Object categorization: the constellation models

Li Fei-Fei

with many thanks to Rob Fergus

The People and slides credit

Pietro Perona

Mike Burl

Markus Weber

Rob Fergus

Andrew Zisserman

Thomas Leung

Max Welling

Li Fei-Fei

Goal

- Recognition of visual object classes
- Unassisted learning

Issues:

- Representation
- Learning
- Recognition

Model: Parts and Structure

Parts and Structure Literature

• Fischler & Elschlager 1973

- Yuille '91
- Brunelli & Poggio '93
- Lades, v.d. Malsburg et al. '93
- Cootes, Lanitis, Taylor et al. '95
- Amit & Geman '95, '99
- et al. Perona '95, '96, '98, '00, '03
- Huttenlocher et al. '00
- Agarwal & Roth '02
 - etc...

The Constellation Model

Deformations

A

D

Presence / Absence of Features

occlusion

Background clutter

Generative probabilistic model

Foreground model

Clutter model

Assumptions: (a) Clutter independent of foreground detections (b) Clutter detections independent of each other

Example

Learning Models `Manually'

- Obtain set of training images
- Choose parts

- Label parts by hand, train detectors
- Learn model from labeled parts

Recognition

1. Run part detectors exhaustively over image

$$h = \begin{pmatrix} 0 \dots N_{1} \\ 0 \dots N_{2} \\ 0 \dots N_{3} \\ 0 \dots N_{4} \end{pmatrix} \quad \text{e.g. } h = \begin{pmatrix} 2 \\ 3 \\ 0 \\ 0 \\ 2 \end{pmatrix}$$

- 2. Try different combinations of detections in modelAllow detections to be missing (occlusion)
- 3. Pick hypothesis which maximizes: $\frac{p(Data | Object, Hyp)}{p(Data | Clutter, Hyp)}$
- 4. If ratio is above threshold then, instance detected

So far....

- Representation
 - Joint model of part locations
 - Ability to deal with background clutter and occlusions

Learning

- Manual construction of part detectors
- Estimate parameters of shape density
- Recognition
 - Run part detectors over image
 - Try combinations of features in model
 - Use efficient search techniques to make fast

Unsupervised Learning Weber & Welling et. al.

(Semi) Unsupervised learning

•Know if image contains object or not

•But no segmentation of object or manual selection of features

Unsupervised detector training - 1

- Highly textured neighborhoods are selected automatically
- produces 100-1000 patterns per image

Unsupervised detector training - 3

100-1000 images

~100 detectors

Learning

- Take training images. Pick set of detectors. Apply detectors.
- Task: Estimation of model parameters
- Chicken and Egg type problem, since we initially know neither:
 - Model parameters
 - Assignment of regions to foreground / background
- Let the assignments be a hidden variable and use EM algorithm to learn them and the model parameters

ML using EM

1. Current estimate 2. Assign probabilities to constellations Large P 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 • 0 Image 1 Image 2 Image *i* Small P

3. Use probabilities as weights to re-estimate parameters. Example: $\boldsymbol{\mu}$

Detector Selection

(validation set or directly from model)

Frontal Views of Faces

- 200 Images (100 training, 100 testing)
- 30 people, different for training and testing

Learned face model

Pre-selected Parts

Sample Detection

Test Error: 6% (4 Parts)

Parts in Model

Model Foreground pdf

Face images

correct

correct

correct

correct

correct

correct

correct

correct

Background images

incorrect

incorrect

correct

correct

correct

correct

correct

correct

correct

correct

correct

Car from Rear

Preselected Parts

Sample Detection

Test Error: 13% (5 Parts)

Parts in Model

Model Foreground pdf

Detections of Cars

correct

Background Images

3D Object recognition – Multiple mixture components

3D Orientation Tuning

% Correct

So far (2).....

- Representation
 - Multiple mixture components for different viewpoints
- Learning
 - Now semi-unsupervised
 - Automatic construction and selection of part detectors
 - Estimation of parameters using EM
- Recognition
 - As before
- Issues:

-Learning is slow (many combinations of detectors)

-Appearance learnt first, then shape

Issues

- Speed of learning
 - Slow (many combinations of detectors)
- Appearance learnt first, then shape
 - Difficult to learn part that has stable location but variable appearance
 - Each detector is used as a cross-correlation filter, giving a hard definition of the part's appearance

Would like a fully probabilistic representation of the object

Object categorization

Fergus et. al.

Detection & Representation of regions

- Find regions within image
- Use salient region operator (Kadir & Brady 01)

Location

(x,y) coords. of region centre

Scale

Radius of region (pixels)

Appearance

Motorbikes example

•Kadir & Brady saliency region detector

Generative probabilistic model (2)

Foreground model

based on Burl, Weber et al. [ECCV '98, '00]

Motorbikes

Recognized Motorbikes

0.75

B

(P)

50

Background images evaluated with motorbike model

Frontal faces Face shape model 40 +0.45 20 + 0<mark>.</mark>67 0.92 0.79 0 + 0.27 20 + 0.92 40 60 80 60 20 20 40 80 40 60 0 Part 1 Det: 5x10-21 R Part 2 Det: 2x10 Part 3 Det: 1x10-36 Part 4 **1**05" 65 Background Det: 2x10-19 3 1072 2

Airplanes

INCORRECT

Correct

Correct

Correct

Spotted cats

Summary of results

Dataset	Fixed scale experiment	Scale invariant experiment	
Motorbikes	7.5	6.7	
Faces	4.6	4.6	
Airplanes	9.8	7.0	
Cars (Rear)	15.2	9.7	
Spotted cats	10.0	10.0	

% equal error rate

Note: Within each series, same settings used for all datasets

Comparison to other methods

% equal error rate

Why this design?

- Generic features seem to well in finding consistent parts of the object
- Some categories perform badly different feature types needed
- Why PCA representation?
 - Tried ICA, FLD, Oriented filter responses etc.
 - But PCA worked best
- Fully probabilistic representation lets us use tools from machine learning community

S. Savarese, 2003

P. Buegel, 1562

One-Shot learning Fei-Fei et. al.

Algorithm	Training Examples	Categories	
Burl, et al. Weber, et al. Fergus, et al.	200 ~ 400	Faces, Motorbikes, Spotted cats, Airplanes, Cars	
Viola et al.	~10,000	Faces	
Schneiderman, et al.	~2,000	Faces, Cars	
Rowley et al.	~500	Faces	

Number of training examples

How do we do better than what statisticians have told us?

- Intuition 1: use Prior information
- Intuition 2: make best use of training information

Model Structure

Each object model θ Gaussian part Gaussian shape pdf appearance pdf 12 θ

Model Structure

model distribution: $p(\theta)$

• conjugate distribution of p(train|θ,object)

Learning Model Distribution

$p(\theta | \text{object, train}) \propto p(\text{train} | \theta, \text{object}) p(\theta)$

- use Prior information
- Bayesian learning
 - marginalize over theta
 - Variational EM (Attias, Hinton, Minka, etc.)

prior knowledge of $p(\theta)$

Experiments

Training: 1- 6 randomly drawn images Testing: 50 fg/ 50 bg images object present/absent

Datasets

airplanes

spotted cats

motorbikes

[www.vision.caltech.edu]

Faces

Motorbikes

Airplanes

Spotted cats

Experiments: obtaining priors

airplanes

spotted cats

motorbikes

faces

Miller, et al. '00

Experiments: obtaining priors

airplanes

faces

spotted cats

Algorithm	Training Examples	Categories	Results(e rror)
Burl, et al. Weber, et al. Fergus, et al.	200 ~ 400	Faces, Motorbikes, Spotted cats, Airplanes, Cars	5.6 - 10 %
Viola et al.	~10,000	Faces	7-21%
Schneiderman, et al.	~2,000	Faces, Cars	5.6 – 17%
Rowley et al.	~500	Faces	7.5 – 24.1%
Bayesian One-Shot	1 ~ 5	Faces, Motorbikes, Spotted cats, Airplanes	8 – 15 %

Future work

- Viewpoint variation not accounted for, so learnt intrinsically (legs of camel, curve of wheels for motorbikes)
- Move to explicit representation (i.e. mixture models)
- Use prior information: (a) Learning models
 (b) commonly selected images
- Use partially-labelled learning methods for 10 images case
- Improve unsupervised learning methods