
COS 433 — Cryptography — Homework 9.

Boaz Barak

Total of 110 points. Due December 6th, 2007.

Exercise 1 (30 points). Another issue in protecting cryptographic keys, is how to make sure that
they are generated at random. In a simplified scenario, suppose that you have two machines but
one of them might be faulty — can you run an interaction between them that results in an unbiased
coin toss?

More formally, a secure coin-tossing protocol is defined as follows: it is a two-party protocol
with the two parties named Alice and Bob. There is a polynomial-time function result that takes
as input the transcript of the protocol (i.e., the sequence of all messages exchanged between the two
parties), and outputs a bit b ∈ {0, 1}. Note that if the two parties are probabilistic, the transcript
trans = trans〈A(1n), B(1n)〉 of the execution of the protocol (where both Alice and Bob are given
as input the security parameter n) is a random variable. We require that as long as at least one
party follows the protocol, for every b ∈ {0, 1}, the probability that result(trans) = b is between
1
2 − ε(n) and 1

2 + ε(n) where n is the security parameter for the protocol, and ε(·) is a function such
that ε(n) = n−ω(1).

An example for a simple protocol attempting to solve this problem would be for Alice to choose
b at random and to send it to Bob, and for the result function to simply output b. This would work
in the case that both Alice and Bob are honest (i.e., follow the protocol) and also if just Alice is
honest, but not in the case that just Bob is honest. Hence this is not a secure coin-tossing protocol.

Construct a secure coin-tossing protocol.
See footnote for hint.1

Exercise 2 (40 points). A private coin tossing protocol is the following variant of a coin tossing
protocol. Intuitively, it supposed to be a protocol where only Alice actually knows the result of the
coin toss, but Bob is still guaranteed that this result is random. (You can think that Alice learns
the output b while the transcript only contains a commitment to b.)

More formally, again, there are two parties Alice and Bob and a function result on the transcript
of the protocol, but this time result is not a polynomial-time function. We require the following
properties of the protocol:

• As before, if at least one of the parties is honest, for every b ∈ {0, 1},
1
2 − n

−ω(1) < Pr[result(trans) = b] < 1
2 + n−ω(1)

• If Alice is honest, then she knows the result: there is a polynomial-time algorithm RES that
on input the private randomness and view that Alice used, outputs the same output as result.
That is, no matter what algorithm B∗ Bob uses RES(viewA〈A,B∗〉) = result(trans〈A,B∗〉)
where 〈A,B∗〉 in both sides of the equation denotes an execution between the honest Alice
algorithm A and a possibly cheating (but polynomial-time Bob algorithm B∗).

1Hint: You might want to handle the case in which one party refuses to send a valid message, by defining the result function in such a way

that in this case the other party gets to choose the output b.

1



• Bob does not know the result. That is, consider the following attack: Bob participates in the
protocol using an arbitrary algorithm B∗ where Alice uses the honest algorithm A, and at the
end Bob outputs a guess b′ for result(trans), where trans is the transcript of the execution.
Then the probability that b′ = result(trans) is at most 1/2 + n−ω(1).

Note that if Alice and Bob participated in an execution of a private coin-tossing protocol
with transcript trans, and Alice knows b = result(trans) = RES(view) (where view is her view
including the random tape she used) then Alice can prove to Bob that result(trans) = b by simply
sending to Bob the random tape she used (using this random tape and trans Bob can reconstruct
Alice’s view view in the execution and then compute result(trans) = RES(view)).

Construct a private coin-tossing protocol and prove its security under the assumptions we learned
in class.

Exercise 3 (40 points). In this question, you will construct a protocol to allow Alice and Bob to
play (a simplified version of) Black-Jack over the phone or net, without access to any physical deck
of cards, and without needing to trust one another to follow the protocol.

We’ll use the following version of Black Jack:

• There is a deck of 44 cards, with each card having value c between 1 and 11 and a type t
which is a number between 1 and 4. That is, a card is a pair 〈t, c〉 ∈ [11]× [4].

• There are two players Alice and Bob.

• The deck is shuffled randomly, and each player gets one card that is public and another card
that only he/she can see.

• Based on that information, each player decides whether to ask for another card or not.

• At this point each player has either two or three cards. Each player reveals his/her cards and
the total values of the cards for each player is computed, where for each player if this total
is more than 21 then it is considered to be zero. The player with higher total value wins. If
both totals are equal then it is a draw.

A strategy for a player in this game is a function s : ([11]× [4])3 → [0, 1] that is interpreted as
follows: if the two public cards are 〈c1, t1〉 and 〈c2, t2〉 and the secret card that only the player sees
is 〈c3, t3〉 then the player will ask for a third card with probability s(c1, t1, c2, t2, c3, t3). For two
strategies sA, sB, we denote by a real blackjack game the result of running the process above where
Alice uses strategy sA and Bob uses strategy sB.

We define a secure blackjack protocol to be a triplet (A,B, result) where A,B are polynomial-
time interactive algorithms and result : {0, 1}∗ → {Awins,Bwins, draw} is a polynomial-time com-
putable function satisfying the following:

Inputs Each of the algorithms A,B takes as input a strategy s : ([11]× [4])3 → [0, 1] for the
blackjack game. (You can assume that the output of s is always an integer multiple of 1/100,
so this strategy can be represented by a string of constant size.) Each algorithm also takes
as input a string 1n which we refer to as the security parameter.

Honest output If Alice and Bob both run the prescribed algorithms A and B with inputs sA, sB

respectively and 1n for every n, then for every r ∈ {Awins,Bwins, draw} the probability pr

that result(trans) = r is equal to the probability that the corresponding outcome happens

2



in a real blackjack game where Alice uses sA and Bob uses sB (where trans is the random
variable representing the transcript of an execution between A(sA, 1n) and B(sB, 1n).2

Bob can’t win by cheating Suppose that Alice runs the honest algorithm A with strategy sA,
and suppose that Bob runs an arbitrary polynomial-sized computable strategy B∗. Denote by
p the probability that result(trans〈A(sA, 1n), B∗〉) 6= Awins (where we assume n is sufficiently
large). Then, there exists a strategy sB for Bob such that with probability at least p− 10−6,
Alice does not win in a real blackjack game where she uses sA and Bob uses sB. That is, Bob
could have done just as well in a real blackjack game, and hence Alice did not suffer any loss
in the probability of winning because of Bob’s not following the protocol.3

Alice can’t win by cheating This is exactly the symmetric requirement for Bob. Suppose that
Bob runs the honest algorithm A with strategy sB, and suppose that Alice runs an arbitrary
polynomial-sized computable strategyA∗. Denote by p the probability that result(trans〈A∗, B(sB, 1n)〉)
6= Bwins (where we assume n is sufficiently large). Then, there exists a strategy sA for Alice
such that with probability at least p− 10−6, Bob does not win in a real blackjack game with
strategies sA and sB.

Construct a blackjack protocol and prove its security under the assumptions we learned in class.
If it makes your life easier, you may allow the result function to have an additional output fail.

However, we require that in all cases (both honest, Alice cheating, Bob cheating) the probability that
the output is fail is at most 1/3. In all the requirements, we consider the conditional probabilities
conditioned on the result different than fail. That is, in the case where both parties are honest we
let pr denote the probability that the result is r conditioned on the result different from fail. In the
cases where Bob is cheating we let p denote the probability that the result is not Awins conditioned
on the result different from fail, and we change in a similar way the requirement in the case that
Alice is cheating.

2If it makes your life easier, you can relax the requirement that these probabilities are equal to the requirement
that the absolute value of their difference is at most 10−6 for large enough n.

3For simplicity we didn’t add the requirement that the probability of a draw will also be similar.

3


