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Linear Programming

!brewer’s problem

!simplex algorithm

! implementation

! linear programming

References:

   The Allocation of Resources by Linear Programming, 

   Scientific American, by Bob Bland

   Algs in Java, Part 5

Overview: introduction to advanced topics

Main topics

• linear programming: the ultimate practical problem-solving model

• reduction: design algorithms, prove limits, classify problems

• NP: the ultimate theoretical problem-solving model

• combinatorial search: coping with intractability

Shifting gears

• from linear/quadratic to polynomial/exponential scale

• from individual problems to problem-solving models

• from details of implementation to conceptual framework

Goals

• place algorithms we’ve studied in a larger context

• introduce you to important and essential ideas

• inspire you to learn more about algorithms!
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Linear Programming

What is it?

• Quintessential tool for optimal allocation of scarce resources, among 

a number of competing activities.

• Powerful and general problem-solving method that encompasses:

shortest path, network flow, MST, matching, assignment...

Ax = b, 2-person zero sum games

Why significant?

• Widely applicable problem-solving model

• Dominates world of industry. 

• Fast commercial solvers available:  CPLEX, OSL.

• Powerful modeling languages available:  AMPL, GAMS.

• Ranked among most important scientific advances of 20th century.

see ORF 307

Ex:  Delta claims that LP
saves $100 million per year.
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Applications

Agriculture.  Diet problem.

Computer science.  Compiler register allocation, data mining.

Electrical engineering.  VLSI design, optimal clocking. 

Energy.  Blending petroleum products.

Economics.  Equilibrium theory, two-person zero-sum games.

Environment.  Water quality management. 

Finance.  Portfolio optimization.

Logistics.  Supply-chain management.

Management.  Hotel yield management.

Marketing.  Direct mail advertising. 

Manufacturing.  Production line balancing, cutting stock.

Medicine.  Radioactive seed placement in cancer treatment.

Operations research.  Airline crew assignment, vehicle routing.

Physics.  Ground states of 3-D Ising spin glasses.

Plasma physics.  Optimal stellarator design.

Telecommunication.  Network design, Internet routing.

Sports.  Scheduling ACC basketball, handicapping horse races.
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!brewer’s problem

!simplex algorithm

! implementation
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Toy LP example: Brewer’s problem

Small brewery produces ale and beer.

• Production limited by scarce resources:  corn, hops, barley malt.

• Recipes for ale and beer require different proportions of resources.

Brewer’s problem: choose product mix to maximize profits.

corn (lbs) hops (oz) malt (lbs) profit ($)

available 480 160 1190

ale (1 barrel) 5 4 35 13

beer (1 barrel) 15 4 20 23

all ale
 (34 barrels)

179 136 1190 442

all beer
(32 barrels)

480 128 640 736

20 barrels ale
20 barrels beer

400 160 1100 720

12 barrels ale
28 barrels beer 

480 160 980 800

more profitable
product mix?

? ? ? >800 ?

34 barrels times 35 lbs malt
per barrel is 1190 lbs

[ amount of available malt ]
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Brewer’s problem: mathematical formulation    

ale beer

maximize 13A + 23B profit

subject
to the 

constraints

5A + 15B ! 480 corn

4A + 4B ! 160 hops

35A + 20B ! 1190 malt

A " 0

B " 0

Small brewery produces ale and beer.

• Production limited by scarce resources:  

corn, hops, barley malt.

• Recipes for ale and beer require 

different proportions of resources.

Mathematical formulation

• let A be the number of barrels of beer

• and B be the number of barrels of ale
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Brewer’s problem:  Feasible region

Ale

Beer

(34, 0)

(0, 32)

Corn
5A + 15B ! 480

Hops
4A + 4B ! 160

Malt
35A + 20B ! 1190

(12, 28)

(26, 14)

(0, 0)
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Brewer’s problem:  Objective function

13A + 23B = $800

13A + 23B = $1600

13A + 23B = $442

Profit

Ale

Beer

7

(34, 0)

(0, 32)

(12, 28)

(26, 14)

(0, 0)
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Brewer’s problem:  Geometry

Brewer’s problem observation.   Regardless of objective function 

coefficients, an optimal solution occurs at an extreme point.

extreme point

Ale

Beer

7

(34, 0)

(0, 32)

(12, 28)

(26, 14)

(0, 0)

11

Standard form linear program

Input:  real numbers  aij, cj, bi.

Output:  real numbers xj.

n = # nonnegative variables, m = # constraints.

Maximize linear objective function subject to linear equations.

“Linear”             No x2,  xy,  arccos(x),  etc.

“Programming”  “ Planning” (term predates computer programming).

maximize c1 x1 + c2 x2 + . . . + cn xn  

subject to the 
constraints

a11 x1 + a12 x2 + . . . + a1n xn  =  b1

a21 x1 + a22 x2 + . . . + a2n xn  =  b2

...

am1 x1 + am2 x2 + . . . + amn xn  =  bm

x1 , x2 ,... , xn  !  0

n variables

m
 e

qu
at

io
ns

maximize cT
 x  

subject to the 
constraints

A x  =  b

x  !  0

matrix version
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Converting the brewer’s problem to the standard form

Original formulation

Standard form

• add variable Z and equation corresponding to objective function

• add slack variable to convert each inequality to an equality.

• now a 5-dimensional problem.

maximize 13A + 23B

subject
to the 

constraints

5A + 15B ! 480

4A + 4B ! 160

35A + 20B ! 1190

A, B " 0

maximize Z

subject
to the 

constraints

13A + 23B # Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A,  B,  SC,  SH,  SM " 0
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A few principles from geometry:

• inequality:  halfplane (2D), hyperplane (kD).

• bounded feasible region:  convex polygon (2D), convex polytope (kD).

Convex set.  If two points a and b are in the set, then so is "(a + b).

Extreme point.  A point in the set that can't be written as "(a + b), 

where a and b are two distinct points in the set.

Geometry

convex not convex

extreme
point
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Geometry (continued)

Extreme point property.  If there exists an optimal solution to (P),

then there exists one that is an extreme point.

Good news.  Only need to consider finitely many possible solutions.

Bad news.  Number of extreme points can be exponential !

Greedy property.  Extreme point is optimal

iff no neighboring extreme point is better.

local optima are global optima

Ex: n-dimensional hypercube
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Simplex Algorithm

Simplex algorithm.  [George Dantzig, 1947] 

• Developed shortly after WWII in response to logistical problems, 

including Berlin airlift.

• One of greatest and most successful algorithms of all time.

Generic algorithm.

• Start at some extreme point.

• Pivot from one extreme point to a neighboring one.

• Repeat until optimal.

How to implement?  Linear algebra.

never decreasing objective function
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Simplex Algorithm:  Basis

Basis.  Subset of m of the n variables.

Basic feasible solution (BFS).

• Set n - m nonbasic variables to 0, solve for remaining m variables.

• Solve m equations in m unknowns.

• If unique and feasible solution  $  BFS.

• BFS  %  extreme point.

Ale

Beer

Basis
{A, B, SM }

(12, 28)

{A, B, SC }

(26, 14)

{B, SH, SM }

(0, 32)

{SH, SM, SC }

(0, 0)

{A, SH, SC }

(34, 0)

Infeasible
{A, B, SH }

(19.41, 25.53)

maximize Z

subject
to the 

constraints

13A + 23B # Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A,  B,  SC,  SH,  SM " 0
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Simplex Algorithm:  Initialization

basis = {SC, SH, SM}

A = B = 0
Z = 0

SC = 480 

SH = 160 

SM = 1190

maximize Z

subject
to the 

constraints

13A + 23B # Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A,  B,  SC,  SH,  SM " 0

Start with slack variables as the basis.

Initial basic feasible solution (BFS).  

• set non-basis variables A = 0, B = 0 (and Z = 0).

• 3 equations in 3 unknowns give SC = 480, SC = 160, SC = 1190 (immediate).  

• extreme point on simplex: origin

basis = {SC, SH, SM}

A = B = 0
Z = 0

SC = 480 

SH = 160 

SM = 1190

maximize Z

subject
to the 

constraints

13A + 23B # Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A,  B,  SC,  SH,  SM " 0
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Simplex Algorithm:  Pivot 1

Substitution  B = (1/15)(480 – 5A – SC ) puts B into the basis

 ( rewrite 2nd equation, eliminate B in 1st, 3rd, and 4th equations)

basis = {B, SH, SM}

A = SC = 0

Z = 736
B = 32 
SH = 32 

SM = 550

maximize Z

subject
to the 

constraints

(16/3)A   - (23/15) SC # Z = -736

(1/3) A + B + (1/15) SC = 32

(8/3) A   - (4/15) SC + SH = 32

(85/3) A   - (4/3) SC
+ SM = 550

A,  B,  SC,  SH,  SM " 0

which variable 
does it replace?
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Simplex Algorithm:  Pivot 1

Why pivot on B?

• Its objective function coefficient is positive

(each unit increase in B from 0 increases objective value by $23)

• Pivoting on column 1 also OK.

Why pivot on row 2?

• Preserves feasibility by ensuring RHS " 0.

• Minimum ratio rule:  min { 480/15,  160/4,  1190/20 }.

basis = {SC, SH, SM}

A = B = 0
Z = 0

SC = 480 

SH = 160 

SM = 1190

maximize Z

subject
to the 

constraints

13A + 23B # Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A,  B,  SC,  SH,  SM " 0



basis = {B, SH, SM}

A = SC = 0

Z = 736
B = 32 
SH = 32 

SM = 550

maximize Z

subject
to the 

constraints

(16/3)A - (23/15) SC # Z = -736

(1/3) A + B + (1/15) SC = 32

(8/3) A   - (4/15) SC + SH = 32

(85/3) A   - (4/3) SC + SM = 550

A,  B,  SC,  SH,  SM " 0
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Simplex Algorithm:  Pivot 2

basis = {A, B, SM}

SC = SH = 0

Z = 800
B = 28 
A = 12 

SM = 110

maximize Z

subject
to the 

constraints

-  SC -  2SH # Z = -800

 B + (1/10) SC + (1/8) SH = 28

 A   - (1/10) SC + (3/8) SH = 12

   - (25/6) SC - (85/8) SH + SM = 110

A,  B,  SC,  SH,  SM " 0

Substitution  A = (3/8)(32 + (4/15) SC – SH ) puts A into the basis

 ( rewrite 3nd equation, eliminate A in 1st, 2rd, and 4th equations)
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Simplex algorithm:  Optimality

Q.  When to stop pivoting?

A.  When all coefficients in top row are non-positive.

Q.  Why is resulting solution optimal?

A.  Any feasible solution satisfies system of equations in tableaux.

• In particular:  Z = 800 – SC – 2 SH

• Thus, optimal objective value Z*  !  800 since SC, SH " 0.

• Current BFS has value 800  $ optimal.

basis = {A, B, SM}

SC = SH = 0

Z = 800
B = 28 
A = 12 

SM = 110

maximize Z

subject
to the 

constraints

-  SC -  2SH # Z = -800

 B + (1/10) SC + (1/8) SH = 28

 A   - (1/10) SC + (3/8) SH = 12

   - (25/6) SC - (85/8) SH + SM = 110

A,  B,  SC,  SH,  SM " 0
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!brewer’s problem

!simplex algorithm

! implementation

! linear programming

Encode standard form LP in a single Java 2D array

Simplex tableau
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A

c

bI

0 0

m

1

n m 1

maximize Z

subject
to the 

constraints

13A + 23B # Z = 0

5A + 15B + SC = 480

4A + 4B + SH = 160

35A + 20B + SM = 1190

A,  B,  SC,  SH,  SM " 0

5 15 1 0 0 480

4 4 0 1 0 160

35 20 0 0 1 1190

13 23 0 0 0 0



Encode standard form LP in a single Java 2D array (solution)

Simplex algorithm transforms initial array into solution

Simplex tableau
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A

c

bI

0 0

m

1

n m 1

0 1 1/10 1/8 0 28

1 0 1/10 3/8 0 12

0 0 25/6 85/8 1 110

0 0 -1 -2 0 -800

maximize Z

subject
to the 

constraints

-  SC -  2SH # Z = -800

 B + (1/10) SC + (1/8) SH = 28

 A   - (1/10) SC + (3/8) SH = 12

   - (25/6) SC - (85/8) SH + SM = 110

A,  B,  SC,  SH,  SM " 0
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Simplex algorithm:  Bare-bones implementation

Construct the simplex tableau.

A

c

bI

0 0

public class Simplex
{
   private double[][] a;   // simplex tableaux
   private int M, N;

   public Simplex(double[][] A, double[] b, double[] c)
   {
      M = b.length;
      N = c.length;
      a = new double[M+1][M+N+1];
      for (int i = 0; i < M; i++)
         for (int j = 0; j < N; j++)
            a[i][j] = A[i][j];
      for (int j = N; j < M + N; j++) a[j-N][j] = 1.0;
      for (int j = 0; j < N;     j++) a[M][j]   = c[j];
      for (int i = 0; i < M;     i++) a[i][M+N] = b[i];
   }

m

1

n m 1

put A[][] into tableau

put I[] into tableau
put c[] into tableau
put b[] into tableau

constructor
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Simplex algorithm:  Bare-bones Implementation

Pivot on element (p, q).

public void pivot(int p, int q)
{
   for (int i = 0; i <= M; i++)
      for (int j = 0; j <= M + N; j++)
         if (i != p && j != q)
            a[i][j] -= a[p][j] * a[i][q] / a[p][q];
 
   for (int i = 0; i <= M; i++)
      if (i != p) a[i][q] = 0.0;

   for (int j = 0; j <= M + N; j++) 
      if (j != q) a[p][j] /= a[p][q];
   a[p][q] = 1.0;
}

p

q

scale all elements but
row p and column q

zero out column q

scale row p
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Simplex Algorithm:  Bare Bones Implementation

Simplex algorithm.

find entering variable q
(positive objective function coefficient)

find row p according
to min ratio rule

+p

q

+

+

public void solve()
{
   while (true)
   {
      int p, q;
      for (q = 0; q < M + N; q++)
         if (a[M][q] > 0) break;
      if (q >= M + N) break;

      for (p = 0; p < M; p++)
         if (a[p][q] > 0) break;
      for (int i = p+1; i < M; i++)
         if (a[i][q] > 0)
            if (a[i][M+N] / a[i][q]
                < a[p][M+N] / a[p][q])
               p = i;
      
      pivot(p, q);
   }
}

min ratio test
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Simplex Algorithm:  Running Time

Remarkable property.  In practice, simplex algorithm typically 

terminates after at most 2(m+n) pivots.

• No pivot rule that is guaranteed to be polynomial is known.

• Most pivot rules known to be exponential (or worse) in worst-case.

Pivoting rules.  Carefully balance the cost of finding an entering 

variable with  the number of pivots needed.
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Simplex algorithm:  Degeneracy

Degeneracy.  New basis, same extreme point.

Cycling.  Get stuck by cycling through different bases that all 

correspond to same extreme point.

• Doesn't occur in the wild.

• Bland's least index rule guarantees finite # of pivots.

"stalling" is common in practice

To improve the bare-bones implementation

• Avoid stalling.

• Choose the pivot wisely.

• Watch for numerical stability.

• Maintain sparsity.

• Detect infeasiblity

• Detect unboundedness. 

• Preprocess to reduce problem size. 

Basic implementations available in many programming environments.

Commercial solvers routinely solve LPs with millions of variables.

requires fancy data structures
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Simplex Algorithm:  Implementation Issues

Ex. 1: OR-Objects Java library

Ex. 2: MS Excel (!)
32

import drasys.or.mp.*; 
import drasys.or.mp.lp.*; 

public class LPDemo
{ 
   public static void main(String[] args) throws Exception
   {
      Problem prob = new Problem(3, 2);
      prob.getMetadata().put("lp.isMaximize", "true");
      prob.newVariable("x1").setObjectiveCoefficient(13.0);
      prob.newVariable("x2").setObjectiveCoefficient(23.0);
      prob.newConstraint("corn").setRightHandSide( 480.0);
      prob.newConstraint("hops").setRightHandSide( 160.0);
      prob.newConstraint("malt").setRightHandSide(1190.0);
        
      prob.setCoefficientAt("corn", "x1",  5.0);
      prob.setCoefficientAt("corn", "x2", 15.0);
      prob.setCoefficientAt("hops", "x1",  4.0);
      prob.setCoefficientAt("hops", "x2",  4.0);
      prob.setCoefficientAt("malt", "x1", 35.0);
      prob.setCoefficientAt("malt", "x2", 20.0);
 
      DenseSimplex lp = new DenseSimplex(prob);
      System.out.println(lp.solve());
      System.out.println(lp.getSolution());
   }
}

LP solvers: basic implementations
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set PROD := beer ale;
set INGR := corn hops malt;

param: profit :=
ale  13
beer 23;

param: supply :=
corn  480
hops  160
malt 1190;

param amt: ale beer :=
corn         5  15
hops         4   4
malt        35  20;

LP solvers: commercial strength

AMPL.  [Fourer, Gay, Kernighan]  An algebraic modeling language.

CPLEX solver.  Industrial strength solver.

set INGR;
set PROD;
param profit {PROD};
param supply {INGR};
param amt {INGR, PROD};
var x {PROD} >= 0;

maximize total_profit:
   sum {j in PROD} x[j] * profit[j];

subject to constraints {i in INGR}:
   sum {j in PROD} amt[i,j] * x[j] <= supply[i];

beer.dat

beer.mod

[cos226:tucson] ~> ampl
AMPL Version 20010215 (SunOS 5.7)
ampl: model beer.mod;
ampl: data beer.dat;
ampl: solve;
CPLEX 7.1.0: optimal solution; objective 800
ampl: display x;
x [*] :=  ale 12  beer 28;

separate data from model

ale beer

maximize 13A + 23B profit

subject
to the 

constraints

5A + 15B ! 480 corn

4A + 4B ! 160 hops

35A + 20B ! 1190 malt

A " 0

B " 0
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History

1939.  Production, planning.  [Kantorovich]

1947.  Simplex algorithm.  [Dantzig]

1950.  Applications in many fields.

1979.  Ellipsoid algorithm.  [Khachian]

1984.  Projective scaling algorithm.  [Karmarkar]

1990.  Interior point methods.

• Interior point faster when polyhedron smooth like disco ball.

• Simplex faster when polyhedron spiky like quartz crystal.

200x.  Approximation algorithms, large scale optimization.
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!brewer’s problem

!simplex algorithm

! implementation

! linear programming

Linear programming

Linear “programming” 

• process of formulating an LP model for a problem

• solution to LP for a specific problem gives solution to the problem

1. Identify variables

2. Define constraints (inequalities and equations)

3. Define objective function

Examples:

• shortest paths

• maxflow

• bipartite matching

• .

• .

• .

• [ a very long list ]
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easy part [omitted]:
convert to standard form

stay tuned [this lecture]
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Single-source shortest-paths problem (revisited)

Given. Weighted digraph, single source s.

Distance from s to v: length of the shortest path from s to v .

Goal.  Find distance (and shortest path) from s to every other vertex.

s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

LP formulation of single-source shortest-paths problem
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s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

minimize xt 

subject
to the 

constraints

xs + 9  #  x2

xs + 14  #  x6

xs + 15  #  x7

x2 + 24  #  x3

x3 + 2  #  x5

x3 + 19  #  xt

x4 + 6  #  x3

x4 + 6  #  xt

x5 + 11  #  x4

x5 + 16  #  xt

x6 + 18  #  x3

x6 + 30  #  x5

x6 + 5  #  x7

x7 + 20  #  x5

x7 + 44  #  xt

xs  =  0

x2 , ... , xt  !  0

One variable per vertex, one inequality per edge.

interpretation:
xi = length of 

shortest path from 
source to i

LP formulation of single-source shortest-paths problem
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s

3

t

2

6

7

4

5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

0

9 32

14

15 50

34

45

minimize xt 

subject
to the 

constraints

xs + 9  #  x2

xs + 14  #  x6

xs + 15  #  x7

x2 + 24  #  x3

x3 + 2  #  x5

x3 + 19  #  xt

x4 + 6  #  x3

x4 + 6  #  xt

x5 + 11  #  x4

x5 + 16  #  xt

x6 + 18  #  x3

x6 + 30  #  x5

x6 + 5  #  x7

x7 + 20  #  x5

x7 + 44  #  xt

xs  =  0

x2 , ... , xt  !  0

xs  =  0

x2  =  9

x3  =  32

x4  =  45

x5  =  34

x6  =  14

x7  =  15

xt  =  50

solution

One variable per vertex, one inequality per edge.

interpretation:
xi = length of 

shortest path from 
source to i

3

3
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Maxflow problem

Given: Weighted digraph, source s, destination t.

Interpret edge weights as capacities

• Models material flowing through network

• Ex: oil flowing through pipes

• Ex: goods in trucks on roads

• [many other examples]

Flow: A different set of edge weights

• flow does not exceed capacity in any edge 

• flow at every vertex satisfies equilibrium

[ flow in equals flow out ]

Goal:  Find maximum flow from s to t

2 3

1

2

s

1

3 4

2

t

1 1

s

1

3 4

2

t

flow out of s is 3

flow in to t is 3

1 2

10

1 1

2 1

flow # capacity
in every edge

flow in
equals

flow out
at each 
vertex



LP formulation of maxflow problem
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maximize xts 

subject
to the 

constraints

xs1  #  2

xs2  #  3

x13  #  3

x14  #  1

x23  #  1

x24  #  1

x3t  #  2

x4t  #  3

xts  =  xs1 + xs2

xs1  =  x13 + x14

xs2  =  x23 + x24

x13 + x23  =  x3t

x14 + x24  =  x4t

x3t + x4t  =  xts

all xij  !  0

One variable per edge. 

One inequality per edge, one equality per vertex.

interpretation:
xij = flow in edge i-j

3

3

2 3

1

2

s

1

3 4

2

t

1 1

s

1

3 4

2

t

add dummy
edge from 

t to s

equilibrium
constraints

capacity
constraints

1

2 2

11

1

2 2

LP formulation of maxflow problem
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maximize xts 

subject
to the 

constraints

xs1  #  2

xs2  #  3

x13  #  3

x14  #  1

x23  #  1

x24  #  1

x3t  #  2

x4t  #  3

xts  =  xs1 + xs2

xs1  =  x13 + x14

xs2  =  x23 + x24

x13 + x23  =  x3t

x14 + x24  =  x4t

x3t + x4t  =  xts

all xij  !  0

xs1  =  2

xs2  =  2

x13  =  1

x14  =  1

x23  =  1

x24  =  1

x3t  =  2

x4t  =  2

xts  =  4

solution

One variable per edge. 

One inequality per edge, one equality per vertex.

interpretation:
xij = flow in edge i-j

3

3

2 3

1

2

s

1

3 4

2

t

1 1

s

1

3 4

2

t

add dummy
edge from 

t to s

maxflow value

equilibrium
constraints

capacity
constraints

Maximum cardinality bipartite matching problem

Given: Two sets of vertices, set of edges

           (each connecting one vertex in each set)

Matching: set of edges

                with no vertex appearing twice 

Interpretation: mutual preference constraints

• Ex: people to jobs

• Ex: medical students to residence positions

• Ex: students to writing seminars

• [many other examples]

Goal: find a maximum cardinality matching
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A B C D E F

0 1 2 3 4 5

Alice

  Adobe, Apple, Google

Bob

  Adobe, Apple, Yahoo

Carol

  Google, IBM, Sun

Dave

  Adobe, Apple

Eliza

  IBM, Sun, Yahoo

Frank

  Google, Sun, Yahoo

Example: Job offers

Adobe

  Alice, Bob, Dave

Apple

  Alice, Bob, Dave

Google

  Alice, Carol, Frank

IBM

  Carol, Eliza

Sun

  Carol, Eliza, Frank

Yahoo

  Bob, Eliza, Frank

A B C D E F

0 1 2 3 4 5

LP formulation of maximum cardinality bipartite matching problem
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maximize
xA0  +  xA1 + xA2 + xB0  +  xB1 + xB5 

+ xC2  + xC3  + xC4  +  xD0 + xD1

+ xE3 + xE4 + xE5 + xF2 + xF4 + xF5 

subject
to the 

constraints

xA0  +  xA1 + xA2 = 1

xB0  +  xB1 + xB5 = 1

xC2  + xC3  + xC4 = 1

xD0 + xD1  =  1

xE3 + xE4 + xE5  =  1

xF2 + xF4 + xF5  =  1

xA0  +  xB0 + xD0 = 1

xA1  +  xB1 + xD1 = 1

xA2  + xC2  + xF2 = 1

xC3 + xE3  =  1

xC4 + xE4 + xF4  =  1

xB5 + xE5 + xF5  =  1

all xij  !  0

One variable per edge, one equality per vertex.

interpretation:
An edge is in the 

matching iff xij = 1

constraints on 
top vertices 

A B C D E F

0 1 2 3 4 5

Theorem.  [Birkhoff 1946, von Neumann 1953]

All extreme points of the above polyhedron have integer (0 or 1) coordinates

Corollary.  Can solve bipartite matching problem by solving LP

constraints on 
bottom vertices 

Crucial point:
   not always so lucky!



LP formulation of maximum cardinality bipartite matching problem
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maximize
xA0  +  xA1 + xA2 + xB0  +  xB1 + xB5 

+ xC2  + xC3  + xC4  +  xD0 + xD1

+ xE3 + xE4 + xE5 + xF2 + xF4 + xF5 

subject
to the 

constraints

xA0  +  xA1 + xA2 = 1

xB0  +  xB1 + xB5 = 1

xC2  + xC3  + xC4 = 1

xD0 + xD1  =  1

xE3 + xE4 + xE5  =  1

xF2 + xF4 + xF5  =  1

xA0  +  xB0 + xD0 = 1

xA1  +  xB1 + xD1 = 1

xA2  + xC2  + xF2 = 1

xC3 + xE3  =  1

xC4 + xE4 + xF4  =  1

xB5 + xE5 + xF5  =  1

all xij  !  0

One variable per edge, one equality per vertex.

interpretation:
An edge is in the 

matching iff xij = 1

A B C D E F

0 1 2 3 4 5

A B C D E F

0 1 2 3 4 5

xA1  =  1

xB5  =  1

xC2  =  1

xD0  =  1

xE3  =  1

xF4  =  1

all other xij  =  0

solution

Linear programming perspective

Got an optimization problem?

    ex: shortest paths, maxflow, matching, . . . [many, many, more]

Approach 1: Use a specialized algorithm to solve it

• Algs in Java 

• vast literature on complexity

• performance on real problems not always well-understood

Approach 2: Use linear programming

• a direct mathematical representation of the problem often works

• immediate solution to the problem at hand is often available

• might miss specialized solution, but might not care

Got an LP solver? Learn to use it!
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[cos226:tucson] ~> ampl
AMPL Version 20010215 (SunOS 5.7)
ampl: model maxflow.mod;
ampl: data maxflow.dat;
ampl: solve;
CPLEX 7.1.0: optimal solution; 
objective 4;

LP: the ultimate problem-solving model (in practice)

Fact 1: Many practical problems are easily formulated as LPs

Fact 2: Commercial solvers can solve those LPs quickly

More constraints on the problem?

• specialized algorithm may be hard to fix

• can just add more inequalities to LP

New problem?

• may not be difficult to formulate LP

• may be very difficult to develop specialized algorithm

Today’s problem?

• similar to yesterday’s

• edit tableau, run solver 

Too slow?

• could happen

• doesn’t happen
47

Ex. Airline scheduling
[ similar to vast number of other business processes ]

Ex. Mincost maxflow and 
other generalized versions

Want to learn more? 
ORFE 307
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Is there an ultimate problem-solving model?

• Shortest paths

• Maximum flow

• Bipartite matching

• . . .

• Linear programming 

• .

• . 

• . 

• NP-complete problems

• . 

• . 

• . 

Does P = NP?   No universal problem-solving model exists unless P = NP.

tractable

Ultimate problem-solving model (in theory)

[see next lecture]

intractable ?

Want to learn more? 
COS 423
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LP perspective

LP is near the deep waters of intractability.

Good news:

• LP has been widely used for large practical problems for 50+ years

• Existence of guaranteed poly-time algorithm known for 25+ years.

Bad news:

• Integer linear programming is NP-complete

• (existence of guaranteed poly-time algorithm is highly unlikely).

• [stay tuned]

An unsuspecting MBA student transitions to 
the world of intractability with a single mouse click.

constrain variables to have integer values


