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Ordinary Differential Equations, Oscillating
Chemical Reactions, and Chaos

Chaos has been found in many aspects of the physical world ranging from the weather to the
human heartbeat [1]. Some concrete and definable examples of chaos can be seen in oscillating
chemical reactions.

One example is the Belousov-Zhabotinskii reaction in chemistry. By changing the rate at
which reactants are fed into the system, the oscillations can change from periodic behavior to
chaotic.

The chemistry of the BZ reaction is rather complex, and involves the oxidation of easily
brominated organic material by bromate ion in an acidic environment, which makes it rather
difficult to model ([2],[3],[4]).

Slightly simpler is a similar reaction involving a three-variable autocatalator [5]. Autoca-
lators involve isothermal reactions of chemicals in a thermodynamically closed environment —
that is, reactions that maintain a constant temperature. Two-variable autocatalators have been
successful in reproducing many types of chemical oscillations; a chemical modification by Peng
et al. produced a three-variable autocalator which shows complex periodic as well as chaotic
behavior. The chemistry of this reaction is as follows:

P— A
P+C—A+C
A— B
A+2B — 3B
B—C
C — D

This chemistry can be modeled by the following differential equations:
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This can be converted into the following dimensionless form:
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In the equations above ¢; are constants, and X, Y, and Z are proportional to A, B, and C
respectively.
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Message to the wise and foolhardy: The "final product” of this assignment is a bifur-
cation diagram showing the changing behavior of with respect to co. Jumping in head-first and
writing working code that produces impressive bifurcation images in a single session would be
a pretty neat trick. The sane experienced programmer, humbled by days of searching for silly
mistakes, would follow the baby-steps listed below, since debugging bit-by-bit (excuse the pun)
is much easier than troubleshooting the entire program at once. This ”baby-steps” methodology
is the key to successfully building any program that is made of multiple components [6].

1. Creating a Function to Implement Euler’s Method
a.) Use Euler’s method to plot:
dy
at =Y y(0)=1
Compare your results to a graph of y = e'. Notice how the size of the time steps and number
of iterations affect the accuracy of your results.
b.) Use Euler’s method to plot:

dy
dt
Compare your results to a graph of y = sin(¢). Again notice the effect of varying the time step

size and number of iterations.
Save a copy of this code for use in 3a.

= kcos(t) y(0)=0 k=1

2. Finding peaks
The y-values plotted in the bifurcation diagram are actually the peak y-values shown against
their respective co-values, which makes this step an integral one.
a.) Devise an algorithm to locate the peak y-values when y is determined by:

dy

dt
b.) Modify the algorithm so that each peak value is returned only once. Insure that it will still
return all of the peaks of multiple peak functions like the y determined by:

= k cos(t) y(0)=0 k=1

d

d—i = cos(t) + sin(2t) y(0) =0

By stopping the same peaks from being returned redundantly, this step serves as an important
time saver.

c.) Varying k from 1 to 5, plot the peaks of y determined by:

d

Y
i k cos(t) y(0)=0

against the changing values of k. You should have a straight line stretching from (1,1) to (5,5).



3. Solving for a system of Oscillating Differential Equations
a.) Using the code from step 1 and the three autocatalator equations, plot log(Y") against time.
Use the following values for the constants:

cp =10 cp = 0.15 cs = 0.005 cy = 0.02

You should have an oscillating graph.

b.) Using the code from step 2c and the three equations, vary ¢y from 0.10 to 0.18 with very
small intervals (0.0005 or less), and plot the peaks y against their respective values of ¢,. This
should yield a birfurcation diagram.

4. Implementing the Fourth-Order Runge-Kutta Method
a.) Use Runge-Kutta to plot:

% =y y(0)=1
and
&y _ k cos(t) y(0)=0 k=1
dt

Compare your results to graphs of y = sin(¢) and y = e’ and those created with Euler’s method.
b.) Using the code from the previous step and the three autocatalator equations, plot log(Y")
against time. Use the following values for the constants:

1 = 10 Cy — 0.15 C3 — 0.005 Cy = 0.02

Compare your results with those generated by Euler’s Method in 3a.

c.) Combine the Runge-Kutta method with your peak-finding algorithm from step 2 to generate
a bifurcation diagram similar to that of step 3b. Compare the graphs. What differences do you
find?

5. Constructing the Attractor A strange attractor is essentially a graphical representa-
tion of z, y, and z, parametrized by time. It is called an attractor because z, y, and z never
stray far from a certain point or points in space. It is considered ”strange” because the x, y, and
z may infinitely loop around these points of attraction, yet never repeat itself. Thus if one were
to follow a line connecting each point to the next, one would find a line of infinite length within
the finite volume of the attractor. Find a plotting tool that can generate a three-dimensional
plot, and use it to plot the attractor for co = 0.153. (See the precept on plotting.) To keep
the size of the data files manageable (under 1 MB, say), you may want to sample the attractor
rather than keeping every point.

EXTRA CREDIT: In a famous paper entitled “Period Three Implies Chaos”, mathemati-
cian James Yorke proved that in any one-dimensional system in which existed an oscillating
state of three values there also exists chaos. A period of three also implies a period of five,
though the reverse is not true. Adapt your algorithm so that it finds the period of each oscil-
lating graph (the period of a graph is the number of equilibrium peaks it has before repeating).
Determine whether period three and/or period five oscillations are found, and where. What
does this imply about the system? Is there really chaos in the system? Explain.
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