
A Fast and Simple Algorithm for the Maximum Flow Problem

R. K. Ahuja; James B. Orlin

Operations Research, Vol. 37, No. 5. (Sep. - Oct., 1989), pp. 748-759.

Stable URL:

http://links.jstor.org/sici?sici=0030-364X%28198909%2F10%2937%3A5%3C748%3AAFASAF%3E2.0.CO%3B2-%23

Operations Research is currently published by INFORMS.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/informs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed Sep 19 16:05:45 2007

http://links.jstor.org/sici?sici=0030-364X%28198909%2F10%2937%3A5%3C748%3AAFASAF%3E2.0.CO%3B2-%23
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/informs.html

A FAST AND SIMPLE ALGORITHM FOR

THE MAXIMUM FLOW PROBLEM

R. K.AHUJA
Massachusetts Institute of Technology. Cambridge, Massachusetts and Indian Institute of Technology, Kanpur. India

JAMES B. ORLlN
Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received June 1987; revisions received February, October 1988; accepted June 1988)

W e present a simple sequential algorithm for the maximum flow problem on a network with n nodes, m arcs, and integer
arc capacities bounded by U. Under the practical assumption that LT is polynomially bounded in n, our algorithm runs
in time O(nm + nZlog n). This result improves the previous best bound o f O(nm log(n2/m)), obtained by Goldberg and
Tarjan, by a factor o f log n for networks that are both nonsparse and nondense without using any complex data structures.
W e also describe a parallel implementation o f the algorithm that runs in O(nzlog U log p) time in the PRAM model with
EREW and uses only p processors where p = Tm/nl.

The maximum flow problem is one of the most
fundamental problems in network flow theory

and has been investigated extensively. This problem
was first formulated by Fulkerson and Dantzig (1955)
and Dantzig and Fulkerson (1956), and solved by
Ford and Fulkerson (1956) using their well known
augmenting path algorithm. Since then, a number of
algorithms have been developed for this problem;
some of them are listed in Table I. In the table, n is
the number of nodes, m is the number of arcs, and U
is an upper bound on the integral arc capacities. The
algorithms whose time bounds involve U assume inte-
gral capacities, whereas others run on arbitrary
rational or real capacities.

Edmonds and Karp (1972) showed that the Ford
and Fulkerson algorithm runs in time O(nm2)if flows
are augmented along shortest paths from source to
sink. Independently, Dinic (1 970) introduced the con-
cept of shortest path networks, called layered net-
works, and obtained an O(n2m) algorithm. This
bound was improved to O(n3)by Karzanov (1974),
who introduced the concept of prejows in a layered
network. A prejlow is similar to a flow except that the
amount flowing into a node may exceed the amount
flowing out of a node. Since then, researchers have
improved the complexity of Dinic's algorithm for
sparse networks by devising sophisticated data struc-
tures. Among these contributions, Sleator and
Tarjan's (1 983)dynamic tree data structure is the most
attractive from a worst-case point of view.

The algorithms of Goldberg (1985)and of Goldberg
and Tarjan (1986)are a novel departure from these
approaches in that they do not construct layered net-
works. Their method maintains a preflow, as per
Karzanov, and proceeds by pushing flows to nodes
estimated to be closer to the sink. To estimate which
nodes are closer to the sink, it maintains a distance
label for each node that is a lower bound on the length
of a shortest augmenting path to the sink. Distance
labels are a better computational device than layered
networks because the distance labels are simpler to
understand, easier to manipulate, and easier to use in
a parallel algorithm. Moreover, by cleverly using the
dynamic tree data structure, Goldberg and Tarjan
obtain the best computational complexity for sparse
as well as dense networks.

For problems with arc capacities polynomially
bounded in n, our maximum flow algorithm is an
improvement of Goldberg and Tarjan's algorithm and
uses concepts of scaling introduced by Edmonds and
Karp for the minimum cost flow problem and later
extended by Gabow (1985) for other network opti-
mization problems. The bottleneck operation in the
straightforward implementation of Goldberg and
Tarjan's algorithm is the number of nonsuturating
pushes, which is O(n3).However, they reduce the
computational time to O(nm log(n2/m)) by a clever
application of the dynamic tree data structure. We
show that the number of nonsaturating pushes can be
reduced to O(n210g U) by using excess scaling. Our

S~lhject c/us.~~ficuti~n: Networks/graphs, flow algorithms: fast and simple algorithm for the maximum flow problem

Operations Research 0030-364X/89/3705-0748 $01.25
Vol. 37, No. 5, September-October 1989 G 1989 Operations Research Society of America

Table I

Running Times of the Maximum Flow

Algorithms

No. Due to Running Time

1 Ford and Fulkerson O(nm U)

(1956)

2 Edmonds and Karp O(nm2)

(1972)

3 Dinic (1970) O(n2m)

4 Karzanov (1974) O(n3)

5 Cherkasky (1977) O(n2m'/2)

6 Malhotra. Kumar and O(n7)

Maheshwari (1978)

7 Galil (1980) O(n5/3n~211)

8 Galil and Naamad O(nm log2n)

(1 980); Shiloach

(1978)

9 Shiloach and Vishkin O(n')

(1 982)

10 Sleator and Tarjan O(nm log n)

(1 983)

1 1 Tarjan(1984) a n 3)

12 Gabow (1985) O(nm log U)

13 Goldberg (1985) O(n3)

14 Goldberg and Tarjan O(nm log (n2/m))

(1986)

15 Bertsekas (1986) O(n3)

16 Cheriyan and O(n2m 'I2)

Maheshwari (1988)

17 Ahuja and Orlin O(nm + n210g U)

(this paper)

18 Ahuja, Orlin and

Tarjan (1988)

-

(b) O(nm + n' Jlog b?

(c) 0(nm log ("---Jy+ 2))

algorithm modifies the Goldberg-Tarjan algorithm as
follows. It performs log U scaling iterations; each
scaling iteration requires O(n2) nonsaturating pushes

Algoritlzm for the ,Wa,~imum Flow Problem / 749

mentary data structures with little computational
overheads.

This paper also describes a parallel implementation
of our maximum flow algorithm. Our algorithm is
difficult to make massi~.ely parallel because the algo-
rithm exploits the fact that it pushes flow from one
node at a time. Nevertheless, in the PRAM (Parallel
Random Access Machine) model with EREW (Exclu-
sive Read Exclusive Write) our algorithm runs in
O(n'1og U log p) time and uses only p proces-
sors where p = rmlnl. This algorithm easily extends
to an O(((nnz/k) + n'log U)log k) algorithm using
2 s k s p processors. The existing parallel algorithms
due to Shiloach and Vishkin (1982) and Goldberg and
Tarjan (1986) run in O(n210g n) time and use n
processors. For k s n processors. their algorithms run
in O((n'/k)log k) time (personal communication with
Andrew Goldberg). For k s pllog C', our algorithm
runs in O((nm/k)log k) time and provides a speedup
of n2/m over the existing algorithms.

1. NOTATION

Let G = (l?v; '4) be a directed network with a positive
integer capacity u,, for every arc(i, j) E A. Let n = I N I
and m = IA 1. The source s and sink t are two
distinguished nodes of the network. It is assumed that
for every arc(z, j) E A, an arc(/, z) is also contained in
A, possibly with zero capacity. We assume without
loss of generality that the network does not contain
multiple arcs and that capacities of arcs directed into
the source or directed out from the sink are zero. We
further assume that none of the paths from the source
to the sink has infinite capacity as such a path can be
detected easily in O(m) time. Observe that if the
network contains some infinite capacity arcs but no
infinite capacity path, then the capacity of such arcs
can ,,,,, , ,,,,,,be replaced by C , u, . We, therefore,

if we push flows from nodes with suj$cientl.v large
excesses to nodes with sz{ficiently small excesses while
never allowing the excesses to become too large. The
computational time of our algorithm is O(nm +
n210g U).

Under the reasonable assumption that L' = O(nk)
for some k, our algorithm runs in time O(nm +
n'log n). On networks that are both nondense and
nonsparse. i.e., m = 8(n1+') for some e with 0 < e < 1,
our algorithm runs in time O(nun), which improves
Goldberg and Tarjan's bound of O(nm log(n2/m)) on
such networks by a factor of log n. Moreover. our
algorithm is easier to implement and should be more
efficient in practice, because it requires only ele-

assume that all arcs have finite capacity. Let U =

max,,,,, ,(u,,].
Ajlow is a function x: A -+ R satisfying

for all iE N - (s.t] (1)

0 6 x,, s I!,, for all (i, j) E A (3)

for some u 3 0. The maximum flow problem is to
determine a flow x for which u is maximized.

750 / AHUJAAND ORLIN

A preflow x is a function x: A +R that satisfies (2),
(3),and the following relaxation of (I)

for all i E N - (s , t). (4)

The algorithms described in this paper maintain a
preflow at each intermediate stage.

For a given preflow x , we define for each node
i E N - (s , t) , the excess

A node with positive excess is referred to as an
active node. We define the excesses of the source and
sink nodes to be zero; consequently, these nodes are
never active. The residual capacity of any arc (i , j) E
A, with respect to a given preflow x , is given by r,, =

u,, - x,, + x,,. The residual capacity of arc(i, j) repre-
sents the maximum additional flow that can be sent
from node i to node j using the arcs (i , j) and (j , i) .
The network that consists only of arcs with positive
residual capacities is referred to as the residual net-
work. Figure 1 illustrates these definitions.

We define the arc adjacency list A(i) of a node
i E N as the set of arcs directed out of the node i, i.e.,
A(i) := ((i ,k) E A :k E N) . Note that our adjacency
list is a set of arcs rather than the more conventional
definition of the list as a set of nodes.

A distance function d: N +Z +for a preflow x is a
function from the set of nodes to the nonnegative
integers. We say that a distance function d is valid if
it also satisfies the following two conditions:

C l . d (t)= 0;
C2. d (i) < d (j) + 1 for every arc (i , j) E A with

r,, > 0.

Our algorithm maintains a valid distance function
at each iteration. We also refer to d (i)as the distance
label of node i. It is easy to demonstrate by induction
that d (i)is a lower bound on the length of the shortest
path from i to t in the residual network. Let i = i , -
il - . . . -ii - i1,+)= t be any path of length k in the
residual network from node i to the sink. Then from
condition C2 we have, d (i) = d (i l) < d(i2) + 1,
d(i2)< d(i3)+ 1, . . . , d(il,)< d(i1,+))+ 1 = 1 . This
yields d (i)< k for any path of length k in the residual
network and, hence, must also hold for the shortest
path. If for each i, the distance label d (i) equals the
minimum length of any path from i to t in the residual
network, then we call the distance label exact. For
example, in Figure lc, d = (0, 0 , 0, 0) is a valid

a. Network with arc ca acities.
Node 1 is the source a n i n o d e 4 is
sink. (Arcs with zero capacities are
not shown.)

b. Network with a preflow x

c. 	 The residual network with
residual arc capacities

Figure 1. 	Illustrations of a preflow and the residual
network.

distance label, though d = (3, 1 , 2, 0) represents the
exact distance label.

An arc (i,j) in the residual network is called admis-
sible if it satisfies d (i)= d (j) + 1. An arc that is not
admissible is called an inadmissible arc. The algo-
rithms discussed in this paper push flow only on
admissible arcs. Lastly, all algorithms in this paper are
assumed to be of base 2 unless stated otherwise.

2. PREFLOW-PUSH ALGORITHMS

The preflow-push algorithms for the maximum flow
problem maintain a preflow at every step and proceed
by pushing the node excesses closer to the sink. The
first preflow-push algorithm is due to Karzanov.
Tarjan (1984) has suggested a simplified version of
this algorithm. The recent algorithms of Goldberg
(1985) and Goldberg and Tarjan (1986) are based on
ideas similar to those presented in Tarjan, but they

use distance labels to direct flows closer to the sink
instead of constructing layered networks. We refer to
their algorithm as the (distance-directed) preflow-push
algorithm. In this section, we review the basic features
of their algorithm, which for the sake of brevity, we
simply refer to as the preflow-push algorithm. Here
we describe the 1-phase version of the preflow-push
algorithm presented by Goldberg (1987). The results
in this section are due to Goldberg and Tarjan (1986).

All operations of the preflow-push algorithm are
performed using only local information. At each iter-
ation of the algorithm (except at the initialization and
at the termination) the network contains at least one
active node, i.e., a nonsource and nonsink node with
positive excess. The goal of each iterative step is to
choose some active node and to send its excess closer
to the sink, with closer being judged with respect to
the current distance labels. If excess at this node
cannot be sent to nodes with smaller distance labels,
then the distance label of the node is increased. The
algorithm terminates when the network contains no
active nodes. The preflow-push algorithm uses the
following subroutines:

PREPROCESS. On each arc (s, j) E A@), send u,
units of flow. Let d(s) = n and d(t) = 0. Let d(i) = 1
for each i # s or t. (Alternatively, any valid labeling
can be used, e.g., the distance label for each node
i # s, t can be determined by a backward breadth first
search on the residual network starting at node t.)

PUSH(i). Select an admissible arc (i, j) in A(i). Send
6 = min(e,, r,,) units of flow from node i to j.

We say that a push of flow on arc (i, j) is saturating
if 6 = r,,, and nonsaturating otherwise.

RELABEL(i). Replace d(i) by min(d(j) + 1 :(i, j) E
A(i) and r,, > 0).

This is called a relabel step. The result of the relabel
step is to create at least one admissible arc on which
further pushes can be performed.

The generic version of the preflow-push algorithm
is given below.

algorithm PREFLOW-PUSH;
begin

PREPROCESS;
while there is an active node do
begin

select an active node i;

if there is an admissible arc in A(i) then PUSH(i)

else RELABEL(i);

end;
end.

Algorithm for the Maximum Flow Problem / 75 1

Figure 2 illustrates the steps PUSH(i) and
RELABEL(i) as applied to the network in Figure la.
The number beside each arc represents its residual
capacity. Figure 2a specifies the residual network after
the PREPROCESS step. Suppose the algorithm selects
node 2 for examination. Since arc (2,4) has a residual
capacity r,, = 1 and d(2) = d(4) + 1, the algorithm
performs a saturating push of value F = min(2, 1)
units. The push reduces the excess of node 2 to 1.
Arc (2, 4) is deleted from the residual network and

(a) The residual network after the pre-processing step.

(b) After the execution of step PUSH(2).

(c) After the execution of step RELABEL(2).

Figure 2. Illustrations of push and relabel steps.

arc (4, 2) is added to the residual network. Since
node 2 is still an active node, it can be selected again
for further pushes. Arcs (2, 3) and (2, 1) have posi-
tive residual capacities, but they do not satisfy the
distance condition. Hence, the algorithm performs
RELABEL(2), and gives node 2 a new distance
df(2)= minjd(3) + 1, d(1) + 1) = minj2, 51 = 2.

The preprocess step accomplishes several important
tasks. First, it causes the nodes adjacent to s to have
positive excess, so that subsequently we can select
nodes for push or relabel steps. Second, by saturating
arcs incident to s, the feasibility of setting d(s) = n is
immediate. Third, since the distance label d(s) = n
is a lower bound on the length of the minimum path
from s to t, there is no path from s to t after the
PREPROCESS step. Furthermore, since distance
labels are nondecreasing (see Lemma I), we also are
guaranteed that in subsequent iterations the residual
network will never contain a directed path from s to
t, and so there can never be any need to push flow
from s again.

In our improvement of the preflow-push algorithm,
we need a few of the results given in Goldberg and
Tarjan (1986). We include some of their proofs in
order to make this presentation more self-contained.
The interested reader is encouraged to read the origi-
nal paper by Goldberg and Tarjan which discusses
other versions of preflow-push algorithms.

Lemma 1. The generic prepow-push alporithm main-
tains valid distance labels at each step. Moreover, at
each relabel step the distance label of some node
strictly increases.

Proof. First note that the preprocess step constructs
valid distance labels. Assume inductively that the dis-
tance function is valid prior to an operation, i.e., it
satisfies the validity conditions C1 and C2. A push
operation on the arc (i,j) may create an additional
arc (j, i) with 5,>0, and an additional condition d(j)
s d(i)+ I needs to be satisfied. This validity condition
remains satisfied since d(i) = d (j) + 1 by the property
of the push operation. A push operation on arc (i, j)
might delete this arc from the residual network, but
this does not affect the validity of the distance func-
tion. During a relabel step, the new distance label of
node i is d'(i) = minjd(j) + 1: (I , j) E A(i) and
r, > O), which again is consistent with the validity
conditions. The relabel step is performed when there
is no arc (i, j) E A(i) with d(i) = d(j) + 1 and
r, > 0. Hence, d(i) < minjd(j) + 1: (i, j) E A(i) and
I;, >01 = d'(i), thereby proving the second part of the
lemma.

Lemma 2. At any stage ~fthepre$70w-push algorithm,
,for each node i with positive excess, there is a directed
pathfiom node i to node s in the residual ~zetwork.

Proof. By the flow decomposition theory of Ford and
Fulkerson, any preflow x can be decomposed with
respect to the original network G into thc sum of
nonnegative flows along: i) paths from s to t, ii) paths
from s to active nodes, and iii) flows around directed
cycles. Let i be an active node relative to the preflow
x in G. Then, there must be a path P from s to i in
the flow decomposition of x because paths from s to
t and flows around cycles do not contribute to the
excess at node i. Then the reversal of P (P with the
orientation of each arc reversed) is in the residual
network, and hence, there is a path from i to s in the
residual network.

Corollary 1. For each node i E N, d(i) < 2n.

Proof. The last time node i was relabeled, it had a
positive excess, and hence, the residual network con-
tained a path of length at most n - 1 from i to s. The
fact that d(s) = n and condition C2 imply that d(i) <
d(s) + n - 1 < 2n.

Lemma 2 also implies that a relabel step never
minimizes over an empty set.

Corollary 2. The number of relabel steps is less than
2n'.

Proof. Each relabel step increases the distance label
of a node by at least one, and by Corollary 1 no node
can be relabeled more than 272 times.

Corollary 3. The number of saturating pushes is no
more than Yzm.

Proof. Suppose that arc (i, j) becomes saturated at
some iteration (at which time d(i) = d(j) + 1). Then
no more flow can be sent on (i, j) until flow is sent
back from j to i, at which time d ' (j) = df(i)+ 1 2
d(i) + 1 = d (j) + 2; this flow change cannot occur
until d (j) increases by at least 2. Thus by Corollary 1,
arc (i, j) can become saturated at most n times, and
the total number of arc saturations is no more than
Yzm. (Recall that we assume that (i, j) and (j , i) are
both in A, so the number of arcs in the residual
network is no more than m.)

Lemma 3. The ~zumber of ~zonsaturating pushes is at
most 27z21n.

Proof. See Goldberg and Tarjan (1986).

Lemma 4. The algorithm terminates with a ~naxilnum
pow.

Proof. When the algorithm terminates, each node in
N - (s , tl has zero excess; so the final preflow is a
feasible flow. Furthermore, since the distance labels
satisfy conditions C1 and C2 and d(s)= n, it follows
that upon termination, the residual network contains
no directed path from s to t. This condition is the
classical termination criterion for the maximum flow
algorithm of Ford and Fulkerson.

The bottleneck operation in many preflow-based
algorithms, such as the algorithms due to Karzanov;
Tarjan; and Goldberg and Tarjan (1986),is the num-
ber of nonsaturating pushes. A partial explanation of
why the number of nonsaturating pushes dominates
the number of saturating pushes is as follows: The
saturating pushes cause structural changes-they
delete saturated arcs from the residual network. This
observation leads to a bound of O(nm)on the number
of saturating pushes-no matter in which order they
are performed. The nonsaturating pushes do not
change the structure of the residual network and seem
more difficult to bound. Goldberg (1985)showed that
the number of nonsaturating pushes is O(n3)when
nodes are examined in a first-in first-out order.
Goldberg and Tarjan (1986)reduced the running time
of this algorithm by using dynamic trees to reduce the
average time per nonsaturating push. Cheriyan and
Maheshwari (1988)showed that the number of non-
saturating pushes can be decreased to O(n'ml") if
flow is always pushed from a node with a highest
distance label, and they showed that this bound is
tight. They also showed that the bounds O(n2m)and
O(n3)are, respectively, tight for the generic preflow-
push and first-in first-out preflow-push algorithms. In
the next section, we show that by using scaling, we
can dramatically reduce the number of nonsaturating
pushes to O(n210g U). We recently discovered new
scaling algorithms that further reduce the number of
nonsaturating pushes to O(n210g GT/log log U) or to
O(n2m.These results are presented in Ahuja,
Orlin and Tarjan (1988).

3. THE EXCESS SCALING ALGORITHM

Our maximum flow algorithm improves the generic
preflow-push algorithm of Section 2 by using excess
scaling to reduce the number of nonsaturating pushes

Algorithm for the Maximum Flow Problem / 753

from O(?z2m)to O(n210gU).The basic idea is to push
flow from active nodes with sl~ficient!l, large excesses
to nodes with szlfficiently s~nall excesses while never
letting the excesses become too large. We refer to our
algorithm as the excess scaling algorithm.

The algorithm performs K = [log U1 + 1 scaling
iterations. For a scaling iteration, the excess-
dominator is defined to be the least integer A that is a
power of 2 and satisfies e, s A for all i E N. Further-
more, a new scaling iteration is considered to have
begun whenever A decreases by a factor of 2. In a
scaling iteration, we guarantee that each nonsaturating
push sends at least A/2 units of flow and that the
excess-dominator does not increase. To ensure that
each nonsaturating push has a value of at least A/2,
we consider only nodes with an excess more than
A/2; and among these nodes with large excess, we
select a node with a minimum distance label. This
choice ensures that the flow will be sent to a node
with a small excess. We show that after at most
8n2 nonsaturating pushes, the excess-dominator de-
creases by a factor of at least 2, and a new scaling
iteration begins. After at most K scaling iterations, all
node excesses drop to zero and we obtain a maximum
flow.

In order to select an active node with excess more
than A/2 and with a minimum distance label among
such nodes, we maintain the lists LIST(r) = { iE N :
e, > A/2 and d (i) = r] for each r = 1 , . . . , 2n - 1.
These lists can be maintained in the form of either
linked stacks or queues (see, for example, Aho, Hop-
croft and Ullman 1974),which enables insertion and
deletion of elements in O(1)time. The variable level
represents a lower bound on the smallest index r for
which LIST(r)is nonempty.

As per Goldberg and Tarjan, we use the following
data structure to efficiently select the admissible arc
for pushing flow out of a node. We maintain with
each node i the list, A(i), of arcs directed out of it.
Arcs in each list can be arranged arbitrarily, but once
the order is decided, it remains unchanged throughout
the algorithm. A special arc named null is appended
to the end of each list. Each node i has a current arc
(i, j) , which is the current candidate for pushing flow
out of i. Initially, the current arc of node i is the first
arc in its arc list. This list is examined sequentially,
and whenever the current arc is found to be inadmis-
sible for pushing flow, the next arc in the arc list is
made the current arc. When the arc list has been
examined completely, the null arc is reached. At this
time, the node is relabeled and the current arc is again
set to the first arc in the arc list.

754 / AHUJAAND OKLIN

The algorithm can be formally described as
follows.

Algorithm MAX-FLOW;
begin

PREPROCESS;
K := I + riog ui;
f o r k = 1 to Kdo
begin

A = 2K-''

for each i E N do if el > A/2 then add i to
LIST(d(i));

level := 1;
while level < 272 do

if LIST(leve1) = 0 then level := level + 1
else
begin

select a node i from LIST(leve1);
PUSH/RELABEL(i);

end;
end;

end:

Procedure PUSH/RELABEL(i);
begin

found := false;
let (i, j) be the current arc of node i;
while found = false and (i,j) # null do

if d(i) = d(j) + 1 and r,, > 0 then found :=
true

else replace the current arc of node i by the next
arc (i, j);

if found = true then (found an admissible arc)
begin

push min(e,, r,,, A - e,) units of flow on arc
(i7 J);
update the residual capacity r,, and the excesses el

and e,;
if (the updated excess) el s A/2, then delete node

i from LIST(d(i));
if j # s or t and (the updated excess) e, > A/2,

then add node j to LIST(d(j)) and set level :=
level - 1;

end
else {finished arc list of node i]
begin

delete node i from LIST(d(i));
update d(i) := min(d(j)+ 1; (i, j) EA(i) and

r,, > 0);
add node i to LIST(d(i)) and set the current arc

of node i to the first arc of A(i);
end;

end.

4. COMPLEXITY OF THE ALGORITHM

In this section, we show that the distance directed
preflow-push algorithm with excess scaling correctly
computes a maximum flow in O(nm + n210gU)time.

Lemma 5. The excess scaling algorithm satisfies the
following two conditions:

C3. Each nonsaturatingpush,fiom a node i to a node
j sends at least A/2 units ~ff low.

C4. No excess increases above A (i.e., the excess-
dominator does not increase subsequent to a
push).

Proof. For every push on arc (i, J) we have e, > A/2
and e, < A/2 because node i is a node with the smallest
distance label among nodes whose excess is more than
A/2, and d (j) = d(i) - 1 < d(i) by the property of
the push operation. Hence, by sending minie,, r,,,
A - e,) 3 min(A/2, r,,) units of flow, we ensure that
in a nonsaturating push the algorithm sends at least
A /2 units of flow. Furthermore, the push operation
increases the excess at node j only. Let e; be the excess
at node j after the push. Then e; = e, + min(e,, r,,,
A - e,) < e, + A - e, < A. All node excesses thus
remain less than or equal to A.

While there are other ways of ensuring that the
algorithm always satisfies the properties stated in C3
and C4, pushing flow from a node with excess greater
than A / 2 and with minimum distance among such
nodes is a simple and efficient way of enforcing these
conditions.

With properties C3 and C4, the push operation may
be viewed as a kind of restrained greedy approach.
Property C3 ensures that the push from i to j is
sufficiently large to be effective. Property C4 ensures
that the maximum excess never exceeds A during an
iteration. In particular, rather than greedily getting rid
of all its excess, node i shows some restraint to prevent
e, from exceeding A. Keeping the maximum excess
lower may be useful in practice as well as in theory.
Its major impact is to encourage flow excesses to be
distributed fairly equally in the network. This distri-
bution of flows should make it easier for nodes to
send flow towards the sink. This also may be impor-
tant because of the following consideration: suppose
several nodes send flow to a single node j creating a
large excess. It is likely that node j is not able to send
the accumulated flow closer to the sink, in which case,
its distance label increases and much of its excess has
to be returned. This phenomenon is prevented by
maintaining condition C4.

Lemma 6. If each push satisfies conditions C3 and
C4, then the number of nonsaturating pushes per
scaling iteration is at most 8n2.

Proof. Consider the potential function F = C,El e,
d(i)/A. The initial value of F at the beginning of the
A-scaling iteration is bounded by 272' because e> is
bounded by A and d(i) is bounded by 2n. When the
algorithm examines node i, one of the following two
cases must apply.

Case 1. The algorithm is unable to find an arc along
which flow can be pushed. This case occurs when the
current arc of node i reaches the end of A(i). Observe
that if an arc (i, j) is found to be inadmissible earlier,
then it remains inadmissible until d(i) increases
because d (j) is nondecreasing. Hence, there exists no
admissible arc emanating from node i and the relabel
operation increases d(i) by e 3 1 units. This increases
F by at most e units. Since the total increase in d(i)
throughout the running of the algorithm for each i is
bounded by 2n, the total increase in F due to relabel-
ings of nodes is bounded by 2n' in the scaling iteration.
(Actually, the increase in F due to node relabelings is
at most 2n' over all scaling iterations.)

Case 2. The algorithm is able to identify an arc on
which flow can be pushed and so it performs either a
saturating or a nonsaturating push. In either case, F
decreases. A nonsaturating push on arc (i, j) sends at
least A/2 units of flow from node i to node j and since
d (j) = d(i) - 1, this decreases Fby at least 112 units.
As the initial value of Ffor a scaling iteration plus the
increases in F sum to at most 4n', this case cannot
occur more than 8nQimes.

Theorem 1. The scaling algorithm perfonns O(n2
log U) nonsaturating pushes.

Proof. The initial value of the excess-dominator A is
2""" " < 2U. By Lemma 6, the value of the excess-
dominator decreases by a factor of 2 within 8n'
nonsaturating pushes and a new scaling iteration
begins. After 1 + [log U1 such scaling iterations,
A < 1; and by the integrality of the flow e, = 0 for all
i E N - (s,t] . The algorithm thus obtains a feasible
flow, which by Lemma 4 must be a maximum flow.

Theorem 2. The complexity ofthe excess scaling algo-
rithm is O(nm + n'log U) .

Proof. The complexity of the algorithm depends upon
the number of executions of the while loop in the
main program. In each such execution, either a

Algorithm,for the Maxilnuln Flow Problem / 755

PUSH/RELABEL(i) step is performed or the value of
the variable level increases. Each execution of the
procedure PUSH/RELABEL(i) results in one of the
following outcomes.

Case 1. A push is performed. Since the number of
saturating pushes is O(nm) and the number of
nonsaturating pushes is O(n210g U) , this case occurs
O(nm + n'log U) times.

Case 2. The distance label of node i goes up. By
Corollary 1, this case can occur O(n) times for each
node i and O(n2) in total.

Thus the algorithm calls the procedure PUSH/
RELABEL O(nm + n210g U) times. The effort needed
to find an arc to perform the push operation is O(1)
plus the number of times the current arc of node i is
replaced by the next arc in A(i). After I A(i) I such
replacements for node i, Case 2 occurs and the
distance label of node i goes up. Thus, the total
effort needed is C,,, 2n I A(i) I = O(~2m) plus the num-
ber of PUSHIRELABEL operations. This is clearly
O(nm + ~z'log U).

Next consider the time needed for relabeling oper-
ations. Computing the new distance label of node i
requires examining arcs in A(i). This yields a total of
CiEl 2n I A(i) I = O(nm) time for all relabeling oper-
ations. The lists LIST(r) are stored as linked stacks
and queues, hence, addition and deletion of any ele-
ment takes O(1) time. Consequently, updating these
lists is not a bottleneck operation.

Finally, we need to bound the number of increases
of the variable level. In each scaling iteration, level is
bounded above by 272 - 1 and bounded below by 1.
Hence, its number of increases per scaling iteration is
bounded by the number of decreases plus 2n.
Furthermore, level can decrease only when a push
is performed and, in such a case, it decreases
by 1. Hence, its increases over all scaling itera-
tions are bounded by the number of pushes plus
2n(l + [log Ul), which is again O(nm + ~z'logU).

5. 	REFINEMENTS

As a practical matter, several modifications of the
algorithm might improve its actual execution time
without affecting its worst-case complexity. We sug-
gest three modifications:

1. Modify the scale factor.
2. Allow 	 some nonsaturating pushes of a small

amount.
3. 	Try to locate nodes disconnected from the sink.

The first suggestion is to consider the scale factor.
The algorithm in the present form uses a scale factor
of 2, i.e., it reduces the excess-dominator by a factor
of 2 in each scaling iteration. In practice, however,
some other fixed integer scaling factor p Z- 2 might
yield better results. The excess-dominator then will be
the least power of p that is no less than the excess at
any node, and property C3 becomes the following.

C3'. Each nonsaturating push from a node i to a node
j sends at least Alp units of flow.

The scaling algorithm presented earlier easily can
be altered to incorporate the p scale factor by letting
LIST(r) = ji E N:e, > Alp and d(i) = r]. The
algorithm can be shown to run in O(nm + pn'log,, U)
time. From the worst-case point of view any fixed
value of p is optimum; the best choice for the value
of p in practice should be determined empirically.

The second suggestion focuses on the nonsaturating
pushes. Our algorithm as stated selects a node with
e, > A/2 and performs a saturating or a nonsaturating
push. We could, however, keep pushing the flow out
of this node until either we perform a nonsaturating
push of a value at least A/2 or reduce its excess to
zero. This variation might produce many saturating
pushes from the node and even allow pushes after its
excess decreases below A/2. Also, the algorithm as
stated earlier sends at least A/2 units of flow during
every nonsaturating push. The same complexity of
the algorithm is obtained if for some fixed r Z- 1, one
out of every r 1 nonsaturating pushes sends at least
A/2 units of flow.

The third suggestion recognizes that in practice one
potential bottleneck is the number of relabels. In
particular, the algorithm recognizes that the residual
network contains no path from node i to node t only
when d(i) exceeds n - 2. Goldberg (1987) suggested
that it may be desirable to occasionally perform a
breadth first search to make the distance labels exact.
He discovered that a judicious use of breadth first
search dramatically speeds up the algorithm.

An alternative approach is to keep track of the
number n,, of nodes whose distance is k. If n,, decreases
to 0 after any relabel for some k, then each node with
a distance greater than k is disconnected from the sink
in the residual network. (Once node j is disconnected
from the sink, it stays disconnected since the shortest
path from j to t is nondecreasing in length.) We avoid
selecting such nodes until all nodes with positive
excess become disconnected from the sink. At this
time, the excesses of the nodes are sent back to the
source. This approach essentially yields the two phase
approach to solve the maximum flow problem as

outlined in Goldberg and Tarjan (1986). The first
phase constructs a maximum preflow that is converted
to a maximum flow in the second phase.

6. PARALLEL IMPLEMENTATION

In this section, we describe a parallel implementation
of the excess scaling algorithm. We analyze this imple-
mentation in the PRAM (Parallel Random Access
Machine) Model with EREW (Exclusive Read Exclu-
sive Write). Our algorithm runs in O(n210g U log p)
time and uses p processors, where p = rmlnl. More
generally, our algorithm runs in O(((nm/k) + n'log
U)log k) time for any k 6p. We describe the algorithm
for k = p processors, but the extension to k < p is
immediate.

Our algorithm performs the followingparallelprejx
operations.

Operation 1. Given I 6 p numbers d(j l) , d(j2), . . . ,
d(j,), determine the minimum of these numbers.

Operation 2. Given I < p numbers f(j ,) , ,f(j2), . . . ,
.f(;,), compute the partial sums .f(j~), ,f(j,) + f(jd,
f (j l) +f(j2) +,f(j3), . . . , f (j ,) + , f (j 4 + . . . +.~(JI) .

Operation 3. Given I 6 p numbers F(j I) , F(j,), . . . ,
F(j,), such that F (j ,) < F(j,) 6 . . . < F(jl) Z- A/2,
determine the minimum index w such that F(j , ,) 2
A/2.

Operation 4. Given 1 s p numbers e(j,), e(j2), . . . ,
e(j,), form the doubly linked list of numbers whose
value is more than A/2.

Using a parallel prefix, each of these operations can
be performed in O(1og p) time using p/(log p) proces-
sors (see Kindervater and Lenstra 1988 for Operations
1 and 2, and Dekel and Sahni 1983 for Operation 3.)
Operation 4 can also be performed in O(1og p) time
using recursive doubling (personal communication
with J. K. Lenstra).

A straightforward parallel implementation of the
excess scaling algorithm requires n processors. Our
reduction of the number of processors required by the
algorithm is based on the following method. While
performing a push at node i or relabeling this node,
the algorithm does not consider all arcs in A(i) simul-
taneously, but it partitions arcs in A(i) into groups,
each containing at most p arcs, and considers only
one group at a time. For example, while relabel-
ing node i, the algorithm sequentially examines
r I A(i) I/p1 groupings and using Operation 1 computes
the minimum of a group in O(1og p) time. Since any

node can be relabeled at most 2n times, the total
number of groups examined for all nodes is

Thus, partitioning arcs in A(i) into groups does not
increase the computational time in the worst case.

Our parallel algorithm performs the PUSHIRELA-
BEL(i) step on a group of arcs in A(i) in parallel. The
algorithm maintains for each node i an index current
group, which plays the same role as the current arc
does for the sequential algorithm. If the current group
of the node i is null (i.e., all of its groups have been
examined), then the node is relabeled. Otherwise it
assigns a parallel processor to each arc in the group
which easily can be done in O(1og p) time. Let the
arcs in this group be (i, jI) , (i, j?), . . . , (i, j,) for some
1G p. Each processor checks the arc (i, j) it is assigned
to and defines a number f (j) = r,, if arc (i, j) is
admissible, and f (j) = 0 otherwise. Then the algo-
rithm performs Operation 2 to compute the partial
sums of the f (.) values. This operation results in the
following two cases.

Case 1. f (j l) + f(j2) + . . . + .f(j,) 6 A/2. The algo-
rithm saturates all admissible arcs in the group,
updates the residual capacities of arcs and excesses at
the nodes, and replaces the current group of node i by
the next group.

Case 2. f (j l) + f(j2) + . . . + f(1,) > A/2. The algo-
rithm performs Operation 3 with F (.) equal to the
partial sums at the nodes. The algorithm saturates all
arcs (i, j,), (i, j2), . . . ; (i, j l L - i) and performs a non-
saturating push of value min{e(i) - F (j, - ,), r,,,<,
A - e(j,,)) on arc (i, J,,). The algorithm updates the
residual capacities of arcs and excesses at the nodes.

Let e (j) denote the updated excesses of nodes in
both cases. The algorithm finally performs Opera-
tion 4 on numbers e(jl) , e(j2), . . . , e(j,) to form the
doubly linked list LIST(d(jI)). If this list is nonempty,
then the variable level is also updated.

We count the number of parallel prefix operations
performed by the algorithm. Each iteration of the
algorithm results in one of the following outcomes:
a) the algorithm saturates all arcs in a group; b) the
algorithm performs a nonsaturating push; and c) the
algorithm relabels a node. Since an arc is saturated at
most n times, the number of occurrences of case a is
bounded by C:'=] T I A(i) Ilpln s 2n2. Each occurrence

Algorithm.for the Maximum Flow Problem / 757

of case b pushes at least A/2 units of flow; hence, this
case occurs at most O(n210g U) times. The algorithm
performs O(1) parallel prefix operations for each
occurrence of case a and case b. Furthermore, it has
been shown that the algorithm performs at most 4n2
parallel prefix operations during all relabel steps. Con-
sequently, the algorithm performs O(n210g U) parallel
prefix operations and runs in O(n210g U log p) time.

The only modification to the algorithm for k 6 p
parallel processors is that the arcs in each adjacency
list A(i) are partitioned into groups of at most k arcs.
In this case, the number of parallel prefix operations
for group saturations and node relabeling is O(nm/k)
and the number of nonsaturating pushes remains
unchanged. We have, thus, established the following
result.

Theorem 3. In the PRAM model with EREW, the
parallel excess scaling algorithm runs in O(((nm/k) +
n'log U)log k) time using k G p processors.

7. RELATEDRESEARCH

Our improvement of the distance directed preflow-
push algorithm has several advantages over other algo-
rithms for the maximum flow problem. Our algorithm
is superior to all previous algorithms for the maximum
flow problem under the reasonable assumption that
U is polynomially bounded in n. Also, the algorithm
utilizes very simple data structures that make it attrac-
tive from an implementation viewpoint.

Our algorithm is a novel approach to combinatorial
scaling algorithms. In the previous scaling algorithms
developed by Edmonds and Karp, Rock 1980, and
Gabow, scaling involved a sequential approximation
of either the cost coefficients or the capacities and
right-hand sides. For example, we first solve the prob-
lem with the costs C approximated by C/2' for some
integer T; we then reoptimize to solve the problem
with costs approximated by C/2T-', and then reopti-
mize for the problem with costs approximated by
C/2T-2, and so forth. Our excess scaling algorithm
does not fit into this standard framework. Rather, our
algorithm works with true data, relaxes the flow con-
servation constraints and scales the maximum
amount of relaxation.

The preflow-push algorithms for the maximum flow
problem have been extended for the minimum cost
flow problem. A generalization of the Goldberg-
Tarjan maximum flow algorithm to the minimum
cost flow problem was developed by Bertsekas (1986).
This algorithm, however, was only pseudopolynomial.
Goldberg and Tarjan (1987) incorporated cost scaling

in this approach and obtained a polynomial time
algorithm. The algorithm of Goldberg and Tarjan
(1987) is similar to our algorithm-it also works with
true data, relaxes the complementary slackness con-
ditions and gradually decreases the relaxation to zero.

The scaling algorithm for the maximum flow prob-
lem can be improved further by using more clever
rules to push flow or by using dynamic trees. We
describe such improvements in Ahuja, Orlin and
Tarjan. We show that by using a larger scale factor
and by pushing flow from a node with the highest
distance label among nodes having suficiently large
excess, the algorithm runs in O(nm+ n210g U/log log
U) time. (Assume that U 3 4.) We describe another
variation of the excess scaling algorithm that runs in
O(nm + n2 K v) time. Use of the dynamic tree
data structure further improves the complexity of this
algorithm to O(nm log(n K u / m + 2)).

We also have undertaken an extensive empirical
study to assess the computational merits of the
preflow-push algorithms versus the previous best
algorithms, those of Dinic and Karzanov. Our exper-
iments so far suggest that preflow-push algorithms are
substantially faster than Dinic's and Karzanov's
algorithms.

Our algorithms and those due to Goldberg and
Tarjan suggest the superiority of distance label based
approaches over the layered network based ap-
proaches. The improvements we obtain do not seem
to be possible for the algorithms utilizing layered
networks. The distance labels implicitly store dynam-
ically changing layered networks and hence are more
powerful. We show the use of distance labels in aug-
menting path algorithms, capacity scaling algorithms
and for unit capacity networks in Orlin and Ahuja
(1987).

The maximum flow problem on bipartite networks
is an important class of the maximum flow problem
(see Gusfield, Martel and Fernandez-Baca 1985). The
bipartite network is a network G = (N,A), such that
N = N, U N2 and A C N , X N2. Let n, = IN, I and
n2 = I N2 I . For cases where nl << nz, our maximum
flow algorithm can be modified to run in O(n,m +
n: log U) time, thus resulting in significant speedup
over the original algorithm. Our results on bipartite
network flows will appear in a future paper jointly
with C. Stein and R. Tarjan.

ACKNOWLEDGMENT

We wish to thank John Bartholdi, Tom Magnanti,
and Hershel Safer for their suggestions which led to
improvements in the presentation. We also are grate-

ful to the referees for their perceptive comments. This
research was supported in part by the Presidential
Young Investigator Grant 845 15 17-ECS of the
National Science Foundation, by grant AFOSR-88-
0088 from the Air Force Ofice of Scientific Research,
and by grants from Analog Devices, Apple Computer,
Inc., and Prime Computer.

REFERENCES

AHO, A. V., J. E. HOPCROFT 1974.AND J. D. ULLMAN.
The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass.

AHUJA, R. K., J. B. ORLIN AND R. E. TARJAN. 1988.
Improved Time Bounds for the Maximum Flow
Problem. Research Report, Sloan School of Man-
agement, MIT, Cambridge, Mass. (to appear in
SIAM J. Comp.).

BERTSEKAS,D. 1986. Distributed Relaxation Methods for
Linear Network Flow Problems. Proc. of 25th IEEE
Conference on Decision and Control, Athens, Greece.

CHERIYAN, 1988. Analysis J., AND S. N. MAHESHWARI.
of Preflow Push Algorithms for Maximum Network
Flow. Technical Report, Dept. of Computer Science
and Engineering, Indian Institute of Technology,
New Delhi, India. (Revised).

CHERKASKY,R. V. 1977. Algorithm for Construction of
Maximal Flow in Networks With Complexity of
0(v2&?) Operation (in Russian). Math. Methods
Solution Econ. Prob. 7, 1 12-125.

DANTZIG,G. B., AND D. R. FULKERSON. 1956. On the
Max-Flow Min-Cut Theorem of Networks. In Lin-
ear Inequalities and Related Systems, pp. 2 15-22 1,
H. W. Kuhn and A. W. Tucker (eds.) (Annals of
Mathematics Study 38). Princeton University Press,
Princeton, N.J.

DEKEL, E., AND S. SAHANI. 1983. Binary Trees and
Parallel Scheduling Algorithms. IEEE Trans.
Comput. 10,657-675.

DINIC, E. A. 1970. Algorithm for Solution of a Problem
of Maximum Flow in Networks With Power Esti-
mation. Soviet Math. Dokl. 11, 1277- 1280.

EDMONDS,J., AND R. M. ~ R P .1972. Theoretical
Improvements in Algorithmic Efficiency for Net-
work Flow Problems. J. Assoc. Comput. Mach. 19,
248-264.

FORD, L. R., AND D. R. FULKERSON. 1956. Maximal
Flow Through a Network. Can. J. Math. 8,
399-404.

FULKERSON, 1955. Compu- D. R., AND G. B. DANTZIG.
tations of Maximum Flow in Networks. Naval Res.
Log. Quart. 2, 277-283.

GABOW,H. N. 1985. Scaling Algorithms for Network
Problems. J. Comput. Syst. Sci. 31, 148-168.

GALIL,Z. 1980. An O(Vs/3E2/3) Algorithm for the Max-
imal Flow Problem. Acta Inform. 14,221-242.

GALIL,Z. AND A. NAAMAD. 1980. An O(vE l0g2V)

Algorithm for the Maximum Flow Problem. J.
Comput. Syst. Sci. 21, 203-217.

GOLDBERG,A. V. 1985. A New Max-Flow Algorithm.
Technical Report MIT/LCS/TM-29 1, Laboratory
for Computer Science, MIT, Cambridge, Mass.

GOLDBERG,A. V. 1987. Efficient Graph Algorithms for
Sequential and Parallel Computers. Ph.D. Disserta-
tion, Laboratory for Computer Science, MIT,
Cambridge, Mass. Available as Technical Report
MIT/LCS/TR-374.

GOLDBERG,A. V., AND R. E. TARJAN. 1986. A New
Approach to the Maximum Flow Problem. Proc. of
the 18th Annual ACM Symposium on the Theory
of Computing, 136- 146. (also in J. Assoc. Cornput.
Mach. 35 (1988), 921-940).

GOLDBERG,A. V., AND R. E. TARJAN. 1987. Solving
Minimum Cost Flow Problem by Successive
Approximation. Proc. of the 19th Annual ACM Sym-
posium on the Theory of Computing, 7-1 8.

GUSFIELD,D., C. MARTEL AND D. FERNANDEZ-BACA.
1985. Fast Algorithms for Bipartite Network Flow.
Technical Report YALEV/DCS/TR-356, Depart-
ment of Computer Science, Yale University, New
Haven, Conn.

KARZANOV,A. V. 1974. Determining the Maximal Row
in a Network by the Method of Preflows. Soviet
Math. Dokl. 15,434-437.

KINDERVATER,G. A. P., AND J. K. LENSTRA. 1988.

Algorithm for the iWaximum Flow Problem / 759

Parallel Computing in Combinatorial Optimization.
Ann. Opns. Res. 14, 245-289.

MALHOTRA,V. M., M. P. KUMAR,AND S. N.
MAHESHWARI.1978. An O(I V 1 3) Algorithm for
Finding Maximum Flows in Networks. Inform.
Process. Lett. 7, 277-278.

ORLIN,J. B., AND R. K. AHUJA. 1987. New Distance-
Directed Algorithms for Maximum Flow and Para-
metric Maximum Flow Problems. Working Paper
No. 1908-87, Sloan School of Management, MIT,
Cambridge, Mass.

ROCK, H. 1980. Scaling Techniques for Minimal Cost
Network Flows. In Discrete Strzictzrres and Algo-
rithms, pp. 18 l -19 l , V. Page and Carl Hanser (eds.)
Miinchen, West Germany.

SHILOACH,Y. 1978. An O(nI log2(I)) Maximum Flow
Algorithm. Technical Report STAN-CS-78-702,
Computer Science Department, Stanford Univer-
sity, Stanford, Calif.

SHILOACH,Y., AND U. VISHKIN. 1982. An O(n210g n)
Parallel Max-Flow Algorithm. J. Algorithms 3,
128-146.

SLEATOR,D. D., AND R. E. TARJAN. 1983. A Data
Structure for Dynamic Trees, J. Comput. Syst. Sci.
24,362-39 1.

TARJAN,R. E. 1984. A Simple Version of Karzanov's
Blocking Flow Algorithm. Opns. Res. Lett. 2,
265-268.

