
COS 433 — Cryptography — Homework 4.

Boaz Barak

Total of 110 points. Due October 18th, 2007.

Exercise 1 (30 points). Prove that the following encryption scheme is CCA secure. Let {pk} be
a collection of pseudorandom permutations mapping {0, 1}3n to {0, 1}3n.

• To encrypt x ∈ {0, 1}n with key k do the following: choose r ←R {0, 1}n, and send pk(x‖r‖0n)
(were ‖ denotes concatenation).

• To decrypt y ∈ {0, 1}3n, compute x‖r‖w = p−1
k (y). if w 6= 0n then output ⊥. Otherwise,

output x.

Exercise 2 (40 points). For each of the following statements either prove that it is true, or give a
counterexample showing that it is false:1

1. A MAC tag always maintains secrecy of the message. That is, if (Sign, Ver) is a CMA-secure
MAC with m-bit long messages and n-bit long keys, then for every two strings x and x′ in
{0, 1}m, the random variable SignUn

(x) is computationally indistinguishable from the random
variable SignUn

(x′).

2. A MAC tag always has to be longer than the message. That is, for every MAC scheme
(Sign, Ver) , |Signk(x)| ≥ |x|.

3. Reusing a key for authentication and encryption does not harm secrecy: Suppose that
(Sign, Ver) is a secure MAC with n bit key and (E, D) is a CPA-secure encryption scheme with
n bit key. Suppose that a sender chooses k ←R bitsn and a random number x←R 1, . . . , 100,
computes y = Ek(x) and sends y, Signk(y) (note that the same key k is used for both authen-
tication and encryption). Then, secrecy is preserved: an eavesdropper can not guess x with
probability higher than, say 1/99.

4. Reusing a key for authentication and encryption does not harm secrecy if we use a pseudo-
random generator. Suppose that G is a PRG mapping {0, 1}n to {0, 1}2n and in the scenario
above the sender after choosing the key k first computes k1k2 = G(k) (i.e., k1 denotes the
first n bits of the PRG’s output and k2 denotes the second n bits) and then uses k1 for the
encryption and k2 for the MAC. Then, the eavesdropper can not guess x with probability
higher than, say 1/99.

Exercise 3 (40+10 points). An encrypted file system is used to ensure that theft or unauthorized
access to a laptop or desktop computer will not cause any compromise of sensitive data. The idea
is that there is a secret key k on a smartcard, and this key is required to read and write to the hard
disk. Formally, the interface to such a system is the operations:

1Counterexamples can be contrived as long as they are valid. That is, if a statement says that every MAC scheme
satisfies a certain property then to show this statement false you can present any chosen-message attack secure MAC
scheme that does not satisfy this property. The MAC scheme can be constructed just for the sake of a counterexample,
and does not have to be “natural looking”, as long as it is chosen-message attack secure.

1

writeBlockk(i,x) Write x ∈ {0, 1}m to the ith block of the hard disk using the secret key k. We
let M denote the total number of blocks.

readBlockk(i) Returns a string in {0, 1}m, which is the (decrypted) contents of the ith block of
the hard disk. We assume that if the system detects that this block was tampered with then
it shuts down the computer.

Intuitively, the security of the system should be as follows: suppose that each night, after using
the computer normally (word processing, internet, email etc..) for the day, the user of the computer
leaves home with her smartcard, and then an attacker has complete access to the computer (i.e.,
able to read and write directly to the hard disk). Then, the attacker should not be able to learn
anything about the contents. Of course the attacker can “wipe out” the hard disk, in which case
the system will detect this and shut the computer down, but we do not consider this a break of the
system.

1. Suppose that we are only interested in preserving the secrecy of the data on the hard disk. is
it still important to prevent an attacker from modifying the contents of a block on the hard
disk without being detected?

2. Write a formal definition for security of an encrypted file system scheme.

3. Give a construction for an encrypted file system. That is, give algorithms for writeBlock
and readBlock. You can assume that you have access to the functions directWrite(i, y)
and directRead(i) that allow you to directly read and write blocks of the underlying hard
disk. We denote the block size of the underlying disk by m′ and the total number of blocks
by M ′. The numbers m and M (defining the block size and number of blocks you present to
the user) are given to you, but you can choose m′ and M ′ to be any values of your choice.
Try to minimize the overhead M ′m′ −Mm (that is, the difference between the number of
bits you allow the user to use and the number of bits you actually need in the hard disk).

4. Prove that your construction remains secure in the following two attack scenarios (for 10
points bonus - do this by first proving that your construction satisfies your definition of
Item 2, and then proving that any construction satisfying that definition remains secure
under these attacks).

(a) User chooses x to be a random number between 1 and 1000 and writes it in the first
block (i.e., runs writeBlockk(1,x)). The attacker then gets access to the hard disk and
outputs a guess x′. System is secure under this attack if the probability that x′ = x is
less than 1/999 (for large enough n).

(b) User chooses x to be a random number between 1 and 1000 and writes it in the first
block (i.e., runs writeBlockk(1,x)) and writes the number 1 to the second block (i.e.,
runs writeBlockk(2,1)). The attacker then gets access to the hard disk. User then reads
the value y of the second block and publishes it on the web (where everyone including
the attacker can see it). Attacker then gets again access to the hard disk and outputs
a guess x′. System is secure under this attack if the probability that x′ = x is less than
1/999 (for large enough n).

2

