Pattern Matching

» exact pattern matching

» Knuth-Morris-Pratt » exact pattern matching

» RE pattern matching

»grep
References:
Algorithms in C (2nd edition), Chapter 19
.Cs.pril 3long
http:/ Cs.pri 7
1 2
Exact pattern matching Brute-force exact pattern match

Problem:

Find first match of a pattern of length M in a text stream of length N. REEP [FRAC G € CTE S (USRI,
T

o

e
pattern typically N > M n e e d 1
n e e d 1 e M:=6 4

n e e 1 e
text n e e d 1 e
i na h ay s t ac k a n e e d 1l e i n a N=21 n e e d 1 e
n e e d 1 e
Applications. noe e d 1 e
* parsers. noe e d 1o
. n e e d 1 e
* spam filters. . s .)
d' . | Ib . 1{>ubl1c static int search(String pattern, String text) n e e d 1 e
L]
|9|TG ibraries. int M = pattern.length(); n e € d 1 <
® screen scrapers. int N = text.length(); n e e d 1 e
¢ word processors. for (int i = 0; i <N - M; i++)
. (
e web search engines. int 3;
. for (j =0; jJ < M; j++)
* natural language processing. if (text.charAt(i+j) !'= pattern.charAt(3))
break;
* computational molecular biology. , (=) retusn £ <— patfern start index i fext
e feature detection in digitized images. return -1; <— not found

}

Brute-force exact pattern match: worst case

Brute-force algorithm can be slow if text and pattern are repetitive

a a a a a a a a a a b

)
Moo
PR
[I YR V)
[V I I YR YR
VI I T VI VI -)
[I I VI VI
[I R I I VI -
[I I VI I I
[I VI VI -
I I I VI
[I I VI VI -
Mooy
oo
pop o
poo

b

but this situation is rare in typical applications

text length N

MN char compares

pattern length M

Hence, the indexof () method in Java's string class uses brute-force

Algorithmic challenges in pattern matching

Brute-force is not good enough for all applications

Theoretical challenge: Linear-time guarantee. <— fundamental algorithmic problem

Practical challenge: Avoid backup in text stream. <— oftennoroom or time to save text

Now is the time for all people to come to the aid of their party. Now is the time for all
good people to come to the aid of their party. Now is the time for many good people to

come to the aid of their party. Now is the time for all good people to

come to the aid of

their party. Now is the time for a lot of good people to come to the aid of their party.

Now is the time for all of the good people to come to the aid of their
time for all good people to come to the aid of their party. Now is the

party. Now is the
time for each good

person to come to the aid of their party. Now is the time for all good people to come to
the aid of their party. Now is the time for all good Republicans to come to the aid of

their party. Now is the time for all good people to come to the aid of

their party. Now

is the time for many or all good people to come to the aid of their party. Now is the

time for all good people to come to the aid of their party. Now is the

time for all good

Democrats to come to the aid of their party. Now is the time for all people to come to

the aid of their party. Now is the time for all good people to come to

the aid of their

party. Now is the time for many good people to come to the aid of their party. Now is the

time for all good people to come to the aid of their party. Now is the
good people to come to the aid of their party. Now is the time for all
to come to the aid of their party. Now is the time for all good people
of their attack at dawn party. Now is the time for each person to come
their party. Now is the time for all good people to come to the aid of

is the time for all good Republicans to come to the aid of their party.

for all good people to come to the aid of their party. Now is the time
good people to come to the aid of their party. Now is the time for all
come to the aid of their party. Now is the time for all good Democrats
of their party.

time for a lot of
of the good people
to come to the aid
to the aid of
their party. Now
Now is the time
for many or all
good people to

to come to the aid

Exact pattern matching in Java

Exact pattern matching is implemented in Java's String class
s.indexOf (t, i): index of first occurrence of pattern t

in string s, starting at offset i.

Ex: Screen scraping. Exact match to extract info from website

public class StockQuote

{

public static void main(String[] args)

{

String name =
In in = new In
String input =
int start =
int from =
int to =
String price =

"http://finance.yahoo.com/q?s=";
(name + args[0]);
in.readAll() ;
input.indexOf ("Last Trade:", 0);
input.indexOf ("", start);
input.indexOf ("", from);
input.substring(from + 3, to);

System.out.println(price) ;

% java StockQuote goog
688.04

% java StockQuote msft
33.75

http://finance.yahoo.com/q?s=goo!
<tr>
<td class= "yfnc_tableheadl"
width= "48%">
Last Trade:
</td>
<td class= "yfnc_tabledatal">
<big>688.04</big>
</td></tr>
<td class= "yfnc_tableheadl"
width= "48%">
Trade Time:
</td>
<td class= "yfnc_tabledatal">

Knuth-Morris-Pratt (KMP) exact pattern-matching algorithm

Classic algorithm that meets both challenges
e linear-time guarantee
* no backup in text stream

Don Knuth Jim Morris Vaughan Pratt

Basic plan (for binary alphabet)
e build DFA from pattern
* simulate DFA with text as input

X pattern in fext

text DFA o

a a a b a a b a a a b———> for

pattern %‘
pattern NOT

aabaaa in text

No backup in a DFA
Linear-time because each step is just a state change

Knuth-Morris-Pratt DFA simulation

b b
l.a_>2_b_,3.a_>4.a_>5_a_>.

b_‘;—» e _/b

Op D8 b
3 aaabaabaaab
T Ao 1>k S, 25 52 e
Oh Oa b

1

Knuth-Morris-Pratt DFA example

One state for each pattern character
e Match input character: move from i to i+1
e Mismatch: move to previous state

DFA
for
pattern

aabaaa

How to construct? Stay tuned

Knuth-Morris-Pratt DFA simulation

O Oa b
4 aaabaabaaab
f :
0 1A, 2 2 e
O Oa b

p O b
3 aaabaabaaab
O—a—>h 1'a—>2\>-h—>a 3a*>4-‘—>z-a—>.

b
accept! Oh Oa \—/b

12

Knuth-Morris-Pratt DFA simulation KMP implementation

When in state i: DFA representation: a single state-indexed array next[]
¢ have found match in i previous input chars ¢ Upon character match in state j, go forward to state j+1.
e that is the longest such match e Upon character mismatch in state j, go back to state next[3].

Ex. End in state 4 iff text ends in aaba.
Ex. End in state 2 iff text ends in aa (but not aabaa or aabaaa).

DFA 0 0 3 0 0 3

for

only need to
pa’r’rern E— next 0o o0 2 0 0 3 <«

store mismatches

aabaaa

bW WNNKEO
R EER]
R EEEEEERE]
[I I R T Y I Y
oo uoouoouoobo
[I VI Y I Y I VI I Y
[I I Y I VI O VI I Y
cooooooouooo
L I VI I Y IV I V)
LTI I VI VI I VI I Y
TR
Lozl o o 2 o 2 o S o 2 o 2N o N o SR o A 0

KMP implementation Knuth-Morris-Pratt: Iterative DFA construction
Two key differences from brute-force implementation: DFA for first i states contains the information needed to build state i+l
e Text pointer i never decrements
¢ Need to precompute next[] table (DFA) from pattern. Ex: given DFA for pattern aabaaa.

how to compute DFA for pattern aabaaab ?

Key idea
int j = 0; ¢ on mismatch at 7th char, need to simulate 6-char backup
for (int i = 0; i < N; i++4) . .
(e previous 6 chars are known (abaaaa in example)
if (t.charAt(i) == p.charAt(j)) j++; // match o 6-state DFA (known) determines next statel
else j = next[j]; // mismatch
if (j == M) return i - M + 1; // found 0 abaaaa
} Keep track of DFA state for start at 2nd char of pattern 1 2baaaa
1. o . 0 ab
return -1; // not found compare char at that position with next pattern char 1 apagze
. . . 2 an
T — ¢ match/mismatch provides all needed info ; opzz2e
2 abaaaa
mb
ba 12 A2\)" 3 -2 4 -2 5 =2 @
b 2 vb

KMP iterative DFA construction: two cases

Let X be the next state in the simulation and j the next state to build.

If p[X] and p[j] match, copy and increment
next[X];

next[]j]
X+1

X

DFA for
aabaaab

DFA for
aabaaaa

0= 12 2 3 -2 4 -2 5 =2 6 b ®
v M
If pIX] and p[3] mismatch, do the opposite 6 12 3 45 6
next[j] = X+1; pll] a a b a a a a
X = next[X]; next[] 0 0 2 0 0 3 3
, 4 i
state fora b a a a a—>»x 3
0= 12 2 2 3 -2 4 -2 5 -2 a PY

mb
b

Knuth-Morris-Pratt DFA construction

o

DFA

o

¢

state fora b a a a b

0 1 2 3 4 5 6
pll a a b a a a b
next[] 0 0 2 0 0 3 2
r o4 t
X X bl

/

Knuth-Morris-Pratt DFA construction examples

ex:aabaaab

next[]

0

a
0

op o X—poOnoO
>op KR UPpOPK

oo > op o
—>op R
> NON

o ow o
.

ow

[

ow

ow

o K
2> NN >NUN

NDN
—>op w

N ON
ow
—»>on s

w

om w

on w

-

IS
wop o Pwo o

ow
- DU o

match

mismatch

match

match

mismatch

match

ex:abbabbb

0
a
0

—»>op o XpOpPO

—»>op o

op o op o omo
RO R R S>roR

ROR UpHDR

RO R

X: current state in simulation
compare p[j] with p[X]

match: copy and increment

mismatch next[j] = next[X];
X=X+ 1;
mismatch: do the opposite
next[j] = X + 1;

2 X = next[X];
b mismatch
1
t
23
b a match
10

T
234
bab match
101
2345
babb match
1011
23456
b a b b b mismatch
10114

N |

X: current state in simulation
compare p[j] with p[X]

match: copy and increment
next[j] = next[X];
X=X+1;
mismatch: do the opposite
next[j] = X + 1;
X = next[X];

01
1..3-1 X

aa match Ik o ’/EN_,E
00 01 2
14 0
X3
012
aab mismatch ’/aNa b
Ogi 2 i o_}" 1 2 3
0123 m
aaba b
0020 match ab 0 Oa 13 2b 3a 4
vt P e
01234 m
aabaa tch b
oo200 ™ aba 1 o= 12 - a
tot OF O
012345
aabaaa psmach b b
002003 abaa 2 oa 1a 2b 35 4

L. P O

DFA construction for KMP: Java implementation

Takes time and space proportional to pattern length.

int X = 0;

int[] next = new int[M];

for (int j = 1; j < M; j++4)
{
if (p.charAt(X) == p.charAt(j))
{
next[j] = next[X];
X=X+1;
}
else
{
next[j] = X + 1;
X = next[X];
}
}

DFA Construction for KMP (assumes binary alphabet)

Optimized KMP implementation

Ultimate search program for any given pattern:
one statement comparing each pattern character to next

match: proceed o next statement

mismatch: go back as dictated by DFA
translates to machine language (three instructions per pattern char)

int kmpsearch(char t[])

{

int i = 0;

s0: if
sl: if
s2: if
s3: if
s4: if
s5: if
s6: if
s7: if
return

(t[i++]
(t[i++]
(t[i++]
(t[i++]
(t[i++]
(t[i++]
(t[i++]
(t[i++]
i-8;

1= vav)
1= 'a')
1= 'b')
1= 'a')
1= vav)
'= 'a')
1= 'b')
'= 'b")

T

goto
goto
goto
goto
goto
goto
goto
goto

pattern[]

Lesson: Your computer is a DFA!

Exact pattern matching: other approaches

s0;

s0;

SZ; P

s0; assumes pattern is in text
S0~ (o/w use sentinel)
s3;

s2;

s4;

next[]

Rabin-Karp: make a digital signature of the pattern

¢ hashing without the table
* linear-time probabilistic guarantee

e plus: extends to 2D patterns
e minus: arithmetic ops much slower than char comparisons

Boyer-Moore: scan from right to left in pattern
main idea: can skip M text chars when finding one not in the pattern

needs additional KMP-like heuristic

plus: possibility of sublinear-time performance (~ N/M)
used in Unix, emacs

pattern s y

fext a a

z

a

z

Yy 9 Y

b a
g

a b a

a

23

KMP summary

General alphabet

* more difficult

* easy with next[][] indexed by mismatch position, character

e KMP paper has ingenious solution that is not difficult to implement
[build NFA, then prove that it finishes in 2N steps]

Bottom line: linear-time pattern matching is possible (and practical)

Short history:
e inspired by esoteric theorem of Cook
[linear time 2-way pushdown automata simulation is possible]
e discovered in 1976 independently by two theoreticians and a hacker
Knuth: discovered linear time algorithm
Pratt: made running time independent of alphabet
Morris: trying to build a text editor.
e theory meets practice

Exact pattern match cost summary

Cost of searching for M-character pattern in N-character fext

algorithm typical worst-case
brute-force 1.1 N char compares * M N char compares
Karp-Rabin 3N arithmetic ops 3N arithmetic ops
KMP 1.1 N char compares * 2N char compares

Boyer-Moore ~N/M char compares t 3N char compares

1 assumes appropriate model
F randomized

» RE pattern matching

25

RE pattern matching: applications

Test if a string matches some pattern.

* Process natural language.

® Scan for virus signatures.

* Search for information using Google.

* Access information in digital libraries.

* Retrieve information from Lexis/Nexis.

* Search-and-replace in a word processors.

* Filter text (spam, NetNanny, Carnivore, malware).

* Validate data-entry fields (dates, email, URL, credit card).

* Search for markers in human genome using PROSITE patterns.

Parse text files.

* Compile a Java program.

e Crawl and index the Web.

* Read in data stored in ad hoc input file format.

* Automatically create Java documentation from Javadoc comments.

27

Regular-expression pattern matching

Exact pattern matching:
Search for occurrences of a single pattern in a text file.

Regular expression (RE) pattern matching:
Search for occurrences of one of multiple patterns in a text file.

Ex. (genomics)

e Fragile X syndrome is a common cause of mental retardation.

¢ human genome contains triplet repeats of cgg or agg
bracketed by gcg at the beginning and ctg at the end

¢ number of repeats is variable, and correlated with syndrome

e use regular expression to specify pattern: gcg(cgglagg) *ctg

* do RE pattern match on person's genome to detect Fragile X

pattern (RE) gcg(cgglagg) *ctg

fext gecggegtgtgtgegagagagtgggtttaaagetggcgeggaggeggetggegeggaggetg

Regular expression examples

A regular expression is a notation to specify a set of strings.

concatenation aabaab aabaab every other string
ildcard s.u.u cumulus succubus
wildcar s R R jugulum tumultuous
. aa .
union aa | baab baab every other string
. aa ab
closure ab*a abbba ababa
aaaab .
a(a|b)aab abaab every other string
parentheses
a aa
*
(ab)*a ababababa abbba

Regular expression examples (continued)

Notation is surprisingly expressive

-*spb.* raspberry subspace
contains the trigraph spb crispbread subspecies
a* | (a*ba*ba*ba*)* bbb b
" . aaa bb
number of b's is a multiple of 3 111y oppaa baabbbaa
-*¥0.... 1000234 111111111
fifth to last digit is 0 98701234 403982772
gcg (cgg|agg) *ctg gcgetg gegegg
gcgeggetg cggcggeggetg

fragile X syndrome indicator gcgcggaggety gegeaggetg

and plays a well-understood role in the theory of computation

29

Regular expressions in Java

RE pattern matching is implemented in Java's String class
e basic: match () method
e various other methods also available (stay tuned)

Ex: Validity checking. Is input in the set described by the re?

public class Validate
{
public static void main(String[] args)
{
String re args[0];
String input args[1l];
System.out.println(input.matches(re)) ;

i
% java Validate "..00..00." bloodroot e=d help el "9
true crosswords?

% java Validate "[$_A-Za-z][$_A-Za-2z0-9]*" identl23 <«———— legal Java identifier
true

% java Validate "[a-z]+@([a-z]+\.)+(edu|com)" rs@cs.princeton.edu<— valid email address
true (simplified)

% java Validate "[0-9]{3}-[0-9]{2}-[0-9]{4}" 166-11-4433 <«—— Social Security number
true

Generalized regular expressions

Additional operations are often added

e Ex: [a-e]+ is shorthand for (alblcld|e) (alblc|d|e)*
e for convenience only

* need fo be alert for non-regular additions (Ex: Java /)

abcde ade
one or more a(bc) +de abebede bede
R I word camelCase
character classes [A-Za-z] [a-z] Capitalized 4illegal
08540-1321 111111111
exactly k [0-9145}-[0-91{4} 19072-5541 166-54-111
negations [*aeiou] {6} rhythm decade

Regular expressions in other languages

Broadly applicable programmer's tool.

e originated in UNIX in the 1970s

* many languages support extended regular expressions

e built into grep, awk, emacs, Perl, PHP, Python, JavaScript

print all lines containing NEWLINE which

rep NEWLINE */*_ java
grep J occurs in any file with a . java extension

egrep '“[qwertyuiop]*[zxcvbnm]*$' dict.txt | egrep '........... '

PERL. Practical Extraction and Report Language.

replace all occurrences of £rom

perl -p -i -e 's|from|to|g' input.txt N N N
with to in the file input. txt

perl -n -e 'print if /~[A-Za-z][a-z]*$/' dict.txt

do for each line

Regular expression caveat Can the average web surfer learn to use REs?

Writing a RE is like writing a program. Google. Supports * for full word wildcard and | for union.
¢ need fo understand programming model
e can be easier fo write than read < B B8 Yon G Ruknuks Lk idon o0
* can be difficult to debug

[_[Ox]

D

Web Images Groups News Froogle"* more »

GOUgle ["the *of seville” Search | Aduneed Seach

Web Results 1 - 10 of about 60,100 for * the * of seville™. (0.31 seconds)

" H H News results for " the * of seville" - \iew all the latest headlines
Sometimes you have a programming problem No;)era Barber of Seville/ Marriage of Figaro - Financial Times - 3 hours ago
and it seems like the best solution is to use
. . " Information about the City of Sevilla {Seville), Andalucia ...
regular expressions; now you have two problems. . Post a request on our Notics Bosrd. Promate your business on this website;

emaM sales@andalucia.com. Information about the Cif
www. andalucia. com/cities/sevilla.htm - 22k - Cache

Universidad de Sevilla - [Translate this page |

INICIO | ESTUDIANTES | PROFESORES | PAS | INDICES | BUSCADOR | COMENTARIOS,
Complemento Autonémico, Estatuto, Espacio Europeo de Educacion ...

whwrw.us.es/ - 15k - Apr Similar pages

CATHOLIC ENCYCLOPEDIA: St. Isidore of Seville

.. On the death of Leander, Isidore succeeded to the See of Seville. His long incumbency
to this office was spent in a period of disintegration and transition. ...

www.newadvent. org/cathen/08186a. htm - 32k - Cached - Similar pages

The Trickster of Seville and the Stone Guest
Commentary and analysis of Tirso de Molina's “The Trickster of Seville", one of the seventeenth century's.
waww. modlang.fsu. edufdarstitrickster. htm - Similar pages

=z iB R <= e Adblock /

33 34

Can the average TV viewer learn to use REs? Can the average programmer learn to use REs?

0 5 . . . Perl Rl lid RFC822 il Add Reference: http: ex- ~pdw/Mail-RFC822-Addre: |
TiVo. WishList has very limited pattern matching. erl RE for Valid RF Email Addresses rence B § . !

(2:(2:\2\n) 2 [\£]) *(2: (2: (2: [*0<>€, 7 :\\".\[\] \000-\031]+(?: (?: (?:\x\n)?[\t]
Y+INzZI(2=[\[" O <>e, NINID) I 22D\ \E\NTINNL | (22 (2:\e\n) 2 [\£])) *" (2: (2:
A\r\n)2[\t])*) (?:\. (2:\r\n) 2[\£])*(2: [*()<>@, ; :\\".\[\] \000-\031]+(?: (?:(
2:\r\n)?[\t])+I\ZI("—[\["(}<>@n AN T2 EN\S\NT I | (22 (2:\r\n) 2 [
\E1))*" (2: (2:\r\n) 2[\t])*))*e(\r\n) 2[\t])*(2: [~ ()<>@,;:\\".\[\] \000-\0
(2:(2:\x\n) 20 \£D)+I\Z] (>=[\[" O<>@, ; :\\".NINTT)) INDCIANINIAENNT 1AL) *\
\z\n) 2[\t£1)*) (2:\. (2: (2:\2\n) 2[\£])*(2: [~ ()<>@,;:\\".\[\] \000-\031]+
2:\r\n) ?2[\tD)+I\Z] (?=[\[" O<>€, ; :\\".\NINT1)) INDCIANININE\NNT 1NN L) *\] (2

A" AT\ \000-\031]+((?:(?:\r\n)?[\tD)+I\z

2t

Using * in WishList Searches. To search for similar words in Keyword and Title
WishList searches, use the asterisk (*) as a special symbol that replaces the endings of
words. For example, the keyword A/RP* would find shows containing “airport,”
“airplane,” “airplanes,” as well as the movie “Airplane!” To enter an asterisk, press the
SLOW (@) button as you are spelling out your keyword or title.

“Implementing validation
with regular expressions
I S somewhqf pushes.The limits
\r\n)2[\t])*))*) of what it is sensible to do
AT 2L AL+ with regular expressions,

(2:\r\n)2[\£])*(2: [() <> ?
["(O<>@,;:\\". \[\]]))I\[([ANNIAE\NT 1NN L) *\] (22 (2
2:\z\m) 21 NE1) %3 (31 [F 058, 1\ AI\] 000~ \0311+(" (2
e . (=N 0<@, A\ AN 1 (2 L\ \EWT AL | (23 (2:\x\n) 21 \e])) *" (
example above, or if you're just not sure how something is spelled. Pop quiz: is it \R) 2L \E1)*) (2:\. (2: (2:\z\n) 2[\t])*(2: ['(,O@ RN [\T r\’ooo_\onlﬂ?_ although Per! copes well.”
T L L 0n ce the kev CIST* . » it! Ar\m) 20 \eD+INZ] (221N [08,5\ AT | (2: 1 A\EWTIN. (22 (2:\2\R) 2
irresistible” or “irresistable?” Use the keyword /RRESIST* and don’t worry about it! 31 (31N eAm 2L NED) %)) 28 (31 (31N 21 A1) % (31 1~ <583 1\A" AL\ \00O- \031
1 (>@, 7\ AT\ INLOANININENT 1\ L) $\]
2: (2 \r\n)"[\ED) (2:\. (21 (2:\2\m) 20 \E1)*(2: [0 <>, :\\".\[\] \000-\031]+ (2
(2:\r\n) 2 [\t])+I\Z\("[\["()<>@” A\ \[\]]))I\[(!"\[\]\t\\ll\\)\ (2: (2
r\n)"[\ED) > (2: (2 : S\\"ATA] \000-\031]+(2: (?

The asterisk can be helpful when you're looking for a range of similar words. as in the

Two things to note about using the asterisk:

« Itcan only be used at a word’s end: it cannot be used to omit letters at the beginning or
in the middle of a word. (For example, A/R*NE or *PLANE would not work.)

Y13 a0 300 A AL A000N03TTH
. . "] (2
Reference: page 76, Hughes DirectTV TiVo manual NN '\\[\‘[QR} RO NI
1) A DRI 1\) 9] (2 (3100\m) 21 \E1) $)) %1 (21 £ 0<28, -\ A[A] \0b0-
\03L1+(2: (2: (2:\x\n) 20 \E1)+1\Z1 (2=[\[" 0<>€, 7 :\\".\[\I1)) 1" (2: [A\"\e\WT 1\ 1 ¢
2: (2:\r\n) 21 \&]))*" (2 :(2:\r\n) 2 [\t])*(2:@
S\ TN \000-\0311+(=\ [(<>, ;1 \\"
AR L) R\ (22 2:\r\n) 2[\£])*(N i
? [0\ AN D) LA noneles
(2:\z\n) 20 \ED)* (2: [()<>8, 7 :\\".\ l

2:\r\n)?[\“-])+|\ZI("’ N[O<>@, 7 \\". \[\1]))I\[([AYAVAY

& TWTIN R (2 (2:A5\n) 20 \&D)*) (2:\. (21 (

36

\r\n) 2[\E]) *(2: [*()<>@, 7 :\\".\[\]

Deterministic finite-state automata

DFA review.

int pc = 0;
while (!tape.isEmpty())
{
boolean bit = tape.read();
if (pc == 0) { if ('bit) pc = 0; else pc
else if (pc == 1) { if (!'bit) pc = 1; else pc

nwnn
NP
e

else if (pc == 2) { if (!bit) pc 2; else pc 0;
}
if (pc == 0) System.out.println("accepted");
else System.out.println("rejected") ;

37

1100

(o]

100

OO OO
® [

o

0110

O
&

39

GREP implementation: basic plan

Overview is the same as for KMP !
e linear-time guarantee
* no backup in text stream

Basic plan for GREP
e build DFA from RE
e simulate DFA with text as input

DFA
for
pattern

text

actgtgcaggaggcggcgeggeggaggaggcetggega >

Ken Thompson

yx/’

"ejecy

gcg (cgglagg) *ctg

No backup in a DFA
Linear-time because each step is just a state change

Duality

RE. Concise way to describe a set of strings.

DFA. Machine to recognize whether a given string is in a given set.

Kleene's theorem.

pattern in fext

pattern NOT
in fext

e for any DFA, there exists a RE that describes the same set of strings
e for any RE, there exists a DFA that recognizes the same set of strings

Ex: set of strings whose number of 1's is a multiple of 3
DFA

RE °
0* | (0*10*10*10%*)*

Good news: The basic plan works

(build DFA from RE and run with text as input)

Bad news :
Consequence: We need a smaller abstract machine.

The DFA can be exponentially large (can't afford to build it).

40

Nondeterministic finite-state automata

NFA.

e may have O, 1, or more transitions for each input symbol

* may have e-fransitions (move to another state without reading input)

e accept if any sequence of transitions leads to accept state

Ex: set of strings that do not contain 110

b—,

Q9
Gy

convention:
unlabelled arrows.
are ¢ - transitions

inset: 111, 00011, 101001011

not in set: 110, 00011011, 00110

Simulating an NFA

How to simulate an NFA? Maintain set of all possible states that NFA
could be in after reading in the first i symbols.

Implication of proof of Kleene's theorem: RE -> NFA -> DFA

Basic plan for GREP (revised)
e build NFA from RE

e simulate NFA with text as input
e give up on linear-time guarantee

NFA Simulation

Qe
3!

41

©

1011

=)

o
0
B [O]

A

=)
°
(=t

> accept

O~

An NFA trace

43

all states reachable
after reading i symbols

NFA Representation

possible transitions on
reading (i+1)st symbol c

A 0»0/ .

y
4
V.

possible null transitions
before reading next symbol

One step in simulating an NFA

all states reachable
after reading i+1 symbols

NFA representation. Maintain several digraphs, one for each symbol in

the alphabet, plus one for ¢.

e-graph

® Ccé’“@

:
Q_o

C

0-graph

1-graph

44

42

NFA: Java Implementation

public class NFA

{
private int START = 0; // start state
private int ACCEPT = 1; // accept state
private int N = 2; // number of states
private String ALPHABET = "01"; // RE alphabet
private int EPS = ALPHABET.length(); // symbols in alphabet
private Digraph[] G;
public NFA(String re)
{
G = new Digraph[EPS + 1];
for (int i = 0; i <= EPS; i++)
G[i] = new Digraph();
build(0, 1, re);
}
private void build(int from, int to, String re) { }
public boolean simulate(Tape tape) {1}
}

NFA Simulation: Java Implementation

public boolean simulate (Tape tape)

45

{
SET<Integer> pc = G[EPS].reachable (START); < sfafesreachable from
start by e-transitions
while (!tape.isEmpty())
{
char ¢ = tape.read();
int i = ALPHABET.indexOf (c); <«—— all possible states after
SET<Integer> next = G[i] .neighbors (pc) ; reading character c from tape
} pc = G[EPS].reachable (next) ; <« follow e-transitions
for (int state : pc)
if (state == ACCEPT) return true; -— check whether
return false; in accept state at end
}

47

NFA Simulation

How to simulate an NFA?

¢ Maintain a seT of all possible states that NFA could be in after
reading in the first i symbols.

¢ Use pigraph adjacency and reachability ops to update.

next = neighbors states reachable

pe of pcinGlc] from next in G[¢] updated pe
74. . o °
° ,
° | x 3 \g’&b o © b
/f ° i ° |
° °] 4 ®
C

// Mo y ‘4 / ° © /

all states reachable
after reading i symbols

possible transitions on possible null transitions all states reachable
reading (i+1)st symbolc before reading next symbol after reading i+1 symbols

Converting from an RE to an NFA: basic transformations

Use generalized NFA with full RE on trasitions arrows

e start with one transition having given RE

e remove operators with transformations given below

e goal: standard NFA (all single-character or epsilon-transitions)

start
concatenation closure

|

_,‘__,

union

)

)

OO

«eﬁ@

46

48

Converting from an RE to an NFA example: ab* | ab* NFA Construction: Java Implementation

private void build(int from, int to, String re)

{

int or = re.indexOf('|"');

/3 if (re.length() == 0) G[EPSILON].addEdge (from, to);
ab* | a*b ab* a*b G)\ a*b else if (re.length() == 1)
{ single char
k J b* char ¢ = re.charAt(0);
N\ for (int i = 0; i < EPSILON; i++)
if (c == ALPHABET.charAt(i) || ¢ == '."
@ G[i] .addEdge (from, to);
}

else if (or != -1)
union

build(from, to, re.substring(0, or));
build(from, to, re.substring(or + 1));

}

_ & \ else if (re.charAt(l) == '*')
{ closure

a
/ ma G[EPSILON] .addEdge (from, N);
J build(N, N, re.substring(0, 1));

e) build (N++, to, re.substring(2));
/ﬁ /-\ /-\ o else concatenation
b b b p {
_) b build(from, N, re.substring(0, 1));

i ’

build (N++, to, re.substring(l));

}
o }

Grep running time Industrial-strength grep implementation
Input. Text with N characters, RE with M characters. To complete the implementation,
¢ Deal with parentheses.
Claim. The number of edges in the NFA is at most 2M. e Extend the alphabet.
e Single character: consumes 1 symbol, creates 1 edge. e Add character classes.
e Wildcard character: consumes 1 symbol, creates 2 edges. e Add capturing capabilities.
¢ Concatenation: consumes 1 symbols, creates O edges. ¢ Deal with meta characters.
e Union: consumes 1 symbol, creates 1 edges. e Extend the closure operator.
e Closure: consumes one symbol, creates 2 edges. ¢ Error checking and recovery.

¢ Greedy vs. reluctant matching.
NFA simulation. O(MN) since NFA has 2M transitions

¢ bottleneck: 1 graph reachability per input character
e can be substantially faster in practice if few e-transitions
NFA construction. Ours is O(M?) but not hard to make O(M).

Surprising bottom line:
Worst-case cost for grep is the same as for elementary exact match!

& S

re.charat(1)

Regular expressions in Java (revisited)

RE pattern matching is implemented in Java's Pattern and Matcher classes

Ex: Harvesting. Print substrings of input that match re

import java.util.regex.Pattern; .

import java.util.regex.Matcher; compile () createsa
Pattern (NFA) from RE

public class Harvester

! i 1 i : ; matcher () creates a
public static void main(String[] args) Matcher (NFA simulator)

{ X from NFA and text
String re
In in
String input

args[0];
new In(args[1]);

in.readall() ;
Pattern pattern = Pattern.compile ; £ind () looks for
Matcher matcher

pat:W the next match
while (matcher.find())

System.out.println (matcher.group()) je————— 9¥OUP () refurns
} the substring most

} recently found by £ind ()

% java Harvester "gcg(cggl|agg)*ctg" chromosomeX.txt

gcgeggeggeggeggeggetg harvest patterns

gcgetg from DNA
gegetg

gegcggeggegg gctg

% java Harvester "http://(\\w+\\.)*(\\w+)" http://www.cs.princeton.edu harvest links
http://www.prin 2] from website

http://www.google.com 53

Algorithmic complexity attacks

Warning. Typical implementations do not guarantee performance!

grep, Java, Per|

java Validate " (alaa)*b" 1.6 seconds
java Validate " (alaa)*b" 3.7 seconds
java Validate " (alaa)*b" 9.7 seconds
java Validate " (al|aa)*b" 23.2 seconds
java Validate "(al|aa)*b" a a 62.2 d
java Validate "(al|aa)*b" a aaaaa aaaaa aaaaaaaac 161.6 d

SpamAssassin regular expression.

java RE "[a-z]+Q@[a-z]+([a-z\.]+\.)+[a-z]+" spammer@x..............couuvunn

¢ Takes exponential time.
e Spammer can use a pathological email address to DOS a mail server.

55

Typical application: Parsing a data file

Example. NCBI genome file, ...

LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003
DEFINITION Ornithorhynchus anatinus clone CLM1-393H9,
ACCESSION AC146846

KEYWORDS HTG; HTGS_PHASE2; HTGS_DRAFT.

SOURCE Ornithorhynchus anatinus (platypus)

ORIGIN

1 tg ttgaccgtge tg gtacggtgtt agggagccac
61 g // a
121 g g ta
128101 tg
String regexp = "[1*[0-9]1+([actg]*).*";

Pattern pattern = Pattern.compile (regexp) ;
In in = new In(filename) ;
while (!'in.isEmpty())

{
String line = in.readLine();
Matcher matcher = pattern.matcher (line);
if (matcher.find())
{
String s = matcher.group(l) .replaceAll (" ", "R);
}
} replace this RE with this string

the part of the match delimited
by the first group of parentheses 54

Not-so-regular expressions

Back-references.
* \1 notation matches sub-expression that was matched earlier.
e Supported by typical RE implementations.

java Harvester "\b(.+)\1\b" dictionary.txt
beriberi LN
couscous word boundary

Some hon-regular languages.

* set of strings of the form ww for some string w: beriberi.

e set of bitstrings with an equal number of Os and 1s: 01110100.
¢ set of Watson-Crick complemented palindromes: atttcggaaat.

Remark. Pattern matching with back-references is intractable.

Context Summary of pattern-matching algorithms

Abstract machines, languages, and nhondeterminism.
* basis of the theory of computation o Implement exact pattern matching by DFA simulation (KMP).
* intensively studied since the 1930s * REs are a powerful pattern matching tool.

* basis of programming languages * Implement RE pattern matching by NFA simulation (grep).

Programmer:

Compiler. A program that translates a program to machine code.

Theoretician:
* KMP string = DFA. o RE is a compact description of a set of strings.
* grep RE = NFA. » NFA is an abstract machine equivalent in power to RE.
e javac Javalanguage = Java byte code.

¢ DFAs and REs have limitations.

You: Practical application of core CS principles.

pattern string RE program Example of essential paradigm in computer science.
¢ Build intermediate abstractions.

compiler output DFA NFA byte code * Pick the right ones!
* Solve important practical problems.
simulator DFA simulator NFA simulator JVM

parser unnecessary check if legal check if legal

57

