
Programming Languages

Featherweight Java

David Walker

Overview

Featherweight Java (FJ), a minimal Java-

like language.

• Models inheritance and subtyping.

• Immutable objects: no mutation of fields.

• Trivialized core language.

1

Abstract Syntax

The abstract syntax of FJ is given by the fol-

lowing grammar:

Classes C : := class c extends c′ {c f; k d}
Constructors k : := c(c x) {super(x); this.f=x;}
Methods d : := c m(c x) {return e;}
Types τ : := c
Expressions e : := x | e.f | e.m(e)

| new c(e) | (c) e

Underlining indicates “one or more”.

If e appears in an inference rule and ei does

too, there is an implicit understandng that ei

is one of the e’s in e. And similarly with other

underlined constructs.

2

Abstract Syntax

Classes in FJ have the form:

class c extends c′ {c f; k d}

• Class c is a sub-class of class c′.

• Constructor k for instances of c.

• Fields c f .

• Methods d.

3

Abstract Syntax

Constructor expressions have the form

c(c′ x′, c x) {super(x′); this.f=x;}

• Arguments correspond to super-class fields

and sub-class fields.

• Initializes super-class.

• Initializes sub-class.

4

Abstract Syntax

Methods have the form

c m(c x) {return e;}

• Result class c.

• Argument class(es) c.

• Binds x and this in e.

5

Abstract Syntax

Minimal set of expressions:

• Field selection: e.f .

• Message send: e.m(e).

• Instantiation: new c(e).

• Cast: (c) e.

6

FJ Example

class Pt extends Object {
int x;

int y;

Pt (int x, int y) {
super(); this.x = x; this.y = y;

}
int getx () { return this.x; }
int gety () { return this.y; }

}

7

FJ Example

class CPt extends Pt {
color c;

CPt (int x, int y, color c) {
super(x,y);

this.c = c;

}
color getc () { return this.c; }

}

8

Class Tables and Programs

A class table T is a finite function assigning

classes to class names.

A program is a pair (T, e) consisting of

• A class table T .

• An expression e.

9

Static Semantics

Judgement forms:

τ <: τ ′ subtyping
c E c′ subclassing
Γ ` e : τ expression typing
d ok in c well-formed method
c ok well-formed class
T ok well-formed class table
fields(c) = c f field lookup
type(m, c) = c → c method type

10

Static Semantics

Variables:

Γ(x) = τ
Γ ` x : τ

• Must be declared, as usual.

• Introduced within method bodies.

11

Static Semantics

Field selection:

Γ ` e0 : c0 fields(c0) = c f

Γ ` e0.fi : ci

• Field must be present.

• Type is specified in the class.

12

Static Semantics

Message send:

Γ ` e0 : c0 Γ ` e : c
type(m, c0) = c′ → c c <: c′

Γ ` e0.m(e) : c

• Method must be present.

• Argument types must be subtypes of pa-

rameters.

13

Static Semantics

Instantiation:

Γ ` e : c′′ c′′ <: c′ fields(c) = c′ f
Γ ` new c(e) : c

• Initializers must have subtypes of fields.

14

Static Semantics

Casting:

Γ ` e0 : d
Γ ` (c) e0 : c

• All casts are statically acceptable!

• Could try to detect casts that are guaran-

teed to fail at run-time.

15

Subclassing

Sub-class relation is implicitly relative to a class

table.

T (c) = class c extends c′ {. . .;}
c E c′

Reflexivity, transitivity of sub-classing:

(T (c) defined)
c E c

c E c′ c′ E c′′

c E c′′

Sub-classing only by explicit declaration!

16

Subtyping

Subtyping relation: τ <: τ ′.

τ <: τ
τ <: τ ′ τ ′ <: τ ′′

τ <: τ ′′

c E c′

c <: c′

Subtyping is determined solely by subclassing.

17

Class Formation

Well-formed classes:

k = c(c′ x′, c x) {super(x′); this.f=x;}
fields(c′) = c′ f ′ di ok in c

class c extends c′ {c f; k d} ok

• Constructor has arguments for each super-

and sub-class field.

• Constructor initializes super-class before sub-

class.

• Sub-class methods must be well-formed rel-

ative to the super-class.

18

Class Formation

Method overriding, relative to a class:

T (c) = class c extends c′ {. . .;}
type(m, c′) = c → c0 x : c, this:c ` e0 : c′

0 c′
0 <: c0

c0 m(c x) {return e0;} ok in c

• Sub-class method must return a subtype of

the super-class method’s result type.

• Argument types of the sub-class method

must be exactly the same as those for the

super-class.

• Need another case to cover method exten-

sion.

19

Program Formation

A class table is well-formed iff all of its classes

are well-formed:

∀c ∈ dom(T) T (c) ok
T ok

A program is well-formed iff its class table is

well-formed and the expression is well-formed:

T ok ∅ ` e : τ
(T, e) ok

20

Method Typing

The type of a method is defined as follows:

T (c) = class c extends c′ {. . .; . . . d}
di = ci m(ci x) {return e;}

type(mi, c) = ci → ci

T (c) = class c extends c′ {. . .; . . . d}
m /∈ d type(mi, c

′) = ci → ci

type(m, c) = ci → ci

21

Dynamic Semantics

Transitions: e 7→T e′.

Transitions are indexed by a (well-formed) class

table!

• Dynamic dispatch.

• Downcasting.

We omit explicit mention of T in what follows.

22

Dynamic Semantics

Object values have the form

new c(e′, e)

where

• e′ are the values of the super-class fields.
and e are the values of the sub-class fields.

• c indicates the “true” (dynamic) class of
the instance.

Use this judgement to affirm an expression is
a value:

new c(e′, e) value

Rules

new Object value
e′
i value ei value
new c(e′, e) value

23

Dynamic Semantics

Field selection:

fields(c) = c′ f ′, c f e′ value e value
new c(e′, e).f ′

i 7→ e′
i

fields(c) = c′ f ′, c f e′ value e value
new c(e′, e).fi 7→ ei

• Fields in sub-class must be disjoint from

those in super-class.

• Selects appropriate field based on name.

24

Dynamic Semantics

Message send:

body(m, c) = x → e0 e value e′ value
new c(e).m(e′) 7→ {e′/x}{new c(e)/this}e0

• The identifier this stands for the object

itself.

• Compare with recursive functions in MinML.

25

Dynamic Semantics

Cast:

c E c′ e value
(c′) new c(e) 7→ new c(e)

• No transition (stuck) if c is not a sub-class

of c′!

• Sh/could introduce error transitions for cast

failure.

26

Dynamic Semantics

Search rules (CBV):

e0 7→ e′
0

e0.f 7→ e′
0.f

e0 7→ e′
0

e0.m(e) 7→ e′
0.m(e)

e0 value e 7→ e′

e0.m(e) 7→ e0.m(e′)

27

Dynamic Semantics

Search rules (CBV), cont’d:

e 7→ e′

new c(e) 7→ new c(e′)

e0 7→ e′
0

(c) e0 7→ (c) e′
0

28

Dynamic Semantics

Dynamic dispatch:

T (c) = class c extends c′ {. . .; . . . d}
di = ci m(ci x) {return e;}

body(mi, c) = x → e

T (c) = class c extends c′ {. . .; . . . d}
m /∈ d body(m, c′) = x → e

body(m, c) = x → e

• Climbs the class hierarchy searching for the

method.

• Static semantics ensures that the method

must exist!

29

Type Safety

Theorem 1 (Preservation)

Assume that T is a well-formed class table. If

e : τ and e 7→ e′, then e′ : τ ′ for some τ ′ <: τ .

• Proved by induction on transition relation.

• Type may get “smaller” during execution

due to casting!

30

Type Safety

Lemma 2 (Canonical Forms)

If e : c and e value, then e = new d(e0) with d E c

and e0 value.

• Values of class type are objects (instances).

• The dynamic class of an object may be

lower in the subtype hierarchy than the

static class.

31

Type Safety

Theorem 3 (Progress)

Assume that T is a well-formed class table. If

e : τ then either

1. v value, or

2. e has the form (c) new d(e0) with e0 value
and d 6E c, or

3. there exists e′ such that e 7→ e′.

32

Type Safety

Comments on the progress theorem:

• Well-typed programs can get stuck! But

only because of a cast

• Precludes “message not understood” er-

ror.

• Proof is by induction on typing.

33

Variations and Extensions

A more flexible static semantics for override:

• Subclass result type is a subtype of the

superclass result type.

• Subclass argument types are supertypes

of the corresponding superclass argument

types.

34

Variations and Extensions

Java adds arrays and covariant array subtyping:

τ <: τ ′
τ [] <: τ ′ []

What effect does this have?

35

Variations and Extensions

Java adds array covariance:

τ <: τ ′
τ [] <: τ ′ []

• Perfectly OK for FJ, which does not sup-

port mutation and assignment.

• With assignment, might store a supertype

value in an array of the subtype. Subse-

quent retrieval at subtype is unsound.

• Java inserts a per-assignment run-time

check and exception raise to ensure safety.

36

Variations and Extensions

Static fields:

• Must be initialized as part of the class def-

inition (not by the constructor).

• In what order are initializers to be evalu-

ated? Could require initialization to a con-

stant.

37

Variations and Extensions

Static methods:

• Essentially just recursive functions.

• No overriding.

• Static dispatch to the class, not the in-

stance.

38

Variations and Extensions

Final methods:

• Preclude override in a sub-class.

Final fields:

• Sensible only in the presence of mutation!

39

Variations and Extensions

Abstract methods:

• Some methods are undefined (but are de-

clared).

• Cannot form an instance if any method is

abstract.

40

Class Tables

Type checking requires the entire program!

• Class table is a global property of the pro-

gram and libraries.

• Cannot type check classes separately from

one another.

41

