
Lecture 19 - Oblivious Transfer (OT) and Private Information

Retrieval (PIR)

Boaz Barak

November 29, 2007

Oblivious Transfer We are thinking of the following situation: we have a server and a client (or
a sender and a receiver) where the server has a list of n strings x1, . . . , xn, and the client
wants to learn xi. Of course the client can simply send i to the server, but the client does
not want the server to know i. Now, the server can simply send the n strings to the client
but the server does not want the client to learn xj for j 6= i.

This problem, originating with Rabin, where the server should transfer xi to the client without
knowing i, is called oblivious transfer.

Possible application Suppose that we want to an electronic-cash scheme. The idea is that Alice
will set up a service, where users like Bob can purchase from her “digital vouchers” that they
can later use to buy things from vendors. The vendors will then present these vouchers to
Alice.

One naive solution will be the following: Alice will prepare the message m =‘‘I am willing
to pay $1’’ and a signature σ on m. Whenever Bob pays her $x Alice will give Bob x
copies of the message m and the signature σ. Vendors can test the signature when Bob pays
for something, and whenever Alice is presented with (m,σ) she will pay the vendor $1. This
solution is simple but it has the drawback that it will probably not take Bob or the vendors
long to find out that they can copy m and “print money”.

Now suppose that Alice tries a new solution: she has a counter id which is initially set to
1, and whenever Bob pays her $1, Alice provides bob with a signature on mid =‘‘I am
willing to pay $1. ID= id’’ and then increment id by one. Now she keeps a database
of all the vouchers she cached, so she will never cash the same voucher twice. Furthermore,
she makes this database available online so that vendors can verify that a voucher is valid
before accepting it.

This is great, but now Bob is not that happy. The only reason he wanted to use e-cash and
not his credit card was that he did not want his transactions to be traceable, but now Alice
knows exactly what id he was given, and so knows exactly what he bought with e-cash (which
can be quite embarrassing for Bob - for example he may have bought a cryptography book
that uses the random oracle model).

To solve this problem and make Bob happy but Alice not bankrupt, we use oblivious transfer.
Alice prepares in advance messages m1, . . . ,mn (where n is the amount of money she has)
and corresponding signatures σ1, . . . , σn. She lets xi = mi ◦ σi. When Bob pays her $1, they
run an oblivious transfer protocol with Alice’s inputs being x1, . . . , xn and Bob choosing i
at random. At the end of the protocol, Bob got exactly one valid pair mi, σi (if it is not

1

valid, Bob can reveal his private coins and prove that he deserves to get his money back),
and Alice does not know i. Again, when Alice is presented with a message mi, σi she cancels
this voucher, removes it from the list used in future oblivious transfers, and makes the list of
canceled i’s public.1

Private Information Retrieval In the previous example n is the amount of money Alice has,
which can be quite a lot sometimes. Now, if we assume that the length of a signature is k,
it can be that k is much smaller than n, and since Bob is only interested in learning O(k)
bits, it would be great if the communication in the protocol could be only a function of k,
and be much smaller than n. Such a protocol is called a private information retrieval (PIR)
protocol. Constructing such protocols with� n communication is non-trivial even if we don’t
care about the security of the server (and so the standard definition does not require this).

Side note: Multiple server PIR: Even without considering security for the server, it can
be shown that without considering computational security, we cannot have a PIR protocol
with o(n) communication. However, it turns out that there is in fact a model where we can
have information theoretic security for PIR. This is the model where there are several servers
that all hold the same database and do not communication with one another. The receiver
will ask all the servers some queries, such that each server will have no information about
the index i (even though i can be reconstructed from all the queries together). It was shown
by Beimel, Ishai, Kushilevitz and Raymond how to construct such a protocol for c servers
and communication roughly n1/c. In a breakthrough 2006 result, Yekhanin showed that if
the mathematical conjecture that there exist infinitely many Mersenne primes (primes of the
form 2n + 1) is true then there is a 3-server protocol with nO(1/ log logn) communication. It
is not known whether this is the best possible - as far as we know it may be even possible
to have a protocol with polylogarithmic communication. This question is tightly related to a
question in coding theory about the existence of locally decodable codes with good parameters.

Secure function evaluation Note also in that example that Alice did not really need to store
the entire database x1, . . . , xn. Rather she had an efficient algorithm that on input i, outputs
the pair mi, σi, where this algorithm runs in time polynomial in the length of i (which is equal
to log n) and the output k. Thus, we might be interested in a protocol for OT where both
the communication and the running time of both parties is polynomial in |i| and k. Such a
protocol is called a protocol for secure function evaluation (SFE), since it helps two parties
compute the function f(s, i) = mi ◦σi, where s is the server’s private input (signing key) and
i is the index. We allow the communication and computation of secure function evaluation
can depend on the time to compute the ith entry in the list. Thus, if we have an SFE protocol
for every function then we obtain immediately an OT protocol, but this is incomparable with
a PIR protocol. (Verify that you understand why.)

Results The following results are known:

• Secure function evaluation can be constructed using oblivious transfer.

• Oblivious transfer can be constructed using one-out-of-two oblivious transfer (the case
n = 2).

1There is a slight chance that Bob will accidentally pick i that was already given previously to Charlie. For
simplicity we assume that in this case Bob loses his money, although he can make the probability of this happening
very low by choosing i at random. We can think of this probability as an added transaction cost for the service
(although it’s not clear Bob will see it this way).

2

• One-out-of-two oblivious transfer can be constructed based on any trapdoor permutation
(see Goldreich’s book Vol II), but also more efficiently based on specific number theoretic
assumptions. The technique used is to first construct a protocol for the honest but curious
model (essentially a passive adversary that gets to read the private information of one
of the parties, but not modify its behavior) and then transform it into a protocol for the
general case using zero knowledge. We’ll also show a simpler construction by Naor and
Pinkas based on the DDH.

• Secure function evaluation can be constructed based on oblivious transfer (we’ll show
this in a future lecture, but see also Goldreich’s book).

• Private information retrieval (single server computational version) can be constructed
with nε communication based on hardness of deciding quadratic residuosity (Kushilevitz
and Ostrovsky, we’ll show a simpler version of this protocol with communication n1/2+ε),
and polylogarithmic communication based on somewhat more exotic assumptions [Stern
98], [Cachin, Micali, Stadler ’99], [Chang ’04], [Limpaa ’04].

OT based on trapdoor permutations We now show an OT protocol in the honest-but-curious
model using trapdoor permutations:

Protocol TDP-OT2
n

Sender’s input x0, x1 ∈ {0, 1}.
Receiver’s input i ∈ {0, 1}.
Sender’s first message Select f from a trapdoor permutation family from {0, 1}n to {0, 1}n.

Receiver’s message Select x1−i at random in {0, 1}n and xi = f(w) where w is chosen
randomly in {0, 1}n. Send x0, x1 to sender.

Sender’s message Select r0, r1 ←R {0, 1}n, let wi = f−1(xi), and send ri, ri � wi ⊕ xi for
i = 0, 1.

Analysis

OT for strings In the honest-but-curious model a 1-out-of-2 OT for bits automatically implies
such a protocol for strings. Just run ` copies in parallel. The receiver will only use either all
zeroes or all ones for his choices.

OT based on the DDH. We will show an OT protocol for the case that n = 2. We will then
use such a protocol to construct an OT protocol for general n.

Preliminaries We’ll use the following lemma, which was proven in the secret sharing lecture:

Lemma 1. Let q be a prime and let Fq equal the set {0, . . . , q − 1} with addition and multi-
plication modulu q. Let a 6= a′ be two elements in Fq. Then for a random degree 1 polynomial
f(x) = rx + s (where r, s are chosen at random in Fq), the random variable 〈f(a), f(a′)〉 is
distributed according to the uniform distribution over Fq × Fq.

The protocol We now turn to describing the protocol. As usual in discrete-log based protocols, it
will be convenient for us to give variable names for the discrete logs of the numbers involved,
but keep in mind that a party given ga cannot compute a. (This description is actually
missing a crucial step, see below.)

Protocol OT 2
1 :

3

Sender’s input x0, x1 ∈ {0, 1}`.
Receiver’s input i ∈ {0, 1}.
Receiver’s message Choose at random prime p of the form p = 2q+1 for prime q, let G be

the group of quadratic residues modulu p, (note that |G| = q) and g be a generator for
this group. Receiver chooses a, b at random in {0, . . . , p− 1} . It then chooses ci = a · b
(mod q) and c1−i is chosen at random from {0, . . . , p− 1}. It sends to sender the primes
p, q, the generator g, and the tuple 〈ga, gb, gc0 , gc1〉.

Sender’s message Sender is given a tuple 〈ga, gb, gc0 , gc1〉 (although note that it does not
know a, b, c0, c1). It verifies that all of these belong to the group G and that gc0 6= gc1 .
It then chooses at random r, s ∈ {0, . . . , q − 1}, and sends to the receiver w = (ga)r gs

and z0, z1 where for i = 0, 1, zi = πi ⊕ xi and

πi = (gci)r
(
gb

)s
(Note that we assume here that a random element of the group G is represented by a
random string in {0, 1}` for some `. We can get the same effect by encoding xi as an
element in G and use multiplication in the group instead of ⊕ to mask it.)

Receiver’s computation Receiver got three strings w, z0, z1 from the sender. It computes
πi = wb and xi = zi ⊕ πi as its output.

Analysis The security for the receiver is based on the DDH assumption. The security for the
sender actually holds information theoretically, regardless of the computational powers of the
receiver. This is proven in the following lemmas:

Lemma 2 (Receiver’s security). Assume DDH is true. Then the receiver’s message when
i = 0 is computationally indistinguishable from the receiver’s message when i = 1.

This is almost immediate and is left as an exercise.

Lemma 3 (Sender’s security). If ci = a ·b for some i ∈ {0, 1}, then π1−i is a uniform element
of the group G, even conditioned on all the rest of the information the sender provides.

Note that this does indeed imply that x1−i is completely hidden from the receiver.

Proof. The main part of the receiver’s message consists of a four-tuple ga, gb, gc0 , gc1 . Since
the sender verifies that gc0 6= gc1 we know that c0 6= c1. Therefore c1−i 6= a · b (mod q).

The sender selects random r and s and then computes w = gar+s = gf(a) where f(x) =
rx+ s. The number πi is equal to gabr+bs = gbf(a). The number π1−i is equal to gc1−ir+bs =
gb(r·c1−i/b+s) = gb·f(c1−i/b). Now the only parts of the sender’s message that depend on s
and r are the values w = gf(a) and zi = gbf(a) ⊕ xi. Since these depend only on f(a), even
conditioned on these values, the value f(a′) for a′ = c1−i/b is completely random.

To make this into a secure OT protocol that remains secure even when the receiver can
deviate from the protocol, we can add an intermediate step where the receiver will prove in
zero-knowledge that ci = a · b for some i.

Getting to OTn1 Given such a protocol, we can convert into a protocol for choosing one input out
of n in the following way:

4

Sender’s input x1, . . . , xn ∈ {0, 1}`.
Receiver’s input i ∈ {1, . . . , n}.
Operation Sender chooses k0 = 0`. For j = 1, . . . , n the protocol proceeds in the following

way:

• Sender chooses kj at random from {0, 1}`.
• Sender and receiver run 1-out-2 OT with sender’s first input equalling k0 ⊕ · · · ⊕
kj−1 ⊕ xj and sender’s second input equalling kj . If i = j then the receiver asks to
receive the first input, and otherwise it asks to receive the second.

Receiver’s computation The receiver learned kj for all j 6= i and k0 ⊕ . . .⊕ ki−1 ⊕ xi and
so it can recover i.

Analysis Security for the receiver follows fairly immediately from security of the basic 1-out-2 OT.
For the sender’s security note that in each iteration the receiver learns only one input. Let i
denote the first iteration in which this input is the first one. (If the receiver learns the second
one in all the iterations then it received no information about the inputs.) For j < i, the
receiver didn’t receive any information about xj . For j > i the receiver can at best receive
xj XOR’d with some things that include also ki (which he does not know) and so will also
receive no information about xj .

The PIR protocol We sketch the PIR protocol of Kushilevits and Ostrovsky. It has O(
√
nk)

communication where n is the number of elements and k is the security parameter. (Recall
that we are now thinking of only the receiver’s security.)

Quadratic Residuosity assumption Recall that if factoring is hard then extracting square roots
modulu a composite is hard. Similar to the DDH, we’ll now make a stronger assumption that
it is in fact hard do distinguish between a random quadratic residue and a random element
of Z∗m (we use m since n is taken in this context by the number of elements). Again, similar
to DDH, this does not make sense as is and we have to move to a subgroup of Z∗m (which we
denote by Z+

m). This subgroup contains all the quadratic residues and membership in it is
polynomially testable.2 That is, we make the following assumption: for a random m = p · q,
it is hard to distinguish between a random element of QRm and a random element of Z+

m.
Note that given the factorization of n it is easy to find out whether or not a number y is a
quadratic residue.

The protocol We will design a protocol for the case that each of the sender’s inputs is just one
bit (we can run the protocol several times one after the other to obtain more bits). We think
of this as a

√
n by

√
n matrix x, where xi,j is the bit at the place i, j. The receiver wants to

find out xi0,j0 for some i0, j0.

Receiver’s message Choose m = p · q for random p, q. Choose y1, . . . , y√n in the following
way: if j 6= j0 then yj is a random quadratic residue modulu m. yj0 is chosen to be a
random quadratic non-residue modulu m. Receiver sends y1, . . . , y√n.

Sender’s message For every row i in the matrix, the sender computes the number zi as
follows: zi equals the product of all the yj ’s for every j such that xi,j = 1. The sender
sends z1, . . . , z√n to the receiver.

2Technically this is the subgroup of elements with Jacobi symbol equalling +1. For m = pq, the group of quadratic
residues has size |Z∗m|/4 while Z+

m has size |Z∗m|/2.

5

Receiver’s computation If zi0 is a quadratic residue then the receiver decides that xi0,j0 =
0 and if zi0 is a quadratic non-residue then the receiver decides that xi0,j0 = 1

See the paper of Kushilevitz and Ostrovsky for the analysis.

Reducing the communication The idea of reducing the communication further is that instead
of the sender sending to the receiver z1, . . . , z√n the receiver can run the PIR protocol recur-
sively to obtain zi0 . Then, by choosing a matrix with fewer columns, it is possible to save on
communication and get a more efficient protocol.

6

