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Goal

- Recognition of visual object classes

- Unassisted learning




|ISSues:

 Representation
e Learning

* Recognition



Model: Parts and Structure
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The Constellation Model
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Deformations




Presence / Absence of Features




Background clutter




Generative probabllistic model

Foreground model Clutter model
Gaussian shape pdf Prob. of detection Uniform shape pdf # detections
E] u | = pPoisson(Nl )
:::: --------- %88 pPoisson( )
""" - pPoisson(NS )
Assumptions: (a) Clutter independent of foreground detections
(b) Clutter detections independent of each other
Example
1. Object Part Positions
2. Part Absence 3a. N false detect : 3b. Position f. detect

Nl o0




Learning Models Manually’

« Obtain set of training images

 Choose parts

« Label parts by hand, train detectors

XY
----

 Learn model from labeled parts



Recognition

1. Run part detectors exhaustively over image

2. Try different combinations of detections in model
- Allow detections to be missing (occlusion)

3. Pick hypothesis which maximizes: p(Data|Object, Hyp)
p(Data | Clutter, Hyp)

4. |If ratio is above threshold then, instance detected

e.g. h




* Representation
— Joint model of part locations
— Abillity to deal with background clutter and occlusions

* Recognition
— Run part detectors over image
— Try combinations of features in model
— Use efficient search techniques to make fast



Unsupervised Learning
Weber & Welling et. al.



(Semi) Unsupervised learning

*Know if image contains object or not
*But no segmentation of object or manual selection of features



Unsupervised detector training -1
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* Highly textured neighborhoods are selected automatically
» produces 100-1000 patterns per image
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Unsupervised detector training - 3
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Learning

» Take training images. Pick set of detectors. Apply detectors.
« Task: Estimation of model parameters

» Chicken and Egg type problem, since we initially know neither:
- Model parameters

- Assignment of regions to foreground / background

 Let the assighments be a hidden variable and use EM algorithm to
learn them and the model parameters




ML using EM

1. Current estimate 2. Assign probabilities to constellations

Image 1 Image 2 \ Image |

3. Use probabilities as weights to re-estimate parameters. Example: pu

@
new estimate of p




Detector Selectlon

*Try out different combinations of detectors

(Greedy search) Model 1
" .S 8dk K Choice 1 Parameter
1 -IHI !ﬁ | Estimation | T
o Model 2
Choice 2 T
_ . |Parameter| __ i g
--- Estimation -
Detectors (~100) : A
. |
|

I
Predict / measure model performance

(validation set or directly from model)



» 200 Images (100 training, 100 testing)

» 30 people, different for training and testing



Learned face model

Pre-selected Parts
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Face image
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Background Images

INCarrect correct _ carrect carrect
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correct




Car from Rear

Test Error: 13% (5 Parts)

Preselected Parts

Parts in Model

Model Foreground pdf




Detections of Cars




Background Images
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3D Object recognition — Multiple mixture

components




% Correct

3D Orientation Tuning

Orientation Tuning
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Representation
— Multiple mixture components for different viewpoints

Learning

— Now semi-unsupervised

— Automatic construction and selection of part detectors
— Estimation of parameters using EM

Recognition

— As before

Issues:
-Learning is slow (many combinations of detectors)
-Appearance learnt first, then shape



Issues

e Speed of learning
— Slow (many combinations of detectors)

« Appearance learnt first, then shape

— Difficult to learn part that has stable location but
variable appearance

— Each detector is used as a cross-correlation filter,
giving a hard definition of the part’'s appearance

 Would like a fully probabilistic representation of
the object



Object categorization

Fergus et. al.

CVPR ‘03



Detection & Representation of regions

ﬁ  Find regions within image

__ "l 4'“\ := | » Use salient region operator

(Kadir & Brady 01)

Location

(x,y) coords. of region centre

Scale

Radius of region (pixels)

Cy
Projection onto

" c
& 11x11 patch E PCA basis 2

. . . . - C15
Gives representation of appearance in low-dimensional vector space




Motorbikes example

«Kadir & Brady saliency region detector




Generative probabilistic model (2)

Foreground model based on Burl, Weber et al. [ECCV '98, '00]

Gaussian shape pdf Gaussian part appearance pdf Qaussian
4 relative scale pdf

VAN

log(scale)

Prob. of detection

Clutter model

Gaussian background

appearance pdf A Uniform
relative scale pdf

Uniform shape pdf

>

log(scale)

Poission pdf on #
detections




Motorbikes
Samples from appearance model Shape model

Part 1 Det: 5x10-18
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Recognized Motorbikes
Shape model
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Background images evaluated with
. motorblke model




Frontal faces

Face shape model

Part 1 Det: 5x10-21

ll LREEF=RFFRE
WFFrrrrrrrrr

lﬁﬁ?ﬂ?~ﬂﬂﬂﬁ
EELTE I TR LY.

Part 5 FP[ ﬂ:('l -25

TP EEELEREE
AAATTIAATTND

Background Det: 2x10-19

il da”iFpEm




Alirplanes

Airplane shape model
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Spotted cats

Spotted cat shape model

0.97

3 20
Part 1 Det: 8x10-22

R L

|/s|,_

IEERENAEEER

= B8 N
T
HEAEERE YR
EEELELEEL Y
FEL R DL
LR FEELEE Y




Summary of results

Fixed scale Scale invariant
Dataset . .
experlment experlment
Motorbikes 7.5 6.7
Faces 4.6 4.6
Airplanes 9.8 7.0
Cars (Rear) 15.2 9.7
Spotted cats 10.0 10.0

% equal error rate

Note: Within each series, same settings used for all datasets



Comparison to other methods

Dataset | Ours | Others IREG?”—PFEEiIEiDﬁ

1 L Li g

Weber et al. 0.8
[ECCV ‘00] 07

Motorbikes | 7.5 16.0

Our algorithm

\Agarwa I—Roth algorithm

T
Faces 4.6 6.0 Weber E 1

Airplanes | 9.8 | 32.0 Weber gt
Q.1
Agarwal ui] E]-‘I [:ILZJ [].li‘. []-4 [:-LE-: E]‘.H []-f [:-.LH E]J'I-}
Cars (Side) | 11.5| 21.0 Roth 1 = Precision
[ECCV '02]

% equal error rate

1



Why this design?

Generic features seem to well in finding consistent parts
of the object

Some categories perform badly — different feature types
needed

Why PCA representation?
— Tried ICA, FLD, Oriented filter responses etc.
— But PCA worked best

Fully probabilistic representation lets us use tools from
machine learning community



S. Savarese, 2003






One-Shot learning
Fei-Fel et. al.

ICCV '03



Training

Algorithm Examples Categories
Faces, Motorbikes,
Burl, et al. Weber, 200 ~ 400 Spotted cats, Airplanes,
et al. Fergus, et al.
Cars
Viola et al. ~10,000 Faces
Schneicerman. &} ~2,000 Faces, Cars
Rowl
owiey ~500 Faces

et al.




Number of training examples

Generalisation performance
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How do we do better than
what statisticians have told
us?

e |Intuition 1: use Information

e |Intuition 2: make best use of training information




Prior knowledge

Appearance
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Bayesian framework

p (test | object, train )| p (object )

—

Ip (test | 8, object )|p (@| object, train )|d @&




Bayesian framework

p (test | object, train )| p (object )

—

Ip (test | 8, object )|p (@| object, train )|d @&
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Bayesian framework

p (test | object, train )| p (object )

—

Ip (test | 8, object )|p (@| object, train )|d @&




Each object model 0

Gaussian part
appearance pdf

Gaussian shape pdf




r—. Each object model 0

_ Gaussian part
Gaussian shape pdf appearance pdf
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model distribution: p(0)

e conjugate distribution of p(train|6,o0bject)




p (flobject, train )oc p (train |6, object )p ()

e Use iInformation
e Bayesian learning
* marginalize over theta

* Variational EM (Attias, Hinton, Minka, etc.)




Variational EM

new estimate
of p(6|train)



Training:
1- 6 randomly

drawn images

Experiments
Testing:
50 fg/ 50 bg images

object present/absent
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Motorbikes

Spotte




Experiments: obtaining priors

motorbikes
Miller, et al. ‘00




Experiments: obtaining priors

model (0) space

spotted cats

motorbikes




Performance comparison
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Part 1

Performance comparison
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Performance comparison
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Performance comparison bart
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Algorithm

Training
Examples

Categories

Results(e
rror)

Burl, et al. Weber,
et al. Fergus, et al.

200 ~ 400

Faces, Motorbikes,
Spotted cats, Airplanes,
Cars

5.6 - 10
%

Viola et al.

Faces

Schneiderman, et
al.

Faces, Cars

Rowley
et al.

Faces

Bayesian
One-Shot

Faces, Motorbikes,
Spotted cats, Airplanes




Future work

Viewpoint variation not accounted for, so learnt intrinsically
(legs of camel, curve of wheels for motorbikes)

Move to explicit representation (i.e. mixture models)

Use prior information: (a) Learning models
(b) commonly selected images

Use partially-labelled learning methods for 10 images case

Improve unsupervised learning methods



