
Lecture 15 - Zero Knowledge Proofs

Boaz Barak

November 21, 2007

Zero knowledge for 3-coloring. We gave a ZK proof for the language QR of (x, n) such that
x ∈ QRn. We’ll now give a ZK proof (due to Goldreich, Micali and Wigderson) for a different
language - the set of 2 colorable graphs. That is, we say that a graph G(V,E) on n vertices
is in 3COL if there is a function c : V → {R,G,B} such that for every edges (u, v) ∈ E,
c(u) 6= c(v).

Why is this interesting. Intuitively, it seems that the language of quadratic residues is more
interesting to crypto than 3COL and in some sense it is. Then, why are we interested in a
protocol for 3COL?

The reason is that a protocol for 3COL actually implies a protocol for QR and for almost
any other language we are interested in, because 3COL is NP-complete. For example, we’ll
show why it implies a ZK protocol for QR:

The fact that 3COL is NP-complete means that we have a function reduce that on input
(x, n) gives a graph G such that x ∈ QRn iff G is 3 colorable. Thus, if we want to prove
in ZK that (x ∈ QRn we can use that reduction to obtain a graph G and prove that G is 3
colorable.

An important point is that, although this is not usually stressed, the standardNP -completeness
reductions also reduce the solution or witness from one problem to the other. That is, along
with the function reduce(·) we also have a function red′ that maps a number w such that
w2 = x to a 3-coloring c : V → {R,G,B} of the graph G = reduce(x, n). This can be used
for the prover to convert their private input into an input appropriate for the 3COL protocol.

Other interesting NP statements. Once we can prove any language in NP we can have pro-
tocols like this:

• Alice sends Bob a number n and proves in ZK that it n = pq for two primes p, q with p
(mod 4) = q (mod 4) = 3.

• Suppose that the encryption of Alice’s tax return data is available on the web, and Alice
wants to persuade Bob to give her a grant without opening all of the encryption. She
can prove in zero knowledge that the bottom line is that she earned less than 10K.

• Alice can send a string y to Bob and prove that this string is a commitment one of the
two following strings “Eva” or “Fantasia” without Bob knowing which one it is.

Commitment schemes Before describing the protocol, let’s remind ourselves what is a commit-
ment scheme. A commitment scheme is a function C : {0, 1}` × {0, 1}n → {0, 1}kn′ satisfying
the following properties

1

Hiding / Secrecy / Indistinguishability For every x, x′ ∈ {0, 1}`, C(x, Un) is computa-
tionally indistinguishable from C(x′, Un). (Note this is the same as the indistinguisha-
bility property for encryption scheme, and implies that given y = C(x, Un) an adversary
can’t learn any new information about x.)

Binding For every y there exists at most a single x such that y = C(x, r) for some r ∈ {0, 1}n.
(This implies that it is not possible to come up with two different pairs x, r and x′, r′

with x 6= x′ that yield y.)

We’ll use a commitment scheme for messages of length 2, which we’ll think of as numbers
between 0 and 3. We’ll use n bits of randomness for the commitment. If x is some message,
we denote by C(x) the random variable C(x, Un).

A ZK protocol for 3COL We now describe Protocol 3COL. The public input is a graph G(V,E)
of n vertices and m edges (with m ≤ n2). The prover also gets as a private input a function
c : V → {R,G,B} such that for every (u, v) ∈ E, c(u) 6= c(v).

P → V Prover chooses a random 1-to-1 function ψ : {R,G,B} → {1, 2, 3}. It defines c′ :
V → {1, 2, 3} to be the ψ ◦ c (i.e., for every v ∈ V , c′(v) = ψ(c(v))). It computes
y1, . . . , yn in the following way yi is a commitment to c′(vi) where vi is the ith vertex.
Prover then sends y1, . . . , yn to the verifier.

P ← V Verifier chooses a random edge (vi, vj)←R E and sends (vi, vj) to the prover.

P → V Prover opens the commitments yi and yj and sends this information to the verifier.
That is, it sends ri, rj ∈ {0, 1}n and xi, xj ∈ {1, 2, 3} such that (*) yi = C(xi, ri),
yj = C(xj , rj).

Verification Verifier accepts if and only if the openings are valid (i.e., satisfy (*) above),
xi, xj ∈ {1, 2, 3} and xi 6= xj .

Completeness. Completeness is again pretty immediate.

Soundness. We’re going to show very low soundness error for this protocol: that if G is not 3-
colorable, then the verifier will reject with probability at least 1−1/m where m is the number
of edges. However, this is enough since if we repeat the protocol mk times we’ll get soundness
error (1− 1/m)mk ∼ 2−k.

Lemma 1. Suppose that G is not 3-colorable. Then, the verifier will reject with probability
at least 1− 1/m where m is the number of edges in the graph.

Proof. By the binding property of the commitment scheme, for every y there’s at most a
single value x ∈ {0, 1, 2, 3} such that there exists r with C(x, r) = y. Let’s define this value
x as C−1(y) (if there’s no such x, define C−1(y) = ⊥. Note that the function C−1 is not
efficiently computable, but it is still mathematically well defined.

Let G be a non-3-colorable graph, and let P ∗ be a possibly cheating prover strategy for G and
let y1, . . . , yn be its output on the empty string (i.e., it’s first message). We define a coloring
function c : V → {R,G,B} in the following way: for every vertex vi, we consider xi = C−1(y)
if xi = 1 we let c(vi) = R, if xi = 2 we let c(vi) = G and if xi = 3 we let c(vi) = B. If xi = ⊥
or xi = 0 then we pick c(vi) arbitrarily (say c(vi) = R).

2

Now the graph is not 3-colorable and hence there exists an edge (vi, vj) such that c(vi) = c(vj).
With probability at least 1/m, the verifier will choose this edge. We claim that in this case
the verifier will surely reject. Indeed, the prover P ∗ can either not open the commitments (in
which case the verifier rejects) or (if C−1(yi) and C−1(yj) are not ⊥) send xi and xj . Now if
one of the xi or xj equals 0 then the verifier will reject. However, if xi, xj ∈ {1, 2, 3}, then
since c(vi) = c(vj) we know that xi = xj and hence the verifier will reject.

Zero Knowledge The simulator for our protocol will be in some sense similar to the simulator
of Protocol QR, although in this case we’ll have only computational indistinguishability and
not statistical indistinguishability. The simulator will do the following:

Algorithm S

1. Input: G a graph on n vertices and m edges.

2. Guess a random edge (i′, j′)←R E.

3. Choose c1 at random from {1, 2, 3} and choose c2 at random from {1, 2, 3} \ {c1}.
4. For every 1 ≤ i ≤ n, compute yi as follows: if i 6∈ {i′, j′} then yi = C(0) (i.e., commitment

to 0 with fresh independent coins). If i = i′ then yi = C(c1) and if i = j′ then yi = C(c2).

5. Compute (i, j) = V ∗(y1, . . . , yn) (i.e., feed the message y1, . . . , yn to V ∗ to obtain its
response which we can always interpret as an edge (i, j) ∈ E.

6. If (i, j) 6= (i′, j′) then go back to Step 2.

7. Otherwise, compute z to be the openings of yi and yj and output the transcript 〈y1 · · · yn, (i, j), z〉.

Proof that simulator works To prove that S is a valid simulator we’ll construct a hybrid simu-
lator HS will get as extra input the witness a valid coloring c : V → {1, 2, 3} (this is fine since
HS is just a tool for the proof). We will prove that (1) The output of HS is indistinguish-
able from the output of S and (2) The output of HS is indistinguishable from a transcript
in which V ∗ interacts with the honest prover.

Algorithm HS

1. Input: G a graph on n vertices and m edges. S′ also gets c : V → {R,G,B} such that
c(u) 6= c(v) for all (u, v) ∈ E.

2. Guess a random edge (i′, j′)←R E.

3. Choose c1 at random from {1, 2, 3} and choose c2 at random from {1, 2, 3} \ {c1}.
4. Let ψ : {R,G,B} → {1, 2, 3} be the unique one-to-one function such that ψ(c(vi′)) = c1

and ψ(c(vj′)) = c2.

5. For every 1 ≤ i ≤ n, compute yi as follows: yiC(ψ(c(vi))), Note that yi′ = C(c1) ,
yj′ = C(c2).

6. Compute (i, j) = V ∗(y1, . . . , yn) (i.e., feed the message y1, . . . , yn to V ∗ to obtain its
response which we can always interpret as an edge (i, j) ∈ E.

7. If (i, j) 6= (i′, j′) then go back to Step 2.

8. Otherwise, compute z to be the openings of yi and yj and output the transcript 〈y1 · · · yn, (i, j), z〉.

3

It’s not hard to see that ψ is a random one-to-one mapping from {R,G,B} to {1, 2, 3}
and hence (1) the sequence (y1, . . . , yn) is independent from the choice of (i′, j′) and hence
(i′, j′) = (i, j) with probability at least 1/m and (2) the output of HS is identical to the
transcript of an interaction between V ∗ and the honest prover.

We’ll show that any difference in behavior (whether it is running time or output distribution)
between HS and S will contradict the security of the commitment scheme. We show this in
the following way:

For i between 1 and n, define Si(G, c) as follows: act exactly like S(G) except that when
computing the commitments y1, . . . , yn, the first i commitments that are not yi′ , yj′ will be
computed to be commitments to the same values as HS does (and not to zero). Clearly, the
output S0(G, c) is identical to the output of S(G) and the output of Sn−2(G, c) is identical to
the output of HS(G, c). Thus, it is enough to prove that for any i, Si(G, c) is indistinguishable
from Si−1(G, c). However, this follows immediately from the hiding property commitment
scheme: assume otherwise, and define the following distinguisher: given an input y that is
either C(0) or C(ψ(c(vi))), define Ŝ(G, c, y) to be the following algorithm: use the first i− 1
commitments as HS does, for the ith commitment use y, and for the rest use commitments
to zero. We see that if we can distinguish between Si(G, c) and Si−1(G, c) then we can use
Ŝ(G, c, y) as a distinguisher between C(0) or C(ψ(c(vi))).

Summary We have the following definition for a ZK proof:

Definition 2. Let L be a language in NP and let R be its corresponding witness relation
(that is, x ∈ L if and only if there’s some w such that (x,w) ∈ R). A proof system (P, V) is
a zero knowledge proof for L with (T, ε)-zero knowledge and soundness error δ if it satisfies
the following:

Completeness If (x,w) ∈ R and the public input is x and the prover P is given w as private
input then the verifier will accept with probability one.

Soundness with error δ If x 6∈ L then for every possibly cheating prover P ∗, the proba-
bility that outV 〈P ∗, Vx,r〉 = accept is at most δ, where this probability is taken over the
random choices r of the verifier.

Zero knowledge For every poly-time cheating strategy V ∗ there exists a poly-time non-
interactive algorithm S such that for every (x,w) ∈ R the following two random variables
are computationally indistinguishable:

• viewV ∗〈PUm,x,w, V
∗〉. (Where m is the number of random coins P uses

• S(x). (Note that S is probabilistic and so this is a random variable).

Proofs of knowledge Basically proof of knowledge is a stronger form of soundness that says that
if P ∗ convinces the verifier with noticeable probability (i.e., more than the soundness error),
then not only this means that the statement x is in L but it actually means that P ∗ “knows”
a witness in the sense that it could obtain a witness by running some algorithm. This is
often useful for proving security of identification protocol where simple soundness falls short
of what we need to make the proof work.

We say that (P, V) is a proof of knowledge if soundness is replaced by the following stronger
requirement:

4

Knowledge soundness with error δ For every possibly cheating prover P ∗, and every x,
if P ∗ satisfies that

Pr[outV 〈P ∗, Vx,r〉 = accept] > δ + ρ

(where this probability is taken over the random choices r of the verifier)
then there’s a algorithm E (called a knowledge extractor) with running time polynomial
in 1/ρ and the running time of P ∗, that on input x outputs a witness w for x (i.e. w
such that (x,w) ∈ R) with probability at least 1/2. Note this indeed implies normal
soundness with soundness error δ.

Main Theorem Using the 3COL protocol, we have the following theorem:

Theorem 3. Assume that commitment schemes exist (implied by OWP/PRG Axiom). Let
L be any language in NP. Then, there exists a zero knowledge protocol for proving that
x ∈ L where the prover and verifier run in poly(|x|) time and the soundness error is 2−|x|.
Furthermore this protocol satisfies the stronger condition of proof of knowledge.

Practical Issues: In some sense the zero knowledge protocol for NP serves as a dividing line
between practical and theoretical cryptography. The reason is that the reduction between NP
statements people want to prove in practice (e.g., statements of the form y is an encryption of
a number between 10 and 100) and the language of graph 3 coloring is extremely complicated
and inefficient.1 Therefore, while zero knowledge for 3COL is a very powerful way to show
a polynomial-time protocol for problems, it will not yield a very practical protocol. For this
reason a lot of effort has been made at getting tailor-made zero-knowledge proofs that are
simpler and more efficient for specific interesting classes of NP statements. Many of the more
interesting and sophisticated cryptographic protocols and schemes (e.g., electronic elections,
interactive and non-interactive chosen-ciphertext secure cryptosystems) follow this paradigm.

1We note that, using a variant (obtained by Babai, Lund, Fortnow and Szegedi) of the so-called PCP theo-
rem, Kilian has given significant improvements on the efficiency of this reduction, but at the expense of even more
complication.

5

