
Lecture 3 - Computational Security

Boaz Barak

September 25, 2007

Quick Review Perfect security, impossibility result, statistical security

Definition of statistical security: (E,D) is ε-secure if for everyA : {0, 1}∗ →
{0, 1}, x0, x1,∣∣Pr[A(EUn

(x0)) = 1]− Pr[A(EUn
(x1) = 1]

∣∣ < ε

Computational Security Unfortunately, we saw that statistical security
does not allow us to really break the impossibility result.

We now turn to a closer examination of that impossibility result. In par-
ticular, in real life people are using encryption schemes with keys shorter
than the message size to encrypt all sort of sensitive information includ-
ing credit card numbers. Could we use the proof of the impossibility
result to break these schemes and gain notoriety and fortune?

Indeed, the proof of the impossibility result does in fact give a algorithm
to break any encryption scheme. It’s even quite simple (10 lines of C
code).

The only problem is that if the key is of size n, then this 10 line C
program will run in time roughly 2n. This is going to take quite a long
time even for n that is not too large.

Consider a key that is 1KB long (note that memory cards for digital
cameras typically have at least 128, 000KB). Even if we take Moore’s law
to its limit, and assume that we have placed a super-computer operating
at the speed of light on every atom in the observable universe , we would
still not be able to run 21000 operations before the sun collapses. It’s
a safe bet that any credit cards we manage to steal will be expired by
then...

This raises the idea of designing encryptions that are unbreakable within
any reasonable time.

Computationally Secure Encryption The main problem we face is that,
while the particular C program arising from that proof runs in exponen-
tial time, we don’t have any guarantee that there is not another program

1

that is actually efficient. In fact, we already saw this is the case for the
substitution cipher, where the number of possibilities for the key is huge
but still we can break the scheme efficiently.

Another problem is that we want a precise mathematical definition. That
is, the previous perfect secrecy definition was a precise statement about
the functions (E,D) that can be formulated and proven to hold using
the tools of mathematics. We don’t want a vague definition such as
“breaking E is very hard” since we can’t work with such a definition.

This means that we need to give a precise mathematical formulation
to statements such as “the problem P can not be solved in reasonable
time”. However, this arises the question of how do we model the adver-
sary’s resources. The adversary may use an IBM, Apple or Unix system,
she may use a network of connected computers, she may use a super
computer, or a special purpose computer she constructed just for this
task, perhaps not made out of silicon but maybe out of analog or bio-
logical components, she can also use a mixture of computer and human
intelligence, using say particularly gifted mathematicians to help break
our encryption.

Can we give a mathematically precise definition that implies that a com-
putational problem cannot be solved in say T years no matter what
mixture of these and other resources are used?

It turns out the answer is “Yes”. To do so, we need to give a mathemat-
ical model that captures the notion of computation in all its forms. The
model we will use will be the Turing machine.1 This model should be
familiar to people who have taken any course on computability, complex-
ity, saw the results on NP-completeness, etc.. However, for cryptography
it is convenient to make the following two modifications:

• Allow the algorithm to be probabilistic: that is, toss coins in the
course of its computation.

• We will sometimes allow the algorithm to get a small advice string
as an additional input. (This is not crucial but simplifies some of the
proofs; we note that KL do not follow this approach.)

1We note that the scientific community is still studying whether or not this model of the Turing machine does
bound all that can be done efficiently in the physical universe. Although it seems that it captures all mechanical and
biological devices that currently exist, a fascinating challenge is posed to this model by quantum computers. These
are hypothetical computing devices that may be built in the future and whose computing power relative to Boolean
circuits is still very much an open question (see Scott Aaronson’s thesis for more on this). However, for almost all of
the material of this course the choice of model (e.g., Turing machines, Boolean circuits, or Quantum circuits) does
not matter much, and so this debate does not effect us greatly.

2

Computing a function Suppose that f is a function mapping n bit strings
into, say, bits. We want to make precise a statement such as “f is
computable in T basic computational steps”. It turns out this can be
done, and this definition satisfies that if f is computable in T steps, then
f is computable in cT d steps in your favorite programming language,
where c, d are some absolute constants independent on the input size.
So, the exact choice does not really matter.

Some equivalent ways to define this are:

• f can be computed by a size-T Boolean circuit - i.e., by combining
at most T , AND, OR and NOT operations.

• f can be computable in T steps by a probabilistic Turing Machine
whose description is a string of length at most T .2

• f can be computable by a C program of at most T characters that
stops within T steps for every input.

The computational model - a user’s guide In this course, the only things
you’ll need to know about the model when trying to show that some com-
putation takes roughly T time are:

• You can use T basic operations such as arithmetic operations, con-
ditionals, memory reads and writes, etc...

• You can toss coins or choose random numbers in the course of the
computation.

• You can assume that constants are “hardwired” into the algorithm,
as long as these constants can be described by a string of length at
most T .

Asymptotic notation To avoid taking care of annoying model-dependent
issues, we prefer to ignore absolute constants that are independent of
the input length, and so, for example, treat a 10n2-step algorithm and a
100n2-step algorithm as equal. To do so, we need to consider computa-
tional tasks that make sense for every input n, and then only consider
the behavior of the running time of algorithms as functions of this input.

For example, if f is a function mapping {0, 1}∗ to {0, 1}, then:

• We say that f has a linear time algorithm if there is a constant c
such that f ’s restriction to {0, 1}n can be computed in at most cn
steps for every n ∈ N.

2An equivalent and more common definition is that the length of the Turing machine’s description is at most some
absolute constant, say 106, but it is given an advice string a ∈ {0, 1}T as an additional input.

3

• We say that f has a polynomial time algorithm if there are constants
c, d such that f ’s restriction to {0, 1}n can be computed in at most
cnd steps for every n ∈ N.

• We say that f has super-polynomial complexity if for every constants
c, d and sufficiently large n,3 f ’s restriction to {0, 1}n can not be
computed in cnd steps.

Oh-notation: We use the following set of notations for functions S, T : N→
N (they can be used for every function, but we will typically use them
for functions denoting running time as function of the input):

• T (n) = O(S(n)) if there exists c such that T (n) ≤ cS(n) for every
sufficiently large n. Example: T (n) = 100n2, S(n) = n2.

• T (n) = Ω(S(n)) if S(n) = O(T (n)).

• T (n) = o(S(n)) if for every c and sufficiently large n, T (n) > cS(n).
Example: T (n) = n2, S(n) = 1000n.

• T (n) = ω(S(n)) if S(n) = o(T (n)).

• T (n) = poly(S(n)) if T (n) = S(n)O(1). That is, there exists d such
that T (n) ≤ S(n)d for every sufficiently large n. Example: T (n) =
100n5 log n, S(n) = n2.

We say that a function T is super-polynomial if T (n) = nω(1). Examples:
T (n) = nlog n, T (n) = 2

√
n.

We say that a function ε : N → [0, 1] is polynomially bounded if ε(n) ≥
1

nO(1) . Examples: ε(n) = 1/n2 , ε(n) = 1/n5 log n.

A function µ : N→ [0, 1] is negligible if µ(n) < 1
nω(1) . Examples: µ(n) =

n− log n, µ(n) = 2−
√

n.

Convention: In this course we use the convention that efficient computa-
tion is equal to polynomial-time. This convention is used for pedagogical
purposes only - for simplicity of description and notations. In practice
we deal with finite inputs, and so one would need to work out the pre-
cise quantitative meaning of a proof of a statement such as “breaking
this encryption has super-polynomial complexity”. However, equating
polynomial-time with efficient computation is an extremely useful way
to describe the high level ideas behind many proofs of security, without
getting bogged down with the low-level details.

3That is, there exists N0 such that this condition holds for every n > N0.

4

Polynomial-time algorithm A polynomial-time algorithm is an algorithm
A that maps any input x ∈ {0, 1}∗ into an output y within poly(|x|)
number of steps (steps can include probability and advice).

Computational security We can now define computational security:

C/S Definition Let (E,D) be an encryption scheme that uses n-bit
keys to encrypt `(n)-length messages. (E,D) is computationally secure if
for every polynomial-time algorithm A : {0, 1}∗ → {0, 1}, polynomially
bounded ε : {0, 1}∗ → [0, 1], n, and x0, x1 ∈ {0, 1}`(n),∣∣Pr[A(EUn

(x0)) = 1]− Pr[A(EUn
(x1) = 1]

∣∣ < ε(n) (*)

Conjecture 1: There exists an efficiently computable and computation-
ally secure encryption scheme satisfying `(n) = n100.

(In fact, most people believe this is true even for `(n) = 20.9n.)

Game view We can also define computational security using a game be-
tween the Evesdropper and encrypter, as we did in the case of statistical
security.

Advanced note There is a subtle difference between the game definition
and the C/S definition above: in the C/S definition we assumed security
for every pair of messages x0, x1, and in the game-based definition the
adversary Adv has to find the two messages x0, x1 herself. A-priori this
seems to imply that the encryption scheme is not required to guarantee
secrecy for pairs of messages that are very hard to find (e.g., strings that
encode the answers to age-old riddles). However, because we allow advice
(i.e., hardwired constants), if there exists a single pair x0, x1 on which
one can distinguish EUn

(x0) from EUn
(x1), then the adversary can have

this pair “hardwired” into its description, and because of this the two
definitions are equivalent.

In contrast, Katz-Lindell do not allow advice in their definition of efficient
computation, and for this reason their analog of the C/S definition only
talks about pairs of messages that are efficiently samplable.

In our context, the difference between allowing advice and not allowing
it is very small, but as in this case, allowing advice sometimes slightly
simplifies definitions and proofs, which is why we do it.

Plan for next few lectures We will show that Conjecture 1 is true assum-
ing a certain Axiom that we will name as “The PRG Axiom”. Then, we
will work in two directions:

5

1. Give evidence for the validity of the PRG Axiom, showing how we
can base it on weaker and more reasonable-sounding conjectures,
although at the moment it is not known how to prove it from scratch.

2. Show how assuming the PRG Axiom is true, we can get better and
better cryptographic constructions: encryptions that can withstand
stronger attacks such as chosen plaintext and chosen ciphertext at-
tacks, and other constructs such as message authentication codes,
digital signatures, and more.

Proofs by reduction The main tool we will use is the notion of proof by
reduction. For example, it is possible to prove the following theorem:

Theorem 1. Suppose that for every polynomial-time algorithm B and
polynomially bounded ε : N→ [0, 1], Pr[B(p · q) = 〈p, q〉] < ε(n), where p
and q are chosen as random n-bit long primes.

Then Conjecture 1 is true: there exists a computationally secure encryp-
tion scheme E,D with `(n) = n100.

(A variant of this theorem will follow from the results we’ll see in this
course.)

How do you prove something like that? The way the proof goes is by
showing the following:

Theorem 2. There exists an encryption scheme E,D and a polynomial-
time algorithm B with the following property:

Assume that the algorithm B is given as input an number x and has
access to a black-box that we denote by A. Then, if x = pq for random
n-bit primes p, q and A is an algorithm violating (*) with probability ε,
then B will output the pair p, q with probability poly(ε).

Why does Theorem 2 imply Theorem 1? Because it means that if there
was a T -time algorithm A that breaks the scheme (E,D) (in the sense of
(*)) with probability ε, then there would be a poly(n) · T (poly(n))-time
algorithm B that factors the 2n-bit number x with probability at least
poly(ε). Since we assume the latter is impossible, it follows that so is
the former.

Of course, the hard thing is to prove Theorem 2. Still sometimes half of
the job of proving a theorem such as Theorem 1 is understanding what
kind of reduction we need to prove, or in other words, understanding the
statement of the corresponding Theorem 2.

6

All of the security proofs in this course will be proofs by reductions.
(Specifically black-box reductions.)

Advanced note: The fact that all these security proofs are by reduction
means that they often supply us more than just the theorem statement.
For example, Theorem 2 implies that if even, say 2n1/4

-time algorithms
cannot factor n-bit integers with, say, 2−n1/4

probability then the result-
ing encryption scheme would have exponential security, and it is even
possible to work out the precise security from the parameters of the
reduction. Such quantitative or concrete analysis is needed to better un-
derstand the implications of the security proofs to the practical security
of implemented schemes.

7

