
Lecture 9 - One Way Permutations

Boaz Barak

October 17, 2007

From time immemorial, humanity has gotten frequent, often cruel,
reminders that many things are easier to do than to reverse. Leonid
Levin

Quick Review Homework 2.

Minimizing assumptions Up to now, we always assumed the following
PRG Axiom: There exists a pseudorandom generator mapping {0, 1}n
to {0, 1}n+1.

In other words, we believe that there is an algorithm G such that the
following task cannot be done: distinguish G(Un) from Un+1.

Since we still don’t have a proof that this cannot be done, our only
evidence that a task is hard is that many people tried many approaches
to solve it and didn’t succeed.

The problem is that while people have been studying algorithms in one
form or another for thousands of years, there hasn’t been as much atten-
tion devoted to distinguishing the output of a function from the uniform
distribution. Therefore, we want to have an assumption that a more
natural task, such as computing a function, is hard to do.

Def We say that a function g : {0, 1}∗ → {0, 1}∗ is hard to compute (in the
average case) if for every polynomial-time A, polynomially-bounded ε
and large enough n

Pr
x←R{0,1}n

[A(x) = g(x)] < ε(n)

Claim: There exists a hard to compute function g such that g maps
{0, 1}n to {0, 1}n for every n.

Proof: Just pick g at random. For every particular 2
√
n-time algorithm

A, the expected number of inputs on which A(x) = g(x) is one, and the
probability that A computes g successfully on an at least 2−n/10 fraction

1



of the total 2n inputs can be shown to be less than 2−2−n/2

. But a 2
√
n

algorithm can be described by about 2
√
n � 2n/2 bits and so the total

number of such algorithms is much smaller than 22n/2

.

One-way permutation Of course the mere existence of a hard function is
not useful for cryptography. But the following assumption will be useful:

The OWP Axiom: There exists a polynomial-time function f : {0, 1}∗ →
{0, 1}∗ such that for every n, f is a permutation over {0, 1}n (i.e., maps
{0, 1}n to {0, 1}n in a one-to-one and onto way) and such that the func-
tion g = f−1 is hard to compute. Such an f is called a one-way permu-
tation.

An equivalent condition is that for every poly-time A, poly-bounded ε
and large enough n

Pr
x←R{0,1}n

[A(f(x)) = x] < ε(n)

(can you see why these are equivalent?)

We will prove the following theorem:

Theorem 1. The OWP Axiom implies the PRG Axiom.

This places the PRG Axiom on a much more solid foundation, since (as
alluded by Levin’s quote), this is the kind of task people have tried and
failed to do for centuries. (Note that in cryptography we actually put
our failures to good use!)

One way functions It is known that the PRG Axiom is implied by an even
weaker assumption - the existence of a one way function, defined as a
polynomial-time function f (not necessarily a permutation) such that for
every poly-time A, poly-bounded ε and large enough n,

Pr
x←R{0,1}n

[A(f(x)) = w s.t. f(w) = f(x)] ≤ ε(n)

The assumption that one-way functions exist is minimal for many cryp-
tographic tasks. It can be shown that the existence of pseudorandom
generators, encryptions with key shorter than message, message authen-
tication code implies the existence of one-way functions.

Proof of Theorem 1 Theorem 1 will follow from the following two theo-
rems:

2



Theorem 2 (Yao’s Theorem). A distribution X over {0, 1}m is pseudo-
random if and only if it is unpredictable, where the latter means that for
every i ∈ [m], poly-time A and poly-bounded ε,

Pr
x←RX

[A(x1, . . . , xi−1) = xi] ≤ 1/2 + ε(n)

Theorem 3 (Goldreich-Levin). Let f be a one-way permutation. Then
the following distribution is unpredictable:

f(x), r, 〈x, r〉

where x, r ←R {0, 1}n and 〈x, r〉 def

=
∑
xiri (mod 2).

Theorems 2 and 3 together imply that if f is a one-way permutation then
the function x, r 7→ f(x), r, 〈x, r〉 is a pseudorandom generator mapping
{0, 1}2n to {0, 1}2n+1.

Proof of Theorem 2 One direction (pseudorandomness implies unpredictabil-
ity) is easy and left as an exercise.

For the other direction, to show that if X is unpredictable then it is
pseudorandom, we define the following m+ 1 hybrid distributions: H i is
the first i bits of X concatenated with m− i uniform random bits.

It suffices to prove that for every i, H i−1 ≈ H i. We do this by reduction
using the following claim:

Claim 4. Suppose that there is an algorithm D such that∣∣Pr[D(H i) = 1]− Pr[D(H i−1) = 1]
∣∣ ≥ ε (1)

then, there is an algorithm P with almost the same running time, such
that

Pr
x←RX

[P (x1, . . . , xi−1) = xi] ≥ 1/2 + ε

The claim clearly proves the theorem (exercise).

Proof of Claim 4. We can drop without loss of generality the absolute
value in (1), since if D satisfies this condition with a negative number
inside the absolute value, then D will satisfy it with a positive number.

The algorithm P will do the following on input x1, . . . , xi−1:

1. Guess a value b for xi, and choose also m−i random bits yi+1, . . . , ym.

2. Let z = D(x1, . . . , xi−1, b, yi+1, . . . , ym).

3



3. If z = 1 then output b; otherwise, output 1− b.

Analysis: The intuition behind the analysis is that if we guessed cor-
rectly then we’re in H i situation, where we’re more likely to get the z = 1
output.

The actual analysis is the following:

Let p be the probability that D(H i−1) = 1 and p+ ε the probability that
D(H i) = 1.

We know that Pr[z = 1] = p.

On the other hand we know that Pr[z = 1|b = xi] ≥ p+ ε.

This means that

p = Pr[z = 1] = 1
2 Pr[z = 1|b = xi] + 1

2 Pr[z = 1|b = 1− xi]

implying that Pr[z = 1|b = (1− xi)] ≤ p− ε.
So, the probability we output a correct answer is:

1
2 Pr[z = 1|b = xi]+

1
2(1−Pr[z = 1|b = 1−xi]) ≥ 1

2(p+ε)+1
2(1−p+ε) = 1

2+ε

Proof of Theorem 3 Theorem 3 will follow from the following lemma (ex-
ercise):

Lemma 5. There is a poly(n, 1/ε)-time algorithm that given oracle ac-
cess to an oracle A that computes the function r 7→ 〈x, r〉 with probability

1/2 + ε over the choice of r, outputs x with probability at least
(

ε
100n

)2
.

Proof of Lemma 5 The proof of Lemma 5 is a bit involved, so we will do
it step by step.

The errorless case Suppose that we had a perfect oracle A that computed
r 7→ 〈x, r〉 with probability 1. Then, we could recover the first bit of x
by outputting A(r) ⊕ A(r ⊕ e1) for some r (where e1 is the vector with
all zeroes except at the first location).

Note that

A(r)⊕ A(r ⊕ e1) = 〈x, r〉 ⊕ 〈x, r ⊕ e1〉 =∑
xiri +

∑
xi(ri ⊕ e1

i ) =
∑

xiri +
∑

xiri +
∑

xie
1
i = x1

4



The small error case Suppose that the oracle A was correct with proba-
bility 0.9 over the choice of r. Then because for a random r, r ⊕ e1

is uniformly distributed, we can use the union bound to show that the
probability we get an incorrect answer when asking A(r) and A(r ⊕ 1)
is at most 0.2. (Note that these questions are dependent but the union
bound still works in this case.)

Therefore, if we choose a random r, then with probability at least 0.8,
A(r) ⊕ A(r ⊕ e1) will give us the first bit of x, and we can amplify
this probability to 1/(10n) by making 10 log n repetitions and taking the
majority vote. In this way, we can recover all of the bits of x with high
probability.

This will work as long as A is correct with probability more than 3
4 , but

when A is correct with probability, say, 0.7, this analysis doesn’t help us
at all. The union bound will only say that we get the right value with
probability at least 0.4 - worse than random guessing!

The full case The full case is when the oracle A is only guaranteed to be
correct with probability 1/2 + ε. We will do that case on Thursday.

5


