
COS 433 — Cryptography — Homework 6.

Boaz Barak

Total of 150 points. Due November 8th, 2007.

Note: You have two weeks to solve this exercise and it also has many bonus points. So this is a
good chance to make up for lost points in past or future exercises. However, note that all proofs
and reductions must be rigorous— written clearly and precisely, and without any logical gaps. Try
to ensure that a reader will be able to easily follow your line of reasoning, and will be absolutely
convinced in your proof’s validity. You will not receive credit for proofs that are written in a
confusing, vague, or incomplete fashion.

Exercise 1 (30 points). In this question we complete and formalize the proof of the Chinese
Reminder Theorem.

1. Let G1, G2 be abelian groups where +i is the group operation of Gi. We define the direct
product G def= G1 × G2, which consists of all pairs (a1, a2) where ai ∈ Gi. We can view G
in a natural way as an abelian group if we define the group operation +G component-wise:
(a1, a2)+G (b1, b2) = (a1 +1 b1, a2 +k b2). Prove that G is indeed an abelian group with respect
to +G.

2. A group homomorphism is a function f from an abelian group G to an abelian group H that
preserves the group operation; i.e., f(a) +H f(b) = f(a +G b) for all a, b ∈ G. Let n = p · q
where gcd(p, q) = 1. Let f be a mapping from Zn to Zp × Zq such that f(x) = (x mod p, x
mod q). Show that f is a group homomorphism.

3. Show that f(x) ∈ Z∗p × Z∗q if and only if x ∈ Z∗n.

4. By the previous question, f can be viewed as a mapping from Z∗n to Z∗p × Z∗q . Show that in
this case f is also a group homomorphism.

5. Consider the following algorithm for inverting f . (Assume that p, q are known.)

• Input: (xp, xq) ∈ Zp × Zq.

• Use Euclid’s algorithm to find integers α, β such that αp+ βq = 1.

• Set 1p = αq mod n and 1q = βp mod n.

• Compute x = (xp · 1p + xq · 1q) mod n

Prove that the algorithm inverts f , namely, x mod p = xp and x mod q = xq.

6. Conclude that f is an isomorphism from Z∗n to Z∗p × Z∗q as well as from Zn to Zp × Zq. You
might want to use the following fact (that we proved in class): |Z∗n| = (p− 1) · (q − 1).

7. Read your answers to the previous questions. Where did you use the fact that p and q are
primes? Is it possible to prove these results under a weaker condition?

1

Exercise 2 (20 points). 1. We say that a number y ∈ Z∗n is a Quadratic Residue (QR) if y = x2

for some x ∈ Z∗n. (We refer to x as a sqrt of y.) Prove that the set of QRs is a subgroup of
Z∗n.

2. Let p > 1 be a prime number. It can be shown that Z∗p is a cyclic group, that is there exists a
generator g ∈ Z∗p such that Z∗p = {g1, . . . , g(p− 1)}. For y ∈ Z∗p we let logg(y) to denote the
smallest non-negative integer i for which gi = y. For example logg(1) = 0 and logg(g) = 1.
(Note that 0 ≥ logg(y) ≥ p − 1.) Show that y is a QR in Z∗p if and only logg(y) is an even
number.

Exercise 3 (30 points). In class we saw the following public key encryption scheme based on any
family of trapdoor permutations {fe}.

Key generation Choose (e, d)←R Gen(1n) where Gen is the generator for the trapdoor permuta-
tion family {fe}.

Encryption To encrypt a bit b←R {0, 1} using the key e: choose x←R Se, choose r ←R {0, 1}n,
and output fe(x), r, 〈x, r〉 ⊕ b.

Decryption To decrypt the message (y, r, c) using d: compute x = f−1
e (y) and output 〈x, r〉 ⊕ c.

Prove that if {fe} is a trapdoor permutation collection, the above scheme is a CPA secure public
key encryption scheme.

Exercise 4 (25 points). We can define chosen ciphertext security for public key encryption schemes
in the same way that we defined them for private key encryption schemes: the adversary gets access
to a decryption box before the challenge and after receiving the challenge ciphertext y∗ is allowed
to query the box on every string y except for y∗. The only difference is that the adversary gets
initially the encryption key as another input. As usual we say the scheme is secure against Chosen
Ciphertext Attack (CCA secure for short) if no poly-time adversary can win with 1/2 + ε(n)
probability where ε is poly-bounded.

1. Show that every public key encryption that is built from a trapdoor permutation family as
in Exercise 3 (when we encrypt an n bit message by encrypting each bit individually) is not
CCA secure. See footnote for hint1

2. Show that the specific encryption scheme based on Rabin’s trapdoor permutation family has
an even more devastating attack: show that given access to a decryption box for this scheme
a polynomial-time adversary can recover the private key with high probability using only a
constant number of queries.

Exercise 5 (25 points). As mentioned in class, the way to generate a random n-bit prime, is to
pick a random n-bit number and test it for primality. Thus we need a polynomial-time primality
algorithm. We now describe such an algorithm. We assume that we have a polynomial-time
algorithm SQRT that on input a pair y,N such that N is prime and y is a quadratic residue modulo
N , outputs a square-root of y modulo N (i.e., a number x such that x2 = y (mod N)). We saw
in class such an algorithm for the case that N = 4K + 3 for some K, and in the KL book Section
11.2.1 you can see its extension for the case that N is a prime of the form N = 4K + 1. We stress

1Hint: Show that every encryption scheme that works in a bit-by-bit fashion is not CCA secure.

2

that we make no assumption on the algorithm’s output if x and N are not of this form. However,
by stopping the algorithm if it runs for too much time, we can assume that it always stops in
polynomial-time and outputs some number between 1 and N − 1.

Consider the following algorithm:
Algorithm PTEST. On input N do:

1. If N is even or N = Ck for some k ∈ {1, . . . , logN} then output ‘composite’ and halt.

2. Pick x←R {1, . . . , N − 1}.

3. If gcd(x,N) 6= 1 output ‘composite’ and halt.

4. Compute y = x2 (mod N) and w = SQRT(y,N).

5. If w2 = y (mod N) and y = x (mod N) or y = −x (mod N) then output ‘prime’ and halt.
Otherwise output ‘composite’.

Prove that for every positive integer N , Algorithm PTEST runs on input N in poly(logN)-time
and

1. If N is prime then PTEST(N) outputs ‘prime’ with probability 1.

2. If N is composite then PTEST(N) outputs ‘composite’ with probability ≥ 1/10.

Exercise 6 (20 points). Suppose that the RSA Assumption fails “somewhat” on a particular
composite number N and e with gcd(e, ϕ(N)) = 1, in the sense that there is a T -time algorithm A
such that

Pr
y←RZ∗N

[A(y) = x s.t. xe = y (mod N)] > 0.01

Show that there is a 100(logN)100 · T -time algorithm B that breaks the RSA Assumption
completely for N, e in the sense that

Pr
y←RZ∗N

[A(y) = x s.t. xe = y (mod N)] > 0.99

See footnote for hint2

2Hint: Use the fact that y1/er = (yr)1/e (mod N) for every r ∈ Z∗N .

3

