
COS 433 — Cryptography — Homework 2.

Boaz Barak

Total of 120 points. Due October 4th, 2007.

Exercise 1 (20 points). Prove that if (E,D) is a computationally secure encryption with `(n)-long
messages then for every polynomial-time algorithm Eve and large enough n, the probability that
Eve wins in the following game is smaller than 0.34:

1. Eve gets as input 1n, and gives Alice three strings x0, x1, x2 ∈ {0, 1}`(n).

2. Alice chooses a random key k ←R {0, 1}n and i←R {0, 1, 2} and computes y = Ek(xi).

3. Eve gets y as input, and outputs an index j ∈ {0, 1, 2}.

4. Eve wins if j = i.

Note: This proof can be generalized to show that the probability Eve guesses which one of c
messages was encrypted is at most 1/c+µ(n) where µ is a negligible function (see also Exercise 6).
It can also be shown that computational security implies many other reasonable conditions of
security. For example, the KL book shows that if a message x is chosen at random, then the
probability that a polynomial-time adversary can compute the ith bit of x from an encryption
of x is at most 1/2 + µ(n) for a negligible µ (of course, she can always compute that bit with
probability half by randomly guessing). This can also be generalized to show that for example that
the probability that an adversary guesses the first c bits of x from an encryption of x is at most
2−c + µ(n) for a negligible µ.

Exercise 2 (20 points). Prove the equivalence of the two definition of computational security we
gave in class. That is, prove that an encryption scheme (E,D) with `(n)-long messages is C/S1 iff
it is C/S2, where these two notions are defined as follows:

C/S1 (E,D) is C/S1 if for every polynomial-time Adv and polynomially bounded ε : N → [0, 1],
large enough n, and x0, x1 ∈ {0, 1}`(n),∣∣Pr[Adv(EUn(x0)) = 1]− Pr[Adv(EUn(x1)) = 1]

∣∣
C/S2 (E,D) is C/S1 if for every polynomial-time Eve and polynomially bounded ε : N → [0, 1],

large enough n, the probability that Eve wins the following game is at most 1/2 + ε(n): 1.
Eve gets as input 1n, and gives Alice two strings x0, x1 ∈ {0, 1}`(n) 2. Alice chooses a random
key k ←R {0, 1}n and i ←R {0, 1, 2} and computes y = Ek(xi), 3. Eve gets y as input, and
outputs an index j ∈ {0, 1}, 4. Eve wins if j = i.

Exercise 3 (30 points). For each of the following statements decide whether it’s true or false, and
prove it or give a counterexample:
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1. If (E,D) is a perfectly secure encryption then it is also computationally secure.

2. If (E,D) is a computationally secure encryption then it is also perfectly secure.

3. If (E,D) is a computationally secure encryption with n-sized key and `(n)-sized messages then
the following encryption scheme (E′,D′) with n-sized key and 2`(n)-sized messages is also
computationally secure: To encrypt the string x = x1 . . . x2`(n) with key k ∈ {0, 1}n, E′k(x) =
Ek(x1 . . . x`(n)) ◦ Ek(x`(n)+1 . . . x2`(n), where ◦ denotes string concatenation. (Decryption is
done in the obvious way.)

4. If (E,D) is a computationally secure encryption with n-sized key and `(n)-sized messages then
the following encryption scheme (E′,D′) with 2n-sized key and 2`(n)-sized messages is also
computationally secure: To encrypt the string x = x1 . . . x2`(n) with key k ∈ {0, 1}2n, E′k(x) =
Ek1...k`(n)

(x1 . . . x`(n)) ◦ Ek`(n)+1...k`(n)
(x`(n)+1 . . . x2`(n), where ◦ denotes string concatenation.

(Decryption is done in the obvious way.)

Exercise 4 (20 points). Prove the following properties of computational indistinguishability:

1. It’s weaker than statistical indistinguishability: if for every n, ∆(Xn, Yn) ≤ ε(n) for some
negligible function ε : N→ N (i.e., ε(n) = n−ω(1)) then {Xn} ≈ {Yn}. (Recall that ∆ denotes
statistical distance.)

2. If {Xn} ≈ {Yn} and f : {0, 1}∗ → {0, 1}∗ is a function computable in polynomial time, then
{f(Xn)} ≈ {f(Yn)}.

Exercise 5 (20 points). 1. LetX,Y,X ′, Y ′ be four distributions over {0, 1}n such that ∆(X,Y ) ≤
ε and ∆(X ′, Y ′) ≤ ε. Prove that ∆(X ◦ X ′, Y ◦ Y ′) ≤ 10ε, X ◦ X ′ denotes the distribution
obtained by concatenating two independent samples from X and X ′, and Y ◦ Y ′ is defined
analogously. See footnote for hint1

2. Let {Xn}, {X ′n}, {Yn}, {Y ′n} be four sequences of distributions such that {Xn} ≈ {Yn} and
{X ′n} ≈ {Y ′n}, prove that {Xn ◦X ′n} ≈ {Yn ◦ Y ′n}. See footnote for hint2

Exercise 6 (10 points). Recall that we defined a function ε : N→ [0, 1] to be polynomially bounded
if ε(n) = n−O(1) (equivalently, log(1/e(n)) = O(log n)) and negligible if ε(n) = n−ω(1) (equivalently,
log(1/ε(n)) = ω(log n)). Let {An} be a sequence of probabilistic events. Prove that the following
two conditions are equivalent:

• For every polynomially bounded ε : N→ [0, 1] and large enough n, Pr[An] ≤ ε(n).

• There exists a negligible function µ : N→ [0, 1] such that Pr[An] ≤ µ(n) for every n.

Note: This exercise means that in making various game-type definitions, instead of saying “for every
polynomially-bounded ε and large enough n, the probability that Eve wins is at most 1/2 + ε(n)”,
we can equivalently say “for every n, the probability that Eve wins is at most 1/2 + µ(n) where µ
is some negligible function”

1Hint: Use the definition of statistical distance based on functions, and the following simple fact: if f is a function mapping {0, 1}2n to
{0, 1} and Z and W are two independent distributions over {0, 1}n such that Pr[f(Z, W ) = 1] ≥ p, then there exists a fixed string z in the support
of Z such that Pr[f(z, W ) = 1] ≥ p.

2Hint: use the fact that “hardwiring” of advice to the adversary/distinguisher is allowed.
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