
Lecture 21 - Electronic votes

Boaz Barak

December 6, 2007

“Those who cast the votes decide nothing. Those who count the votes decide everything.”
(Wrongly?) attributed to Josef Stalin.

Voting mechanisms Paper ballot, absentee mail-in, public/open (raising hands), optical scan-
ning, direct recording electronic (DRE, touchscreen)

Requirements Requirements based on democratic principles: Outcome should reflect the peoples
will. 1. Fairness - one person, one vote 2. Privacy (required for fairness) More formally
we have:

Honest Intentions no vote buying, coercion.

Cast as intended no accidental, malicious miscasting of vote.

Count as cast all votes cast are counted and no more.

Verifiable count independent verification of counts.

Crucial goal: Not just count correctly but make sure that everybody, including the losing
party, agrees the election was fair. Very hard to do if the election was tight

Attacks Israeli towns with high (over %100?) voter turnout, Italian village attack.

Methods vs. requirements This is summarized in this table (though most entries are subjective
and debatable, see Rivest’s notes for a different table)

Paper ballot Open & public vote DRE/Touchscreen
Honest Intentions Y N Y
Cast as intended Y Y Y?1

Count as cast ?2 Y Y?3

Verifiable count ?4 Y N?5

This lecture Can we use cryptography to get everything we want?

We will work in a setting where there are k supposedly independent servers/parties that help
run the protocol. The security we want is:

5Human interface issues, bugs, hacks.
5Trust localities to let the right people vote and not let wrong people / impersonator, trust them to count correctly,

not stuff ballots.
5Aside from bugs/hacks might be even more accurate than hand count. Again, a key issue we largely ignore is

deciding who is allowed to vote.
5Hard to detect local cheating, count is not universally verifiable (need court order to recount).
5No paper trail.

1

Privacy and receipt freeness Assuming even one of the k servers is honest, every voter’s
choice is private and in fact even if he wants to, the voter cannot prove to a third party
that he made a certain vote.

Universal verifiability Even if all servers are cheating and colluding, if they miscount the
votes it can be detected by any party from the broadcasted information.

Mixnets Chaum’s suggestion - mix-nets (we’ll talk about re-encryption mixnets). Ballot trans-
forms each vote v into C = Enc(v) and the pair (voter id, C) is then broadcasted. There
are k server working one after the other, each server takes the list C1, . . . , Cn of ciphertexts,
re-encrypts each ciphertext and randomly permutes them to obtain a new list D1, . . . , Dn,
and broadcasts the new list and a proof π that that’s what he did. At the end they jointly
decrypt the final list to get a random permutation of the votes.

Re-encrypting El-Gamal Fix G and g for which DDH holds. Public key is y = gd, private key
is d. El-gamal encryption of m is (gr, yr ·m).

Re-encrypt z, c as (xs, c · ys) = (gr+s, yr+s ·m).

Verifiable mixes How do you prove that D1, . . . , Dn is a mix of C1, . . . , Cn? (other than just
using GMW’s theorem that every statement in NP has a zero knowledge proof).

First idea: reduce to n = 2 Using sorting networks.

Solving the n = 2 case Denote C ∼ D if they encode the same plaintext. We need to prove that
given C1, C2, D1, D2,(

(C1 ∼ D1) ∧ (C2 ∼ D2)
)
∨

(
(C1 ∼ D2) ∧ (C2 ∼ D1)

)
or equivalently,(
(C1 ∼ D1)∨(C1 ∼ D2)

)
∧

(
(C1 ∼ D1)∨(C2 ∼ D1)

)
∧

(
(C2 ∼ D2)∨(C1 ∼ D2)

)
∧

(
(C2 ∼ D2)∨(C2 ∼ D1)

)
meaning that it suffices to supply four proofs for a statement of the form

(C ∼ D) ∨ (C ′ ∼ D′)

Ciphertext equivalence Let’s start by showing a proof for C ∼ D. In other words, prove that
C = gr, yr ·m and and D = gs, ys ·m or equivalently, if we divide the components, we’ll get
a pair (z, w) of the form: (gr−s, yr−s). In other words, letting y = ga and b = logg z we need
to prove that w = gab. That is, we need a proof that a triple y, z, w is a Diffie-Hellman triple.
Chaum and Pederson showed a 3-round public coin proof system for this model that is zero
knowledge for honest-but-curious verifier (known as honest-verifier zero knowledge):

Common input: g,G, triple of the form y, z, w where y = ga, z = gb, w = zab.

Prover’s secret input: a, b

Prover’s first message: (u, v) = (gs, ys) where s←R {0, .., |G| − 1}.
Verifier’s message: c←R {0, .., |G| − 1}.
Prover’s last message: t = s+ cb.

Verifier’s acceptance criteria: Check that gt = uzc and yt = vwc.

2

Theorem 1. The above is a special sound HVZK for the language of DH tuples.

xor trick It turns out that if we have a 3-round public coins special-sound protocol Π for a language
L, then we have such a protocol for the language L′ where (x, y) ∈ L′ if x ∈ L ∨ y ∈ L.

true voter verifiable systems The weak link in the above systems is the machine that encrypts
the voter’s choice— how do we know that’s really what it did? We can try to audit these
machines etc.. but we’d really like something better. We’d like each voter to be able to verify
that her vote was indeed counted. The challenges in making this happen are that:

1. We don’t want to let the voter take home proof that she voted in a certain way.
2. Humans cannot do complicated computations.

Approaches to voted verifiability This idea was initiated by Chaum, and there are two ap-
proaches to getting this:

Chaum Systems that give the voter a receipt that she voted in a certain way, but then she gets
to take home only half of the receipt (and the other half is destroyed). The verification
that the two halves are consistent is simple enough to be done by a human (uses visual
cryptography).

Neff, Moran-Naor Systems that use interactive proofs and depend on the order events occur in the voting
booth.

Naive suggestions Here are some naive suggestions to get voter-verification:

• The voting machine encrypts the choice v of the voter by choosing randomness r for the
encryption algorithm and computing C = Ee(v; r) (where e is the public key). It can
give the verifier r, and at home the verifier can check that the value C broadcasted is
indeed equal to Ee(v; r).
The problem with this is that of course r is basically a receipt that the voter can use to
prove to a third party that her choice was v.
• The voting machine proves to the voter in zero knowledge that there exists r such that
C = Ee(v; r).
The problem here is that the voter is a human and cannot do the computations involved
in verifying zero knowledge proofs.

The solution Suppose that the choice v is either Alice or Bob. After voter Victoria makes her
choice, the voting machine runs two zero knowledge proofs: one that C is an encryption of
Alice and the other is that C is an encryption of Bob. Of course one of these is false, but the
trick is that for the choice that Victoria didn’t make, she will give the machine the challenge
in advance, so the machine can run the simulator instead. Victoria gets to take home a
printout (possibly signed with the machine’s key) that contains her name, the ciphertext C,
and the transcripts for the two zero knowledge proofs. She can then verify the transcripts are
accepting and that C is indeed the ciphertext broadcasted under her name using her trusted
computer (or send it to several watchdog groups that will verify it for her). But even if she
voted for Alice, she cannot convince a third party that it was the challenge for the proof that
the vote is Alice that she gave the machine later, and the challenge for the proof that the
vote is Bob that she gave the machine first.

3

