COS429: COMPUTER VISON AFFINE STRUCTURE FROM MOTION

The Structure-from-Motion Problem

Affine Projection Models

Affine Ambiguity of Affine SFM

Affine Epipolar Geometry

Affine Reconstruction from two Images

Affine Reconstruction from Multiple Images

• Reading: Chapter 12

Affine Structure from Motion

Reprinted with permission from "Affine Structure from Motion," by J.J. (Koenderink and A.J.Van Doorn, Journal of the Optical Society of America A, 8:377-385 (1990). © 1990 Optical Society of America.

Given m pictures of n points, can we recover

- the three-dimensional configuration of these points?
- the camera configurations?

(structure) (motion)

Orthographic Projection

Parallel Projection

Weak-Perspective Projection

Paraperspective Projection

The Affine Structure-from-Motion Problem

Given m images of n fixed points P_i we can write

$$\boldsymbol{p}_{ij} = \mathcal{M}_i \begin{pmatrix} \boldsymbol{P}_j \\ 1 \end{pmatrix} = \mathcal{A}_i \boldsymbol{P}_j + \boldsymbol{b}_i \quad \text{for} \quad i = 1, \dots, m \quad \text{and} \quad j = 1, \dots, n.$$

Problem: estimate the m 2x4 matrices \mathcal{M}_i and the n positions P_i from the mn correspondences \boldsymbol{p}_{ij} .

2mn equations in 8m+3n unknowns

Overconstrained problem, that can be solved using (non-linear) least squares!

The Affine Epipolar Constraint

 $\alpha u + \beta v + \alpha' u' + \beta' v' + \delta = 0$

Affine Epipolar Geometry

Note: the epipolar lines are parallel.

The Affine Fundamental Matrix

$$\alpha u + \beta v + \alpha' u' + \beta' v' + \delta = 0$$

$$(u, v, 1)\mathcal{F} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0$$
 where $\mathcal{F} \stackrel{\text{def}}{=} \begin{pmatrix} 0 & 0 & \alpha \\ 0 & 0 & \beta \\ \alpha' & \beta' & \delta \end{pmatrix}$

$$\mathcal{F} \stackrel{\text{def}}{=} \left(\begin{array}{ccc} 0 & 0 & \alpha \\ 0 & 0 & \beta \\ \alpha' & \beta' & \delta \end{array} \right)$$

The Affine Ambiguity of Affine SFM

When the intrinsic and extrinsic parameters are unknown

If M_i and P_i are solutions,

$$m{p}_{ij} = \mathcal{M}_i \left(m{P}_j \atop 1
ight) = \left(\mathcal{M}_i \mathcal{Q}
ight) \; \left(\mathcal{Q}^{-1} \left(m{P}_j \atop 1
ight)
ight) = \mathcal{M}_i' \left(m{P}_j' \atop 1
ight)$$

So are M'_{i} and P'_{i} where

$$\mathcal{M}_i' = \mathcal{M}_i \mathcal{Q}$$
 and $\begin{pmatrix} \boldsymbol{P}_j' \\ 1 \end{pmatrix} = \mathcal{Q}^{-1} \begin{pmatrix} \boldsymbol{P}_j \\ 1 \end{pmatrix}$

and

$$Q = \begin{pmatrix} C & d \\ \mathbf{0}^T & 1 \end{pmatrix}$$
 with $Q^{-1} = \begin{pmatrix} C^{-1} & -C^{-1}d \\ \mathbf{0}^T & 1 \end{pmatrix}$ Q is an affine transformation

transformation.

An Affine Trick.. Algebraic Scene Reconstruction Method

$$\mathcal{M} = (\mathcal{A} \quad \boldsymbol{b})$$

$$\mathcal{M} = (\mathcal{A} \quad \boldsymbol{b})$$
 $\mathcal{M}' = (\mathcal{A}' \quad \boldsymbol{b}')$

$$\boldsymbol{P}$$

$$\tilde{\mathcal{M}} = \mathcal{M}\mathcal{Q}$$

$$ilde{\mathcal{M}}'=\mathcal{M}'\mathcal{Q}$$

$$\tilde{\boldsymbol{P}} = \mathcal{Q}^{-1} \boldsymbol{P}$$

$$\tilde{\mathcal{M}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \quad \tilde{\mathcal{M}}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ a & b & c & d \end{pmatrix} \quad \tilde{\boldsymbol{P}}$$

An Affine Trick.. Algebraic Scene Reconstruction Method

$$\mathcal{M} = (\mathcal{A} \quad \boldsymbol{b})$$

$$\mathcal{M} = (\mathcal{A} \quad \boldsymbol{b})$$
 $\mathcal{M}' = (\mathcal{A}' \quad \boldsymbol{b}')$

$$\boldsymbol{P}$$

$$\tilde{\mathcal{M}} = \mathcal{M}\mathcal{Q}$$

$$ilde{\mathcal{M}}'=\mathcal{M}'\mathcal{Q}$$

$$\tilde{\boldsymbol{P}} = \mathcal{Q}^{-1} \boldsymbol{P}$$

$$ilde{\mathcal{M}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \quad ilde{\mathcal{M}}' = \begin{pmatrix} 0 & 0 & 1 & 0 \\ a & b & c & d \end{pmatrix} \quad ilde{m{P}}$$

$$\begin{pmatrix} 1 & 0 & 0 & u \\ 0 & 1 & 0 & v \\ 0 & 0 & 1 & u' \\ a & b & c & v' - d \end{pmatrix} \begin{pmatrix} \tilde{\boldsymbol{P}} \\ -1 \end{pmatrix} = 0$$

$$\tilde{\boldsymbol{P}} = \begin{pmatrix} u \\ v \\ u' \end{pmatrix}$$

$$\tilde{m{P}} = \begin{pmatrix} u \\ v \\ u' \end{pmatrix}$$

First reconsruction. Mean reprojection error: 1.6pixel

Second reconstruction.

Mean reprojection error:
7.8pixel

Suppose we observe a scene with m fixed cameras...

$$oldsymbol{p}_i = \mathcal{M}_i inom{oldsymbol{P}}{1} = \mathcal{A}_i oldsymbol{P} + oldsymbol{b}_i \quad ext{for} \quad i = 1, \dots, m$$

$$\begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ v_{11} & v_{12} & \dots & v_{1n} \\ \dots & \dots & \dots \\ u_{m1} & u_{m2} & \dots & u_{mn} \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{bmatrix} = \begin{bmatrix} A_1 \\ A_2 \\ \dots \\ A_m \end{bmatrix} \begin{bmatrix} P_1 & P_2 & \dots & P_n \end{bmatrix} = \mathbf{D}$$

$$\mathcal{A}, \mathcal{P} o \mathcal{D}$$

Affine SFM is solved!

$$\mathcal{D} o \mathcal{A}, \mathcal{P}$$

Singular Value Decomposition

Let \mathcal{A} be an $m \times n$ matrix, with $m \geq n$, then \mathcal{A} can always be written as

$$\mathcal{A} = \mathcal{U}\mathcal{W}\mathcal{V}^T$$

where:

- \mathcal{U} is an $m \times n$ column-orthogonal matrix, i.e., $\mathcal{U}^T \mathcal{U} = \mathrm{Id}_m$,
- W is a diagonal matrix whose diagonal entries w_i (i = 1, ..., n) are the singular values of A with $w_1 \ge w_2 \ge ... \ge w_n \ge 0$,
- and \mathcal{V} is an $n \times n$ orthogonal matrix, i.e., $\mathcal{V}^T \mathcal{V} = \mathcal{V} \mathcal{V}^T = \mathrm{Id}_n$.

$$A, P \rightarrow D$$
 Affine SFM is solved!

$$\mathcal{D} o \mathcal{A}, \mathcal{P}$$

Singular Value Decomposition

Theorem: The singular values of the matrix \mathcal{A} are the eigenvalues of the matrix $\mathcal{A}^T \mathcal{A}$ and the columns of the matrix \mathcal{V} are the corresponding eigenvectors.

$$\mathcal{A}, \mathcal{P} \to \mathcal{D}$$
 Affine SFM is solved!

$$\mathcal{D} o \mathcal{A}, \mathcal{P}$$

Singular Value Decomposition

When A has rank p < n, then the matrices U, W, and V can be written as

$$\mathcal{U} = \boxed{\mathcal{U}_p \mid \mathcal{U}_{n-p}} \quad \mathcal{W} = \boxed{\begin{array}{c|c} \mathcal{W}_p \mid 0 \\ \hline 0 \mid 0 \end{array}} \quad \text{and} \quad \mathcal{V}^T = \boxed{\begin{array}{c|c} \mathcal{V}_p^T \\ \hline \mathcal{V}_{n-p}^T \end{array}},$$

and

- the columns of \$\mathcal{U}_p\$ form an orthonormal basis of the space spanned by the columns of \$\mathcal{A}\$, i.e., its range,
- and the columns of \(\mathcal{V}_{n-p} \) for a basis of the space spanned by the solutions of \(Ax = 0 \), i.e., the \(null \) space of this matrix.

In addition, $A = U_p W_p V_p^T$.

$$\mathcal{A}, \mathcal{P} o \mathcal{D}$$

Affine SFM is solved!

$$\mathcal{D} \to \mathcal{A}, \mathcal{P}$$

$$E \stackrel{\text{def}}{=} \sum_{i,j} |\boldsymbol{p}_{ij} - \mathcal{A}_i \boldsymbol{P}_j|^2 = \sum_j |\boldsymbol{q}_j - \mathcal{A} \boldsymbol{P}_j|^2 = |\mathcal{D} - \mathcal{A} \mathcal{P}|^2$$

Singular Value Decomposition

Theorem: When \mathcal{A} has a rank greater than p, $\mathcal{U}_p \mathcal{V}_p^T$ is the best possible rank-p approximation of \mathcal{A} in the sense of the Frobenius norm.

$$\mathcal{D} = \mathcal{U}_3 \mathcal{W}_3 \mathcal{V}_3^T$$

Mean reprojection error: 2.4pixel

From uncalibrated to calibrated cameras

Weak-perspective camera:

$$\mathcal{M} = rac{1}{z_r} egin{pmatrix} k & s \ 0 & 1 \end{pmatrix} (\mathcal{R}_2 & oldsymbol{t}_2)$$

$$\hat{\mathcal{M}} = \mathcal{M}\mathcal{Q}$$

Calibrated camera:

$$\hat{\mathcal{M}} = (\hat{\mathcal{A}} \quad \hat{m{b}}) = rac{1}{z_r} (\mathcal{R}_2 \quad m{t}_2)$$

Problem: what is Q?

$$\hat{a}_1 \cdot \hat{a}_2 = 0$$
 and $|\hat{a}_1|^2 = |\hat{a}_2|^2$

$$\mathcal{Q} = \begin{pmatrix} \mathcal{C} & \boldsymbol{d} \\ \boldsymbol{0}^T & 1 \end{pmatrix} \longrightarrow \begin{cases} \boldsymbol{a}_{i1}^T \mathcal{C} \mathcal{C}^T \boldsymbol{a}_{i2} = 0, \\ \boldsymbol{a}_{i1}^T \mathcal{C} \mathcal{C}^T \boldsymbol{a}_{i1} = 1, \\ \boldsymbol{a}_{i2}^T \mathcal{C} \mathcal{C}^T \boldsymbol{a}_{i2} = 1, \end{cases} \text{ for } i = 1, \dots, m,$$

From uncalibrated to calibrated cameras

Weak-perspective camera:

$$\mathcal{M} = rac{1}{z_r} egin{pmatrix} k & s \ 0 & 1 \end{pmatrix} (\mathcal{R}_2 & oldsymbol{t}_2)$$

$$\hat{\mathcal{M}} = \mathcal{M}\mathcal{Q}$$

Calibrated camera:

$$\hat{\mathcal{M}} = (\hat{\mathcal{A}} \quad \hat{m{b}}) = rac{1}{z_r} (\mathcal{R}_2 \quad m{t}_2)$$

Problem: what is *Q*?

$$|\hat{a}_1 \cdot \hat{a}_2| = 0$$
 and $|\hat{a}_1|^2 = |\hat{a}_2|^2$

$$\mathcal{D} = \mathcal{C}\mathcal{C}^T$$

$$\mathcal{D} = \mathcal{C}\mathcal{C}^T$$

$$\begin{cases} \boldsymbol{a}_{i1}^T \mathcal{D} \boldsymbol{a}_{i2} = 0, \\ \boldsymbol{a}_{i1}^T \mathcal{D} \boldsymbol{a}_{i1} = \boldsymbol{a}_{i2}^T \mathcal{D} \boldsymbol{a}_{i2} \end{cases} \text{ for } i = 1, \dots, m.$$

From uncalibrated to calibrated cameras

Weak-perspective camera:

$$\mathcal{M} = \frac{1}{z_r} \begin{pmatrix} k & s \\ 0 & 1 \end{pmatrix} (\mathcal{R}_2 & \boldsymbol{t}_2)$$

$$\hat{\mathcal{M}} = \mathcal{M}\mathcal{Q}$$

Calibrated camera:

$$\hat{\mathcal{M}} = (\hat{\mathcal{A}} \quad \hat{m{b}}) = rac{1}{z_r} (\mathcal{R}_2 \quad m{t}_2)$$

Problem: what is Q?

$$|\hat{\boldsymbol{a}}_1 \cdot \hat{\boldsymbol{a}}_2| = 0$$
 and $|\hat{\boldsymbol{a}}_1|^2 = |\hat{\boldsymbol{a}}_2|^2$

Note: Absolute scale cannot be recovered. The Euclidean shape (defined up to an arbitrary similitude) is recovered.

Reconstruction Results (Tomasi and Kanade, 1992)

Reprinted from "Factoring Image Sequences into Shape and Motion," by C. Tomasi and T. Kanade, Proc. IEEE Workshop on Visual Motion (1991). © 1991 IEEE.

Mean errors: 10.0pixel 9.1pixel

Mean errors: 1.0pixel 0.9pixel

Mean errors: 3.24 and 3.15 pixels