
��� CHAPTER �� PSEUDORANDOM GENERATORS

Using the ideas presented in the proofs of Propositions ����� and ������ one can show that
if the n
�bit to l	n

 � ��bit function used in Construction ����� is a hard�core of F then
the resulting algorithm constitutes a pseudorandom generator� Yet� we are left with the
problem of constructing a huge hard�core function� G� for the function F � Speci�cally�
jG	x
j has to equal �jxj �� � for all x�s� A natural idea is to de�ne G analogously to the way g

is de�ned in Construction ������ Unfortunately� we do not know how to prove the validity
of this construction 	when applied to F
� and a much more complicated construction is
required� This construction does use all the above ideas in conjunction with additional
ideas not presented here� The proof of validity is even more complex� and is not suitable
for a book of the current nature� We thus conclude this section by merely stating the result
obtained�

Theorem ��	��� If there exist one�way functions then pseudorandom generators exist as
well�

��
 Pseudorandom Functions

Pseudorandom generators enable to generate� exchange and share a large number of pseu�
dorandom values at the cost of a much smaller number of random bits� Speci�cally� poly	n

pseudorandom bits can be generated� exchanged and shared at the cost of n 	uniformly cho�
sen bits
� Since any e�cient application uses only a polynomial number of random values�
providing access to polynomially many pseudorandom entries seems su�cient� However�
the above conclusion is too hasty� since it assumes implicitly that these entries 	i�e�� the
addresses to be accessed
 are �xed beforehand� In some natural applications� one may need
to access addresses which are determined �dynamically� by the application� For exam�
ple� one may want to assign random values to 	poly	n
 many
 n�bit long strings� produced
throughout the application� so that these values can be retrieved at latter time� Using pseu�
dorandom generators the above task can be achieved at the cost of generating n random bits
and storing poly	n
 many values� The challenge� met in the sequel� is to achieve the above
task at the cost of generating and storying only n random bits� The key to the solution is
the notion of pseudorandom functions� In this section we de�ne pseudorandom functions
and show how to e�ciently implement them� The implementation uses as a building block
any pseudorandom generator�

��
�� De�nitions

Loosely speaking� pseudorandom functions are functions which cannot be distinguished from
truly random functions by any e�cient procedure which can get the value of the function at
arguments of its choice� Hence� the distinguishing procedure may query the function being
examined at various points� depending possibly on previous answers obtained� and yet can
not tell whether the answers were supplied by a function taken from the pseudorandom
ensemble 	of functions
 or from the uniform ensemble 	of function
� Hence� to formalize the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

boaz
Rectangle

��	� PSEUDORANDOM FUNCTIONS ���

notion of pseudorandom functions we need to consider ensembles of functions� For sake of
concreteness we consider in the sequel ensembles of length preserving functions� Extensions
are discussed in Exercise ���

De�nition ��
�� 	function ensembles
� A function ensemble is a sequence F � fFngn�N
of random variables� so that the random variable Fn assumes values in the set of functions
mapping n�bit long strings to n�bit long strings� The uniform function ensemble� denoted
H � fHngn�N � has Hn uniformly distributed over the set of functions mapping n�bit long
strings to n�bit long strings�

To formalize the notion of pseudorandom functions we use 	probabilistic polynomial�
time
 oracle machines� We stress that our use of the term oracle machine is almost identical
to the standard one� One deviation is that the oracle machines we consider have a length
preserving function as oracle rather than a Boolean function 	as is standard in most cases
in the literature
� Furthermore� we assume that on input �n the oracle machine only makes
queries of length n� These conventions are not really essential 	they merely simplify the
exposition a little
�

De�nition ��
�� 	pseudorandom function ensembles
� A function ensemble� F � fFngn�N �
is called pseudorandom if for every probabilistic polynomial�time oracle machine M � every
polynomial p	�
 and all su�ciently large n�s

jPr	MFn	�n
��
� Pr	MHn	�n
��
j � �

p	n

where H � fHngn�N is the uniform function ensemble�

Using techniques similar to those presented in the proof of Proposition ����� 	of Subsec�
tion �����
� one can demonstrate the existence of pseudorandom function ensembles which
are not statistically close to the uniform one� However� to be of practical use� we need
require that the pseudorandom functions can be e�ciently computed�

De�nition ��
�� 	e�ciently computable function ensembles
� A function ensemble� F �
fFngn�N � is called e�ciently computable if the following two conditions hold

�� 	e�cient indexing
� There exists a probabilistic polynomial time algorithm� I� and a
mapping from strings to functions� �� so that �	I	�n

 and Fn are identically dis�
tributed�
We denote by fi the f�� �gn ��f�� �gn function assigned to i
i�e�� fi

def
� �	i
��

�� 	e�cient evaluation
� There exists a probabilistic polynomial time algorithm� V � so
that V 	i� x
 � fi	x
�

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

��� CHAPTER �� PSEUDORANDOM GENERATORS

In particular� functions in an e�ciently computable function ensemble have relatively
succinct representation 	i�e�� of polynomial rather than exponential length
� It follows that
e�ciently computable function ensembles may have only exponentially many functions 	out
of the double�exponentially many possible functions
�

Another point worthy of stressing is that pseudorandom functions may 	if being ef�
�ciently computable
 be e�ciently evaluated at given points� provided that the function
description is give as well� However� if the function 	or its description
 is not known 	and
it is only known that it is chosen from the pseudorandom ensemble
 then the value of the
function at a point cannot be approximated 	even in a very liberal sense and
 even if the
values of the function at other points is also given�

In the rest of this book we consider only e�ciently computable pseudorandom functions�
Hence� in the sequel we sometimes shorthand such ensembles by calling them pseudorandom
functions�

��
�� Construction

Using any pseudorandom generator� we construct a 	e�ciently computable
 pseudorandom
function 	ensemble
�

Construction ��
�� Let G be a deterministic algorithm expanding inputs of length n into
strings of length �n� We denote by G�	s
 the jsj�bit long pre
x of G	s
� and by G�	s
 the
jsj�bit long su�x of G	s

i�e�� G	s
 � G�	s
G�	s
�� For every s � f�� �gn� we de
ne a
function fs �f�� �gn ��f�� �gn so that for every 	�� ���� 	n�f�� �g

fs		�	� � � �	n

def
� G�n	� � � 	G��	G��	s

 � � �

Let Fn be a random variable de
ned by uniformly selecting s � f�� �gn and setting Fn � fs�
Finally� let F � fFngn�N be our function ensemble�

Pictorially� the function fs is de�ned by n�step walks down a full binary tree of depth n

having labels on the vertices� The root of the tree� hereafter referred to as the level � vertex
of the tree� is labelled by the string s� If an internal node is labelled r then its left child
is labelled G�	r
 whereas its right child is labelled G�	r
� The value of fs	x
 is the string
residing in the leaf reachable from the root by a path corresponding to string x� when the
root is labelled by s� The random variable Fn is assigned labelled trees corresponding to
all possible �n labellings of the root� with uniform probability distribution�

A function� operating on n�bit strings� in the ensemble constructed above can be speci�ed
by n bits� Hence� selecting� exchanging and storing such a function can be implemented at
the cost of selecting� exchanging and storing a single n�bit string�

Theorem ��
�	 Let G and F be as in Construction ������ and suppose that G is a pseu�
dorandom generator� Then F is an e�ciently computable ensemble of pseudorandom func�
tions�

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

��	� PSEUDORANDOM FUNCTIONS ���

Proof� Clearly� the ensemble F is e�ciently computable� To prove that F is pseudorandom
we use the hybrid technique� The kth hybrid will be assigned functions which result by
uniformly selecting labels for the vertices of the kth 	highest
 level of the tree and computing
the labels of lower levels as in Construction ������ The ��hybrid will correspond to the
random variable Fn 	since a uniformly chosen label is assigned to the root
� whereas the
n�hybrid will correspond to the uniform random variable Hn 	since a uniformly chosen label
is assigned to each leaf
� It will be shown that an e�cient oracle machine distinguishing
neighbouring hybrids can be transformed into an algorithm that distinguishes polynomially
many samples of G	Un
 from polynomially many samples of U�n� Using Theorem ����� 	of
Subsection �����
� we derive a contradiction to the hypothesis 	that G is a pseudorandom
generator
� Details follows�

For every k� ��k�n� we de�ne a hybrid distribution Hk
n 	assigned as values functions

f � f�� �gn �� f�� �gn
 as follows� For every s�� s�� ���� s�k � f�� �gn� we de�ne a function
fs��			�s�k �f�� �gn ��f�� �gn so that

fs��			�s�k		�	� � � �	n

def
� G�n	� � �	G�k��	G�k��	sidx��k������

 � � �

where idx	�
 is index of � in the standard lexicographic order of strings of length j�j� 	In
the sequel we take the liberty of associating the integer idx	�
 with the string ��
 Namely�
fs	k �			�s�k 	x
 is computed by �rst using the k�bit long pre�x of x to determine one of the
sj �s� and next using the 	n� k
�bit long su�x of x to determine which of the functions G�

and G� to apply at each remaining stage� The random variable Hk
n is uniformly distributed

over the above 	�n
�
k

possible functions� Namely�

Hk
n

def
� f

U
���
n �			�U

��k�
n

where U �j�
n �s are independent random variables each uniformly distributed over f�� �gn�

At this point it is clear that H�
n is identical to Fn� whereas Hn

n is identical to Hn� Again�
as usual in the hybrid technique� ability to distinguish the extreme hybrids yields ability to
distinguish a pair of neighbouring hybrids� This ability is further transformed 	as sketched
above
 so that contradiction to the pseudorandomness of G is reached� Further details
follow�

We assume� in contradiction to the theorem� that the function ensemble F is not pseu�
dorandom� It follows that there exists a probabilistic polynomial�time oracle machine� M �
and a polynomial p	�
 so that for in�nitely many n�s

�	n

def
� jPr	MFn	�n
��
� Pr	MHn	�n
��
j � �

p	n

Let t	�
 be a polynomial bounding the running time of M	�n
 	such a polynomial exists
since M is polynomial�time
� It follows that� on input �n� the oracle machine M makes
at most t	n
 queries 	since the number of queries is clearly bounded by the running time
�

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

��� CHAPTER �� PSEUDORANDOM GENERATORS

Using the machine M � we construct an algorithm D that distinguishes the t	�
�product of
the ensemble fG	Un
gn�N from the t	�
�product of the ensemble fU�ngn�N as follows�

On input ��� ���� �t � f�� �g�n 	with t � t	n

� algorithm D proceeds as follows� First� D
selects uniformly k � f�� �� ���� n� �g� This random choice� hereafter called the checkpoint�
and is the only random choice made by D itself� Next� algorithm D invokes the oracle
machine M 	on input �n
 and answers M �s queries as follows� The �rst query of machine
M � denoted q�� is answered by

G�n	� � �	G�k��	P�k��	��

 � � �

where q� � 	� � � �	n� and P�	�
 denotes the n�bit pre�x of � 	and P�	�
 denotes the n�bit
su�x of �
� In addition� algorithm D records this query 	i�e�� q�
� Subsequent queries are
answered by �rst checking if their k�bit long pre�x equals the k�bit long pre�x of a previous
query� In case the k�bit long pre�x of the current query� denoted qi� is di�erent from the
k�bit long pre�xes of all previous queries� we associate this pre�x a new input string 	i�e��
�i
� Namely� we answer query qi by

G�n	� � �	G�k��	P�k��	�i

 � � �

where qi � 	� � � �	n� In addition� algorithm D records the current query 	i�e�� qi
� The
other possibility is that the k�bit long pre�x of the ith query equals the k�bit long pre�x of
some previous query� Let j be the smallest integer so that the k�bit long pre�x of the ith

query equals the k�bit long pre�x of the jth query 	by hypothesis j � i
� Then� we record
the current query 	i�e�� qi
 but answer it using the string associated with query qj � Namely�
we answer query qi by

G�n	� � �	G�k��	P�k��	�j

 � � �

where qi � 	� � � �	n� Finally� when machine M halts� algorithm D halts as well and outputs
the same output as M �

Pictorially� algorithm D answers the �rst query by �rst placing the two halves of ��

in the corresponding children of the tree�vertex reached by following the path from the
root corresponding to 	� � � �	k� The labels of all vertices in the subtree corresponding to
	� � � �	k are determined by the labels of these two children 	as in the construction of F
�
Subsequent queries are answered by following the corresponding paths from the root� In
case the path does not pass through a 	k � �
�level vertex which has already a label� we
assign this vertex and its sibling a new string 	taken from the input
� For sake of simplicity�
in case the path of the ith query requires a new string we use the ith input string 	rather
than the �rst input string not used so far
� In case the path of a new query passes through
a 	k � �
�level vertex which has been labelled already� we use this label to compute the
labels of subsequent vertices along this path 	and in particular the label of the leaf
� We
stress that the algorithm does not necessarily compute the labels of all vertices in a subtree
corresponding to 	� � � �	k 	although these labels are determined by the label of the vertex
corresponding to 	� � � �	k
� but rather computes only the labels of vertices along the paths
corresponding to the queries�

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

��	� PSEUDORANDOM FUNCTIONS ���

Clearly� algorithm D can be implemented in polynomial�time� It is left to evaluate its
performance� The key observation is that when the inputs are taken from the t	n
�product
of G	Un
 and algorithm D chooses k as the checkpoint then M behaves exactly as on the
kth hybrid� Likewise� when the inputs are taken from the t	n
�product of U�n and algorithm
D chooses k as the checkpoint then M behaves exactly as on the k � �st hybrid� Namely�

Claim ����
��� Let n be an integer and t
def
� t	n
� Let K be a random variable describing

the random choice of checkpoint by algorithm D 	on input a t�long sequence of �n�bit long
strings
� Then for every k�f�� �� ���� n� �g

Pr
�
D	G	U ���

n
� ���� G	U �t�
n

�� jK�k

�
� Pr

�
MHk

n	�n
��
�

Pr
�
D	U ���

�n � ���� U
�t�
�n
�� jK�k

�
� Pr

�
MHk��

n 	�n
��
�

where the U �i�
n �s and U

�j�
�n �s are independent random variables uniformly distributed over

f�� �gn and f�� �g�n� respectively�

The above claim is quite obvious� yet a rigorous proof is more complex than one realizes at
�rst glance� The reason being that M �s queries may depend on previous answers it gets�
and hence the correspondence between the inputs of D and possible values assigned to the
hybrids is less obvious than it seems� To illustrate the di�culty consider a n�bit string which
is selected by a pair of interactive processes� which proceed in n iterations� At each iteration
the �rst party chooses a new location� based on the entire history of the interaction� and
the second process sets the value of this bit by �ipping an unbiased coin� It is intuitively
clear that the resulting string is uniformly distributed� and the same holds if the second
party sets the value of the chosen locations using the outcome of a coin �ipped beforehand�
In our setting the situation is slightly more involved� The process of determining the string
is terminated after k � n iterations and statements are made of the partially determined
string� Consequently� the situation is slightly confusing and we feel that a detailed argument
is required�

Proof of Claim ����
��� We start by sketching a proof of the claim for the extremely simple
case in which M �s queries are the �rst t strings 	of length n
 in lexicographic order� Let
us further assume� for simplicity� that on input ��� ���� �t� algorithm D happens to choose
checkpoint k so that t � �k��� In this case the oracle machine M is invoked on input
�n and access to the function fs��			�s�k��

� where s�j���� � P�	�j
 for every j � �k and
	 � f�� �g� Thus� if the inputs to D are uniformly selected in f�� �g�n then M is invoked
with access to the k��st hybrid random variable 	since in this case the sj �s are independent
and uniformly distributed in f�� �gn
� On the other hand� if the inputs to D are distributed
as G	Un
 then M is invoked with access to the kth hybrid random variable 	since in this
case fs��			�s�k�� � fr� �			�r�k where the rj�s are seeds corresponding to the �j�s
�

For the general case we consider an alternative way of de�ning the random variable
Hm

n � for every ��m� n� This alternative way is somewhat similar to the way in which

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

��� CHAPTER �� PSEUDORANDOM GENERATORS

D answers the queries of the oracle machine M � 	We use the symbol m instead of k since
m does not necessarily equal the checkpoint� denoted k� chosen by algorithm D�
 This
way of de�ning Hm

n consists of the interleaving of two random processes� which together
�rst select at random a function g � f�� �gm �� f�� �gn� that is later used to determine a
function f � f�� �gn �� f�� �gn� The �rst random process� denoted �� is an arbitrary process
	�given to us from the outside�
� which speci�es points in the domain of g� 	The process
� corresponds to the queries of M � whereas the second process corresponds to the way A

answers these queries�
 The second process� denoted �� assigns uniformly selected n�bit
long strings to every new point speci�ed by �� thus de�ning the value of g on this point�
We stress that in case � speci�es an old point 	i�e�� a point for which g is already de�ned

then the second process does nothing 	i�e�� the value of g at this point is left unchanged
�
The process � may depend on the history of the two processes� and in particular on the
values chosen for the previous points� When � terminates the second process 	i�e�� �
 selects
random values for the remaining unde�ned points 	in case such exist
� We stress that the
second process 	i�e�� �
 is �xed for all possible choices of a 	��rst�
 process �� The rest of
this paragraph gives a detailed description of the interleaving of the two random processes
	and may be skipped
� We consider a randomized process � mapping sequences of n�bit
strings 	representing the history
 to single m�bit strings� We stress that � is not necessarily
memoryless 	and hence may �remember� its previous random choices
� Namely� for every
�xed sequence v�� ���� vi�f�� �gn� the random variable �	v�� ���� vi
 is 	arbitrarily
 distributed
over f�� �gm�f�g where � is a special symbol denoting termination� A �random� function
g �f�� �gm ��f�� �gn is de�ned by iterating the process � with the random process � de�ned
below� Process � starts with g which is unde�ned on every point in its domain� At the ith

iteration � lets pi
def
� �	v�� ���� vi��
 and� assuming pi
� �� sets vi

def
� vj if pi � pj for some

j � i and lets vi be uniformly distributed in f�� �gn otherwise� In the latter case 	i�e�� pi is

new and hence g is not yet de�ned on pi
� � sets g	pi

def
� vi 	in fact g	pi
 � g	pj
 � vj � vi

also in case pi � pj for some j � i
� When � terminates� i�e�� �	v�� ���� vT
 � � for some
T � � completes the function g 	if necessary
 by choosing independently and uniformly in
f�� �gn values for the points at which g is unde�ned yet� 	Alternatively� we may augment
the process � so that it terminates only after specifying all possible m�bit strings�

Once a function g is totally de�ned� we de�ne a function f g �f�� �gn ��f�� �gn by

f g		�	� � � �	n

def
� G�n	� � �	G�k��	G�k��	g		k � � �	�

 � � �

The reader can easily verify that f g equals fg��m��			�g��m� 	as de�ned in the hybrid construc�
tion above
� Also� one can easily verify that the above random process 	i�e�� the interleaving
of � with any �
 yields a function g that is uniformly distributed over the set of all possible
functions mapping m�bit strings to n�bit strings� It follows that the above described ran�
dom process yields a result 	i�e�� a function
 that is distributed identically to the random
variable Hm

n �
Suppose now that the checkpoint chosen by D equals k and that D�s inputs are inde�

pendently and uniformly selected in f�� �g�n� In this case the way in which D answers the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

��	� PSEUDORANDOM FUNCTIONS ���

M �s queries can be viewed as placing independently and uniformly selected n�bit strings
as the labels of the 	k � �
�level vertices� It follows that the way in which D answers M �s
queries corresponds to the above described process with m � k � � 	with M playing the
role of � and A playing the role of �
� Hence� in this case M is invoked with access to the
k � �st hybrid random variable�

Suppose� on the other hand� that the checkpoint chosen by D equals k and that D�s
inputs are independently selected so that each is distributed identically to G	Un
� In this
case the way in which D answers the M �s queries can be viewed as placing independently
and uniformly selected n�bit strings as the labels of the k�level vertices� It follows that the
way in which D answers the M �s queries corresponds to the above described process with
m � k� Hence� in this case M is invoked with access to the kth hybrid random variable� �

Using Claim �������� it follows that

jPr
�
D	G	U ���

n
� ���� G	U �t�
n

��

�
� Pr

�
D	U ���

�n � ���� U
�t�
�n
��

�
j �

�	n

n

which� by the contradiction hypothesis is greater than �
n�p�n�

� for in�nitely many n�s� Using

Theorem ������ we derive a contradiction to the hypothesis 	of the current theorem
 that G
is a pseudorandom generator� and the current theorem follows�

��
�� A general methodology

Author
s Note� Ellaborate on the following�

The following two�step methodology is useful in many cases�

�� Design your scheme assuming that all legitimate users share a random function� f �
f�� �gn ��f�� �gn� 	The adversaries may be able to obtain� from the legitimate users�
the values of f on arguments of their choice� but do not have direct access to f �

This step culminates in proving the security of the scheme assuming that f is indeed
uniformly chosen among all possible such functions� while ignoring the question of
how such an f can be selected and handled�

�� Construct a real scheme by replacing the random function by a pseudorandom func�
tion� Namely� the legitimate users will share a random�secret seed specifying such a
pseudorandom function� whereas the adversaries do not know the seed� As before� at
most the adversaries may obtain 	from the legitimate users
 the value of the function
at arguments of their choice� Finally� conclude that the real scheme 	as presented
above
 is secure 	since otherwise one could distinguish a pseudorandom function from
a truly random one
�

We stress that the above methodology may be applied only if legitimate users can share
random�secret information not known to the adversary 	i�e�� as is the case in private�key
encryption schemes
�

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

