from node i and the relabel 
operation increases d(i) by e 3 1 units. This increases 
F by at most e units. Since the total increase in d(i) 
throughout the running of the algorithm for each i is 
bounded by 2n, the total increase in F due to relabel- 
ings of nodes is bounded by 2n' in the scaling iteration. 
(Actually, the increase in F due to node relabelings is 
at most 2n' over all scaling iterations.) 

Case 2. The algorithm is able to identify an arc on 
which flow can be pushed and so it performs either a 
saturating or a nonsaturating push. In either case, F 
decreases. A nonsaturating push on arc (i, j )  sends at 
least A/2 units of flow from node i to node j and since 
d ( j )  = d(i) - 1, this decreases Fby at least 112 units. 
As the initial value of Ffor a scaling iteration plus the 
increases in F sum to at most 4n', this case cannot 
occur more than 8nQimes. 

Theorem 1. The scaling algorithm perfonns O(n2 
log U) nonsaturating pushes. 

Proof. The initial value of the excess-dominator A is 
2""" " < 2U. By Lemma 6, the value of the excess- 
dominator decreases by a factor of 2 within 8n' 
nonsaturating pushes and a new scaling iteration 
begins. After 1 + [log U1 such scaling iterations, 
A < 1; and by the integrality of the flow e, = 0 for all 
i E N - (s,t ] .  The algorithm thus obtains a feasible 
flow, which by Lemma 4 must be a maximum flow. 

Theorem 2. The complexity ofthe excess scaling algo- 
rithm is O(nm + n'log U ) .  

Proof. The complexity of the algorithm depends upon 
the number of executions of the while loop in the 
main program. In each such execution, either a 
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PUSH/RELABEL(i) step is performed or the value of 
the variable level increases. Each execution of the 
procedure PUSH/RELABEL(i) results in one of the 
following outcomes. 

Case 1. A push is performed. Since the number of 
saturating pushes is O(nm) and the number of 
nonsaturating pushes is O(n210g U ) , this case occurs 
O(nm + n'log U) times. 

Case 2. The distance label of node i goes up. By 
Corollary 1, this case can occur O(n) times for each 
node i and O(n2) in total. 

Thus the algorithm calls the procedure PUSH/ 
RELABEL O(nm + n210g U) times. The effort needed 
to find an arc to perform the push operation is O(1) 
plus the number of times the current arc of node i is 
replaced by the next arc in A(i). After I A(i) I such 
replacements for node i, Case 2 occurs and the 
distance label of node i goes up. Thus, the total 
effort needed is C,,, 2n I A(i) I = O(~2m) plus the num- 
ber of PUSHIRELABEL operations. This is clearly 
O(nm + ~z'log U). 

Next consider the time needed for relabeling oper- 
ations. Computing the new distance label of node i 
requires examining arcs in A(i). This yields a total of 
CiEl 2n I A(i) I = O(nm) time for all relabeling oper- 
ations. The lists LIST(r) are stored as linked stacks 
and queues, hence, addition and deletion of any ele- 
ment takes O(1) time. Consequently, updating these 
lists is not a bottleneck operation. 

Finally, we need to bound the number of increases 
of the variable level. In each scaling iteration, level is 
bounded above by 272 - 1 and bounded below by 1. 
Hence, its number of increases per scaling iteration is 
bounded by the number of decreases plus 2n. 
Furthermore, level can decrease only when a push 
is performed and, in such a case, it decreases 
by 1. Hence, its increases over all scaling itera- 
tions are bounded by the number of pushes plus 
2n(l + [log Ul), which is again O(nm + ~z'logU). 

5. 	REFINEMENTS 

As a practical matter, several modifications of the 
algorithm might improve its actual execution time 
without affecting its worst-case complexity. We sug- 
gest three modifications: 

1. Modify the scale factor. 
2. Allow 	 some nonsaturating pushes of a small 

amount. 
3. 	Try to locate nodes disconnected from the sink. 



The first suggestion is to consider the scale factor. 
The algorithm in the present form uses a scale factor 
of 2, i.e., it reduces the excess-dominator by a factor 
of 2 in each scaling iteration. In practice, however, 
some other fixed integer scaling factor p Z- 2 might 
yield better results. The excess-dominator then will be 
the least power of p that is no less than the excess at 
any node, and property C3 becomes the following. 

C3'. Each nonsaturating push from a node i to a node 
j sends at least Alp units of flow. 

The scaling algorithm presented earlier easily can 
be altered to incorporate the p scale factor by letting 
LIST(r) = ji E N:e, > Alp and d(i) = r]. The 
algorithm can be shown to run in O(nm + pn'log,, U) 
time. From the worst-case point of view any fixed 
value of p is optimum; the best choice for the value 
of p in practice should be determined empirically. 

The second suggestion focuses on the nonsaturating 
pushes. Our algorithm as stated selects a node with 
e, > A/2 and performs a saturating or a nonsaturating 
push. We could, however, keep pushing the flow out 
of this node until either we perform a nonsaturating 
push of a value at least A/2 or reduce its excess to 
zero. This variation might produce many saturating 
pushes from the node and even allow pushes after its 
excess decreases below A/2. Also, the algorithm as 
stated earlier sends at least A/2 units of flow during 
every nonsaturating push. The same complexity of 
the algorithm is obtained if for some fixed r Z- 1,  one 
out of every r 1 nonsaturating pushes sends at least 
A/2 units of flow. 

The third suggestion recognizes that in practice one 
potential bottleneck is the number of relabels. In 
particular, the algorithm recognizes that the residual 
network contains no path from node i to node t only 
when d(i) exceeds n - 2. Goldberg (1987) suggested 
that it may be desirable to occasionally perform a 
breadth first search to make the distance labels exact. 
He discovered that a judicious use of breadth first 
search dramatically speeds up the algorithm. 

An alternative approach is to keep track of the 
number n,, of nodes whose distance is k. If n,, decreases 
to 0 after any relabel for some k, then each node with 
a distance greater than k is disconnected from the sink 
in the residual network. (Once node j is disconnected 
from the sink, it stays disconnected since the shortest 
path from j to t is nondecreasing in length.) We avoid 
selecting such nodes until all nodes with positive 
excess become disconnected from the sink. At this 
time, the excesses of the nodes are sent back to the 
source. This approach essentially yields the two phase 
approach to solve the maximum flow problem as 

outlined in Goldberg and Tarjan (1986). The first 
phase constructs a maximum preflow that is converted 
to a maximum flow in the second phase. 

6. PARALLEL IMPLEMENTATION 

In this section, we describe a parallel implementation 
of the excess scaling algorithm. We analyze this imple- 
mentation in the PRAM (Parallel Random Access 
Machine) Model with EREW (Exclusive Read Exclu- 
sive Write). Our algorithm runs in O(n210g U log p) 
time and uses p processors, where p = rmlnl. More 
generally, our algorithm runs in O(((nm/k) + n'log 
U)log k) time for any k 6p. We describe the algorithm 
for k = p processors, but the extension to k < p is 
immediate. 

Our algorithm performs the followingparallelprejx 
operations. 

Operation 1. Given I 6  p numbers d( j l ) ,  d(j2), . . . , 
d(j,), determine the minimum of these numbers. 

Operation 2. Given I < p numbers f( j , ) ,  ,f(j2), . . . , 
.f(;,), compute the partial sums .f(j~),  ,f(j,) + f(jd, 
f ( j l )  +f(j2) +,f(j3), . . . , f ( j , )  + , f ( j 4  + . . . +.~(JI) .  

Operation 3. Given I 6  p numbers F( j I ) ,  F(j,), . . . , 
F(j,), such that F ( j , )  < F(j,) 6 . . . < F(jl) Z- A/2, 
determine the minimum index w such that F( j , , )  2 
A/2. 

Operation 4. Given 1 s p numbers e(j,), e(j2), . . . , 
e(j,), form the doubly linked list of numbers whose 
value is more than A/2. 

Using a parallel prefix, each of these operations can 
be performed in O(1og p) time using p/(log p) proces- 
sors (see Kindervater and Lenstra 1988 for Operations 
1 and 2, and Dekel and Sahni 1983 for Operation 3.) 
Operation 4 can also be performed in O(1og p) time 
using recursive doubling (personal communication 
with J. K. Lenstra). 

A straightforward parallel implementation of the 
excess scaling algorithm requires n processors. Our 
reduction of the number of processors required by the 
algorithm is based on the following method. While 
performing a push at node i or relabeling this node, 
the algorithm does not consider all arcs in A(i) simul- 
taneously, but it partitions arcs in A(i) into groups, 
each containing at most p arcs, and considers only 
one group at a time. For example, while relabel- 
ing node i, the algorithm sequentially examines 
r I A(i) I/p1 groupings and using Operation 1 computes 
the minimum of a group in O(1og p) time. Since any 



node can be relabeled at most 2n times, the total 
number of groups examined for all nodes is 

Thus, partitioning arcs in A(i) into groups does not 
increase the computational time in the worst case. 

Our parallel algorithm performs the PUSHIRELA- 
BEL(i) step on a group of arcs in A(i) in parallel. The 
algorithm maintains for each node i an index current 
group, which plays the same role as the current arc 
does for the sequential algorithm. If the current group 
of the node i is null (i.e., all of its groups have been 
examined), then the node is relabeled. Otherwise it 
assigns a parallel processor to each arc in the group 
which easily can be done in O(1og p) time. Let the 
arcs in this group be (i, jI) ,  (i, j?), . . . , (i, j,) for some 
1G p. Each processor checks the arc (i, j )  it is assigned 
to and defines a number f ( j )  = r,, if arc (i, j )  is 
admissible, and f ( j )  = 0 otherwise. Then the algo- 
rithm performs Operation 2 to compute the partial 
sums of the f ( . )  values. This operation results in the 
following two cases. 

Case 1. f ( j l )  + f(j2) + . . . + .f(j,) 6 A/2. The algo- 
rithm saturates all admissible arcs in the group, 
updates the residual capacities of arcs and excesses at 
the nodes, and replaces the current group of node i by 
the next group. 

Case 2. f ( j l )  + f(j2) + . . . + f(1,) > A/2. The algo- 
rithm performs Operation 3 with F ( . )  equal to the 
partial sums at the nodes. The algorithm saturates all 
arcs (i, j,), (i, j2), . . . ; (i, j l L - i )  and performs a non- 
saturating push of value min{e(i) - F ( j, - ,  ), r,,,<, 
A - e(j,,)) on arc (i, J,,). The algorithm updates the 
residual capacities of arcs and excesses at the nodes. 

Let e ( j )  denote the updated excesses of nodes in 
both cases. The algorithm finally performs Opera- 
tion 4 on numbers e(jl) ,  e(j2), . . . , e(j,) to form the 
doubly linked list LIST(d(jI)). If this list is nonempty, 
then the variable level is also updated. 

We count the number of parallel prefix operations 
performed by the algorithm. Each iteration of the 
algorithm results in one of the following outcomes: 
a) the algorithm saturates all arcs in a group; b) the 
algorithm performs a nonsaturating push; and c) the 
algorithm relabels a node. Since an arc is saturated at 
most n times, the number of occurrences of case a is 
bounded by C:'=] T I  A(i) Ilpln s 2n2. Each occurrence 
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of case b pushes at least A/2 units of flow; hence, this 
case occurs at most O(n210g U) times. The algorithm 
performs O(1) parallel prefix operations for each 
occurrence of case a and case b. Furthermore, it has 
been shown that the algorithm performs at most 4n2 
parallel prefix operations during all relabel steps. Con- 
sequently, the algorithm performs O(n210g U) parallel 
prefix operations and runs in O(n210g U log p) time. 

The only modification to the algorithm for k 6 p 
parallel processors is that the arcs in each adjacency 
list A(i) are partitioned into groups of at most k arcs. 
In this case, the number of parallel prefix operations 
for group saturations and node relabeling is O(nm/k) 
and the number of nonsaturating pushes remains 
unchanged. We have, thus, established the following 
result. 

Theorem 3. In the PRAM model with EREW, the 
parallel excess scaling algorithm runs in O(((nm/k) + 
n'log U)log k) time using k G p processors. 

7. RELATEDRESEARCH 

Our improvement of the distance directed preflow- 
push algorithm has several advantages over other algo- 
rithms for the maximum flow problem. Our algorithm 
is superior to all previous algorithms for the maximum 
flow problem under the reasonable assumption that 
U is polynomially bounded in n. Also, the algorithm 
utilizes very simple data structures that make it attrac- 
tive from an implementation viewpoint. 

Our algorithm is a novel approach to combinatorial 
scaling algorithms. In the previous scaling algorithms 
developed by Edmonds and Karp, Rock 1980, and 
Gabow, scaling involved a sequential approximation 
of either the cost coefficients or the capacities and 
right-hand sides. For example, we first solve the prob- 
lem with the costs C approximated by C/2' for some 
integer T; we then reoptimize to solve the problem 
with costs approximated by C/2T-', and then reopti- 
mize for the problem with costs approximated by 
C/2T-2, and so forth. Our excess scaling algorithm 
does not fit into this standard framework. Rather, our 
algorithm works with true data, relaxes the flow con- 
servation constraints and scales the maximum 
amount of relaxation. 

The preflow-push algorithms for the maximum flow 
problem have been extended for the minimum cost 
flow problem. A generalization of the Goldberg-
Tarjan maximum flow algorithm to the minimum 
cost flow problem was developed by Bertsekas (1986). 
This algorithm, however, was only pseudopolynomial. 
Goldberg and Tarjan (1987) incorporated cost scaling 



in this approach and obtained a polynomial time 
algorithm. The algorithm of Goldberg and Tarjan 
(1987) is similar to our algorithm-it also works with 
true data, relaxes the complementary slackness con- 
ditions and gradually decreases the relaxation to zero. 

The scaling algorithm for the maximum flow prob- 
lem can be improved further by using more clever 
rules to push flow or by using dynamic trees. We 
describe such improvements in Ahuja, Orlin and 
Tarjan. We show that by using a larger scale factor 
and by pushing flow from a node with the highest 
distance label among nodes having suficiently large 
excess, the algorithm runs in O(nm+ n210g U/log log 
U) time. (Assume that U 3 4.) We describe another 
variation of the excess scaling algorithm that runs in 
O(nm + n2 K v )  time. Use of the dynamic tree 
data structure further improves the complexity of this 
algorithm to O(nm log(n K u / m  + 2)). 

We also have undertaken an extensive empirical 
study to assess the computational merits of the 
preflow-push algorithms versus the previous best 
algorithms, those of Dinic and Karzanov. Our exper- 
iments so far suggest that preflow-push algorithms are 
substantially faster than Dinic's and Karzanov's 
algorithms. 

Our algorithms and those due to Goldberg and 
Tarjan suggest the superiority of distance label based 
approaches over the layered network based ap-
proaches. The improvements we obtain do not seem 
to be possible for the algorithms utilizing layered 
networks. The distance labels implicitly store dynam- 
ically changing layered networks and hence are more 
powerful. We show the use of distance labels in aug- 
menting path algorithms, capacity scaling algorithms 
and for unit capacity networks in Orlin and Ahuja 
(1987). 

The maximum flow problem on bipartite networks 
is an important class of the maximum flow problem 
(see Gusfield, Martel and Fernandez-Baca 1985). The 
bipartite network is a network G = (N,A), such that 
N = N,  U N2 and A C N ,  X N2. Let n, = IN, I and 
n2 = I N2 I .  For cases where nl << nz, our maximum 
flow algorithm can be modified to run in O(n,m + 
n: log U )  time, thus resulting in significant speedup 
over the original algorithm. Our results on bipartite 
network flows will appear in a future paper jointly 
with C. Stein and R. Tarjan. 
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