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Exact pattern matching Brute-force exact pattern match

Problem:

Find first match of a pattern of length M in a text stream of length N. REEP [FRAC G € CTE S (USRI,
T

o

e
pattern typically N > M n e e d 1
n e e d 1 e M:=6 4

n e e 1 e
text n e e d 1 e
i na h ay s t ac k a n e e d 1l e i n a N=21 n e e d 1 e
n e e d 1 e
Applications. noe e d 1 e
* parsers. noe e d 1o
. n e e d 1 e
* spam filters. . s . )
d' . | Ib . 1{>ubl1c static int search(String pattern, String text) n e e d 1 e
L]
|9|TG ibraries. int M = pattern.length(); n e € d 1 <
® screen scrapers. int N = text.length(); n e e d 1 e
¢ word processors. for (int i = 0; i <N - M; i++)
. (
e web search engines. int 3;
. for (j =0; jJ < M; j++)
* natural language processing. if (text.charAt(i+j) !'= pattern.charAt(3))
break;
* computational molecular biology. , (=) retusn £ <— patfern start index i fext
e feature detection in digitized images. return -1; <— not found

}



Brute-force exact pattern match: worst case

Brute-force algorithm can be slow if text and pattern are repetitive
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but this situation is rare in typical applications

text length N

MN char compares

pattern length M

Hence, the indexof () method in Java's string class uses brute-force

Algorithmic challenges in pattern matching

Brute-force is not good enough for all applications

Theoretical challenge: Linear-time guarantee. <— fundamental algorithmic problem

Practical challenge: Avoid backup in text stream. <— oftennoroom or time to save text
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Exact pattern matching in Java

Exact pattern matching is implemented in Java's String class
s.indexOf (t, i): index of first occurrence of pattern t

in string s, starting at offset i.

Ex: Screen scraping. Exact match to extract info from website

public class StockQuote

{

public static void main(String[] args)

{

String name =
In in = new In
String input =
int start =
int from =
int to =
String price =

"http://finance.yahoo.com/q?s=";
(name + args[0]);
in.readAll() ;
input.indexOf ("Last Trade:", 0);
input.indexOf ("<b>", start);
input.indexOf ("</b>", from);
input.substring(from + 3, to);

System.out.println(price) ;

% java StockQuote goog
688.04

% java StockQuote msft
33.75

http://finance.yahoo.com/q?s=goo!
<tr>
<td class= "yfnc_tableheadl"
width= "48%">
Last Trade:
</td>
<td class= "yfnc_tabledatal">
<big><b>688.04</b></big>
</td></tr>
<td class= "yfnc_tableheadl"
width= "48%">
Trade Time:
</td>
<td class= "yfnc_tabledatal">




Knuth-Morris-Pratt (KMP) exact pattern-matching algorithm

Classic algorithm that meets both challenges
e linear-time guarantee
* no backup in text stream

Don Knuth Jim Morris  Vaughan Pratt

Basic plan (for binary alphabet)
e build DFA from pattern
* simulate DFA with text as input

X pattern in fext

text DFA o

a a a b a a b a a a b———> for

pattern %‘
pattern NOT

aabaaa in text

No backup in a DFA
Linear-time because each step is just a state change

Knuth-Morris-Pratt DFA simulation

b b
l.a_>2_b_,3.a_>4.a_>5_a_>.
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Knuth-Morris-Pratt DFA example

One state for each pattern character
e Match input character: move from i to i+1
e Mismatch: move to previous state

DFA
for
pattern

aabaaa

How to construct? Stay tuned

Knuth-Morris-Pratt DFA simulation

O Oa b
4 aaabaabaaab
f :
0 1A, 2 2 e
O Oa b

p O b
3 aaabaabaaab
O—a—>h 1'a—>2\>-h—>a 3a*>4-‘—>z-a—>.

b
accept! Oh Oa \—/b
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Knuth-Morris-Pratt DFA simulation KMP implementation

When in state i: DFA representation: a single state-indexed array next[]
¢ have found match in i previous input chars ¢ Upon character match in state j, go forward to state j+1.
e that is the longest such match e Upon character mismatch in state j, go back to state next[3].

Ex. End in state 4 iff text ends in aaba.
Ex. End in state 2 iff text ends in aa (but not aabaa or aabaaa).

DFA 0 0 3 0 0 3

for

only need to
pa’r’rern E— next 0o o0 2 0 0 3 <«

store mismatches

aabaaa
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KMP implementation Knuth-Morris-Pratt: Iterative DFA construction
Two key differences from brute-force implementation: DFA for first i states contains the information needed to build state i+l
e Text pointer i never decrements
¢ Need to precompute next[] table (DFA) from pattern. Ex: given DFA for pattern aabaaa.

how to compute DFA for pattern aabaaab ?

Key idea
int j = 0; ¢ on mismatch at 7th char, need to simulate 6-char backup
for (int i = 0; i < N; i++4) . .
( e previous 6 chars are known (abaaaa in example)
if (t.charAt(i) == p.charAt(j)) j++; // match o 6-state DFA (known) determines next statel
else j = next[j]; // mismatch
if (j == M) return i - M + 1; // found 0 abaaaa
} Keep track of DFA state for start at 2nd char of pattern 1 2baaaa
1. o . 0 ab
return -1; // not found  compare char at that position with next pattern char 1 apagze
. . . 2 an
T — ¢ match/mismatch provides all needed info ; opzz2e
2 abaaaa
mb
ba 12 A2\)" 3 -2 4 -2 5 =2 @
b 2 vb



KMP iterative DFA construction: two cases

Let X be the next state in the simulation and j the next state to build.

If p[X] and p[j] match, copy and increment
next[X];

next[]j]
X+1

X

DFA for
aabaaab

DFA for
aabaaaa

0= 12 2 3 -2 4 -2 5 =2 6 b ®
v M
If pIX] and p[3] mismatch, do the opposite 6 12 3 45 6
next[j] = X+1; pll] a a b a a a a
X = next[X]; next[] 0 0 2 0 0 3 3
, 4 i
state fora b a a a a—>»x 3
0= 12 2 2 3 -2 4 -2 5 -2 a PY

mb
b

Knuth-Morris-Pratt DFA construction

o

DFA

o

¢

state fora b a a a b

0 1 2 3 4 5 6
pll a a b a a a b
next[] 0 0 2 0 0 3 2
r o4 t
X X bl
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Knuth-Morris-Pratt DFA construction examples

ex:aabaaab

next[]
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ex:abbabbb
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X: current state in simulation
compare p[j] with p[X]

match: copy and increment

mismatch next[j] = next[X];
X=X+ 1;
mismatch: do the opposite
next[j] = X + 1;

2 X = next[X];
b mismatch
1
t
23
b a match
10

T
234
bab match
101
2345
babb match
1011
23456
b a b b b mismatch
10114

N |

X: current state in simulation
compare p[j] with p[X]

match: copy and increment
next[j] = next[X];
X=X+1;
mismatch: do the opposite
next[j] = X + 1;
X = next[X];
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DFA construction for KMP: Java implementation

Takes time and space proportional to pattern length.

int X = 0;

int[] next = new int[M];

for (int j = 1; j < M; j++4)
{
if (p.charAt(X) == p.charAt(j))
{
next[j] = next[X];
X=X+1;
}
else
{
next[j] = X + 1;
X = next[X];
}
}

DFA Construction for KMP (assumes binary alphabet)



Optimized KMP implementation

Ultimate search program for any given pattern:
one statement comparing each pattern character to next

match: proceed o next statement

mismatch: go back as dictated by DFA
translates to machine language (three instructions per pattern char)

int kmpsearch(char t[])

{

int i = 0;

s0: if
sl: if
s2: if
s3: if
s4: if
s5: if
s6: if
s7: if
return

(t[i++]
(t[i++]
(t[i++]
(t[i++]
(t[i++]
(t[i++]
(t[i++]
(t[i++]
i-8;

1= vav)
1= 'a')
1= 'b')
1= 'a')
1= vav)
'= 'a')
1= 'b')
'= 'b")

T

goto
goto
goto
goto
goto
goto
goto
goto

pattern[]

Lesson: Your computer is a DFA!

Exact pattern matching: other approaches

s0;

s0;

SZ; P

s0; assumes pattern is in text
S0~ (o/w use sentinel)
s3;

s2;

s4;

next[]

Rabin-Karp: make a digital signature of the pattern

¢ hashing without the table
* linear-time probabilistic guarantee

e plus: extends to 2D patterns
e minus: arithmetic ops much slower than char comparisons

Boyer-Moore: scan from right to left in pattern
main idea: can skip M text chars when finding one not in the pattern

needs additional KMP-like heuristic

plus: possibility of sublinear-time performance (~ N/M )
used in Unix, emacs

pattern s y

fext a a

z

a

z

Yy 9 Y

b a
g

a b a

a
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KMP summary

General alphabet

* more difficult

* easy with next[][] indexed by mismatch position, character

e KMP paper has ingenious solution that is not difficult to implement
[ build NFA, then prove that it finishes in 2N steps ]

Bottom line: linear-time pattern matching is possible (and practical)

Short history:
e inspired by esoteric theorem of Cook
[ linear time 2-way pushdown automata simulation is possible ]
e discovered in 1976 independently by two theoreticians and a hacker
Knuth: discovered linear time algorithm
Pratt: made running time independent of alphabet
Morris: trying to build a text editor.
e theory meets practice

Exact pattern match cost summary

Cost of searching for M-character pattern in N-character fext

algorithm typical worst-case
brute-force 1.1 N char compares * M N char compares
Karp-Rabin 3N arithmetic ops 3N arithmetic ops
KMP 1.1 N char compares * 2N char compares

Boyer-Moore ~N/M char compares t 3N char compares

1 assumes appropriate model
F randomized



» RE pattern matching
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RE pattern matching: applications

Test if a string matches some pattern.

* Process natural language.

® Scan for virus signatures.

* Search for information using Google.

* Access information in digital libraries.

* Retrieve information from Lexis/Nexis.

* Search-and-replace in a word processors.

* Filter text (spam, NetNanny, Carnivore, malware).

* Validate data-entry fields (dates, email, URL, credit card).

* Search for markers in human genome using PROSITE patterns.

Parse text files.

* Compile a Java program.

e Crawl and index the Web.

* Read in data stored in ad hoc input file format.

* Automatically create Java documentation from Javadoc comments.

27

Regular-expression pattern matching

Exact pattern matching:
Search for occurrences of a single pattern in a text file.

Regular expression (RE) pattern matching:
Search for occurrences of one of multiple patterns in a text file.

Ex. (genomics)

e Fragile X syndrome is a common cause of mental retardation.

¢ human genome contains triplet repeats of cgg or agg
bracketed by gcg at the beginning and ctg at the end

¢ number of repeats is variable, and correlated with syndrome

e use regular expression to specify pattern: gcg(cgglagg) *ctg

* do RE pattern match on person's genome to detect Fragile X

pattern (RE) gcg(cgglagg) *ctg

fext gecggegtgtgtgegagagagtgggtttaaagetggcgeggaggeggetggegeggaggetg

Regular expression examples

A regular expression is a notation to specify a set of strings.

concatenation aabaab aabaab every other string
ildcard s.u.u cumulus succubus
wildcar s R R jugulum tumultuous
. aa .
union aa | baab baab every other string
. aa ab
closure ab*a abbba ababa
aaaab .
a(a|b)aab abaab every other string
parentheses
a aa
*
(ab)*a ababababa abbba



Regular expression examples (continued)

Notation is surprisingly expressive

-*spb.* raspberry subspace
contains the trigraph spb crispbread subspecies
a* | (a*ba*ba*ba*)* bbb b
" . aaa bb
number of b's is a multiple of 3 111y oppaa baabbbaa
-*¥0.... 1000234 111111111
fifth to last digit is 0 98701234 403982772
gcg (cgg|agg) *ctg gcgetg gegegg
gcgeggetg cggcggeggetg

fragile X syndrome indicator gcgcggaggety  gegeaggetg

and plays a well-understood role in the theory of computation

29

Regular expressions in Java

RE pattern matching is implemented in Java's String class
e basic: match () method
e various other methods also available (stay tuned)

Ex: Validity checking. Is input in the set described by the re?

public class Validate
{
public static void main(String[] args)
{
String re args[0];
String input args[1l];
System.out.println(input.matches(re)) ;

i
% java Validate "..00..00." bloodroot e=d help el "9
true crosswords?

% java Validate "[$_A-Za-z][$_A-Za-2z0-9]*" identl23 <«———— legal Java identifier
true

% java Validate "[a-z]+@([a-z]+\.)+(edu|com)" rs@cs.princeton.edu<— valid email address
true (simplified)

% java Validate "[0-9]{3}-[0-9]{2}-[0-9]{4}" 166-11-4433 <«—— Social Security number
true

Generalized regular expressions

Additional operations are often added

e Ex: [a-e]+ is shorthand for (alblcld|e) (alblc|d|e)*
e for convenience only

* need fo be alert for non-regular additions (Ex: Java /)

abcde ade
one or more a(bc) +de abebede bede
R I word camelCase
character classes [A-Za-z] [a-z] Capitalized  4illegal
08540-1321 111111111
exactly k [0-9145}-[0-91{4}  19072-5541  166-54-111
negations [*aeiou] {6} rhythm decade

Regular expressions in other languages

Broadly applicable programmer's tool.

e originated in UNIX in the 1970s

* many languages support extended regular expressions

e built into grep, awk, emacs, Perl, PHP, Python, JavaScript

print all lines containing NEWLINE which

rep NEWLINE */*_ java . . . .
grep J occurs in any file with a . java extension

egrep '“[qwertyuiop]*[zxcvbnm]*$' dict.txt | egrep '........... '

PERL. Practical Extraction and Report Language.

replace all occurrences of £rom

perl -p -i -e 's|from|to|g' input.txt N N N
with to in the file input. txt

perl -n -e 'print if /~[A-Za-z][a-z]*$/' dict.txt

do for each line



Regular expression caveat Can the average web surfer learn to use REs?

Writing a RE is like writing a program. Google. Supports * for full word wildcard and | for union.
¢ need fo understand programming model
e can be easier fo write than read < B B8 Yon G Ruknuks Lk idon o0
* can be difficult to debug
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D

Web Images Groups News Froogle"* more »

GOUgle ["the *of seville” Search | Aduneed Seach

Web Results 1 - 10 of about 60,100 for * the * of seville™. (0.31 seconds)

" H H News results for " the * of seville" - \iew all the latest headlines
Sometimes you have a programming problem No;)era Barber of Seville/ Marriage of Figaro - Financial Times - 3 hours ago
and it seems like the best solution is to use
. . " Information about the City of Sevilla {Seville), Andalucia ...
regular expressions; now you have two problems. . Post a request on our Notics Bosrd. Promate your business on this website;

emaM sales@andalucia.com. Information about the Cif
www. andalucia. com/cities/sevilla.htm - 22k - Cache

Universidad de Sevilla - [ Translate this page |

INICIO | ESTUDIANTES | PROFESORES | PAS | INDICES | BUSCADOR | COMENTARIOS,
Complemento Autonémico, Estatuto, Espacio Europeo de Educacion ...

whwrw.us.es/ - 15k - Apr Similar pages

CATHOLIC ENCYCLOPEDIA: St. Isidore of Seville

.. On the death of Leander, Isidore succeeded to the See of Seville. His long incumbency
to this office was spent in a period of disintegration and transition. ...

www.newadvent. org/cathen/08186a. htm - 32k - Cached - Similar pages

The Trickster of Seville and the Stone Guest
Commentary and analysis of Tirso de Molina's “The Trickster of Seville", one of the seventeenth century's.
waww. modlang.fsu. edufdarstitrickster. htm - Similar pages

=z iB R <= e Adblock /
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Can the average TV viewer learn to use REs? Can the average programmer learn to use REs?

0 5 . . . Perl Rl lid RFC822 il Add Reference: http: ex- ~pdw/Mail-RFC822-Addre: |
TiVo. WishList has very limited pattern matching. erl RE for Valid RF Email Addresses rence B § . !
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A\r\n)2[ \t])*) (?:\. (2:\r\n) 2[ \£])*(2: [*()<>@, ; :\\".\[\] \000-\031]+(?: (?:(
2:\r\n)?[ \t])+I\ZI("—[\["(}<>@n AN T2 EN\S\NT I | (22 (2:\r\n) 2 [
\E1))*" (2: (2:\r\n) 2[ \t])*))*e( \r\n) 2[ \t])*(2: [~ ()<>@,;:\\".\[\] \000-\0
(2:(2:\x\n) 20 \£D)+I\Z] (>=[\[" O<>@, ; :\\".NINTT) ) INDCIANINIAENNT 1AL ) *\
\z\n) 2[ \t£1)*) (2:\. (2: (2:\2\n) 2[ \£])*(2: [~ ()<>@,;:\\".\[\] \000-\031]+
2:\r\n) ?2[ \tD)+I\Z] (?=[\[" O<>€, ; :\\".\NINT1)) INDCIANININE\NNT 1NN L) *\] (2

A" AT\ \000-\031]+( (?:(?:\r\n)?[ \tD)+I\z

2t

Using * in WishList Searches. To search for similar words in Keyword and Title
WishList searches, use the asterisk (*) as a special symbol that replaces the endings of
words. For example, the keyword A/RP* would find shows containing “airport,”
“airplane,” “airplanes,” as well as the movie “Airplane!” To enter an asterisk, press the
SLOW ( @ ) button as you are spelling out your keyword or title.

“Implementing validation
with regular expressions
I S somewhqf pushes.The limits
\r\n)2[ \t])*))*) of what it is sensible to do
AT 2L AL+ with regular expressions,

(2:\r\n)2[ \£])*(2: [ () <> ?
["(O<>@,;:\\". \[\]]))I\[([ ANNIAE\NT 1NN L) *\] (22 (2
2:\z\m) 21 NE1) %3 (31 [F 058, 1\ AI\] 000~ \0311+(" (2
e . (=N 0<@, A\ AN 1 (2 L\ \EWT AL | (23 (2:\x\n) 21 \e])) *" (
example above, or if you're just not sure how something is spelled. Pop quiz: is it \R) 2L \E1)*) (2:\. (2: (2:\z\n) 2[ \t])*(2: ['(,O@ RN [\T r\’ooo_\onlﬂ?_ although Per! copes well.”
T L L 0n ce the kev CIST* . » it! Ar\m) 20 \eD+INZ] (221N [ 08,5\ AT | (2: 1 A\EWTIN. (22 (2:\2\R) 2
irresistible” or “irresistable?” Use the keyword /RRESIST* and don’t worry about it! 31 (31N eAm 2L NED) %)) 28 (31 (31N 21 A1) % (31 1~ <583 1\A" AL\ \00O- \031
1 ( >@, 7\ AT\ INLOANININENT 1\ L) $\]
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r\n)"[ \ED ) > (2: (2 : S\\"ATA] \000-\031]+(2: (?

The asterisk can be helpful when you're looking for a range of similar words. as in the

Two things to note about using the asterisk:

« Itcan only be used at a word’s end: it cannot be used to omit letters at the beginning or
in the middle of a word. (For example, A/R*NE or *PLANE would not work.)

Y13 a0 300 A AL A000N03TTH
. . "] (2
Reference: page 76, Hughes DirectTV TiVo manual NN '\\[\‘[QR} RO NI
1) A DRI 1\ ) 9] (2 (3100\m) 21 \E1) $)) %1 (21 £ 0<28, -\ A[A] \0b0-
\03L1+(2: (2: (2:\x\n) 20 \E1)+1\Z1 (2=[\[" 0<>€, 7 :\\".\[\I1)) 1" (2: [A\"\e\WT 1\ 1 ¢
2: (2:\r\n) 21 \&]))*" (2 :(2:\r\n) 2 [ \t])*(2:@
S\ TN \000-\0311+( =\ [ (<>, ;1 \\"
AR L) R\ (22 2:\r\n) 2[ \£])*( N i
? [0\ AN D) LA noneles
(2:\z\n) 20 \ED)* (2: [ ()<>8, 7 :\\".\ l

2:\r\n)?[ \“-])+|\ZI("’ N[ O<>@, 7 \\". \[\1]))I\[([ AYAVAY

& TWTIN R (2 (2:A5\n) 20 \&D)*) (2:\. (21 (
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Deterministic finite-state automata

DFA review.

int pc = 0;
while (!tape.isEmpty())
{
boolean bit = tape.read();
if (pc == 0) { if ('bit) pc = 0; else pc
else if (pc == 1) { if (!'bit) pc = 1; else pc

nwnn
NP
e

else if (pc == 2) { if (!bit) pc 2; else pc 0;
}
if (pc == 0) System.out.println("accepted");
else System.out.println("rejected") ;
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GREP implementation: basic plan

Overview is the same as for KMP !
e linear-time guarantee
* no backup in text stream

Basic plan for GREP
e build DFA from RE
e simulate DFA with text as input

DFA
for
pattern

text

actgtgcaggaggcggcgeggeggaggaggcetggega >

Ken Thompson

yx/’

"ejecy

gcg (cgglagg) *ctg

No backup in a DFA
Linear-time because each step is just a state change

Duality

RE. Concise way to describe a set of strings.

DFA. Machine to recognize whether a given string is in a given set.

Kleene's theorem.

pattern in fext

pattern NOT
in fext

e for any DFA, there exists a RE that describes the same set of strings
e for any RE, there exists a DFA that recognizes the same set of strings

Ex: set of strings whose number of 1's is a multiple of 3
DFA

RE °
0* | (0*10*10*10%*)*

Good news:  The basic plan works

(build DFA from RE and run with text as input)

Bad news :
Consequence: We need a smaller abstract machine.

The DFA can be exponentially large (can't afford to build it).
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Nondeterministic finite-state automata

NFA.

e may have O, 1, or more transitions for each input symbol

* may have e-fransitions (move to another state without reading input)

e accept if any sequence of transitions leads to accept state

Ex: set of strings that do not contain 110

b—,

Q9
Gy

convention:
unlabelled arrows.
are ¢ - transitions

inset: 111, 00011, 101001011

not in set: 110, 00011011, 00110

Simulating an NFA

How to simulate an NFA? Maintain set of all possible states that NFA
could be in after reading in the first i symbols.

Implication of proof of Kleene's theorem: RE -> NFA -> DFA

Basic plan for GREP (revised)
e build NFA from RE

e simulate NFA with text as input
e give up on linear-time guarantee

NFA Simulation

Qe
3!
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all states reachable
after reading i symbols

NFA Representation

possible transitions on
reading (i+1)st symbol c

A 0»0/ .

y
4
V.

possible null transitions
before reading next symbol

One step in simulating an NFA

all states reachable
after reading i+1 symbols

NFA representation. Maintain several digraphs, one for each symbol in

the alphabet, plus one for ¢.

e-graph

® Ccé’“@

:
Q_o

C

0-graph

1-graph
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NFA: Java Implementation

public class NFA

{
private int START = 0; // start state
private int ACCEPT = 1; // accept state
private int N = 2; // number of states
private String ALPHABET = "01"; // RE alphabet
private int EPS = ALPHABET.length(); // symbols in alphabet
private Digraph[] G;
public NFA(String re)
{
G = new Digraph[EPS + 1];
for (int i = 0; i <= EPS; i++)
G[i] = new Digraph();
build(0, 1, re);
}
private void build(int from, int to, String re) { }
public boolean simulate(Tape tape) {1}
}

NFA Simulation: Java Implementation

public boolean simulate (Tape tape)

45

{
SET<Integer> pc = G[EPS].reachable (START); < sfafesreachable from
start by e-transitions
while (!tape.isEmpty())
{
char ¢ = tape.read();
int i = ALPHABET.indexOf (c); <«—— all possible states after
SET<Integer> next = G[i] .neighbors (pc) ; reading character c from tape
} pc = G[EPS].reachable (next) ; <« follow e-transitions
for (int state : pc)
if (state == ACCEPT) return true; -— check whether
return false; in accept state at end
}

47

NFA Simulation

How to simulate an NFA?

¢ Maintain a seT of all possible states that NFA could be in after
reading in the first i symbols.

¢ Use pigraph adjacency and reachability ops to update.

next = neighbors states reachable

pe of pcinGlc] from next in G[¢] updated pe
74. . o °
° ,
° | x 3 \g’&b o © b
/f ° i ° |
° ° ] 4 ®
C

// Mo y ‘4 / ° © /

all states reachable
after reading i symbols

possible transitions on possible null transitions all states reachable
reading (i+1)st symbolc  before reading next symbol  after reading i+1 symbols

Converting from an RE to an NFA: basic transformations

Use generalized NFA with full RE on trasitions arrows

e start with one transition having given RE

e remove operators with transformations given below

e goal: standard NFA (all single-character or epsilon-transitions)

start
concatenation closure

|

_,‘__,

union

)

)

OO

«eﬁ@
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Converting from an RE to an NFA example: ab* | ab* NFA Construction: Java Implementation

private void build(int from, int to, String re)

{

int or = re.indexOf('|"');

/3 if (re.length() == 0) G[EPSILON].addEdge (from, to);
ab* | a*b ab* a*b G)\ a*b else if (re.length() == 1)
{ single char
k J b* char ¢ = re.charAt(0);
N\ for (int i = 0; i < EPSILON; i++)
if (c == ALPHABET.charAt(i) || ¢ == '."
@ G[i] .addEdge (from, to);
}

else if (or != -1)
union

build(from, to, re.substring(0, or));
build(from, to, re.substring(or + 1));

}

_ & \ else if (re.charAt(l) == '*')
{ closure

a
/ ma G[EPSILON] .addEdge (from, N);
J build(N, N, re.substring(0, 1));

e ) build (N++, to, re.substring(2));
/ﬁ /-\ /-\ o else concatenation
b b b p {
\_) b build(from, N, re.substring(0, 1));

i ’

build (N++, to, re.substring(l));

}
o }

Grep running time Industrial-strength grep implementation
Input. Text with N characters, RE with M characters. To complete the implementation,
¢ Deal with parentheses.
Claim. The number of edges in the NFA is at most 2M. e Extend the alphabet.
e Single character: consumes 1 symbol, creates 1 edge. e Add character classes.
e Wildcard character: consumes 1 symbol, creates 2 edges. e Add capturing capabilities.
¢ Concatenation: consumes 1 symbols, creates O edges. ¢ Deal with meta characters.
e Union: consumes 1 symbol, creates 1 edges. e Extend the closure operator.
e Closure: consumes one symbol, creates 2 edges. ¢ Error checking and recovery.

¢ Greedy vs. reluctant matching.
NFA simulation. O(MN) since NFA has 2M transitions

¢ bottleneck: 1 graph reachability per input character
e can be substantially faster in practice if few e-transitions
NFA construction. Ours is O(M?) but not hard to make O(M).

Surprising bottom line:
Worst-case cost for grep is the same as for elementary exact match!

& S

re.charat(1)



Regular expressions in Java (revisited)

RE pattern matching is implemented in Java's Pattern and Matcher classes

Ex: Harvesting. Print substrings of input that match re

import java.util.regex.Pattern; .

import java.util.regex.Matcher; compile () createsa
Pattern (NFA) from RE

public class Harvester

! i 1 i : ; matcher () creates a
public static void main(String[] args) Matcher (NFA simulator)

{ X from NFA and text
String re
In in
String input

args[0];
new In(args[1]);

in.readall() ;
Pattern pattern = Pattern.compile ; £ind () looks for
Matcher matcher

pat:W the next match
while (matcher.find())

System.out.println (matcher.group()) je————— 9¥OUP () refurns
} the substring most

} recently found by £ind ()

% java Harvester "gcg(cggl|agg)*ctg" chromosomeX.txt

gcgeggeggeggeggeggetg harvest patterns

gcgetg from DNA
gegetg

gegcggeggegg gctg

% java Harvester "http://(\\w+\\.)*(\\w+)" http://www.cs.princeton.edu harvest links
http://www.prin 2] from website

http://www.google.com 53

Algorithmic complexity attacks

Warning. Typical implementations do not guarantee performance!

grep, Java, Per|

java Validate " (alaa)*b" 1.6 seconds
java Validate " (alaa)*b" 3.7 seconds
java Validate " (alaa)*b" 9.7 seconds
java Validate " (al|aa)*b" 23.2 seconds
java Validate "(al|aa)*b" a a 62.2 d
java Validate "(al|aa)*b" a aaaaa aaaaa aaaaaaaac 161.6 d

SpamAssassin regular expression.

java RE "[a-z]+Q@[a-z]+([a-z\.]+\.)+[a-z]+" spammer@x..............couuvunn

¢ Takes exponential time.
e Spammer can use a pathological email address to DOS a mail server.
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Typical application: Parsing a data file

Example. NCBI genome file, ...

LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003
DEFINITION Ornithorhynchus anatinus clone CLM1-393H9,
ACCESSION AC146846

KEYWORDS HTG; HTGS_PHASE2; HTGS_DRAFT.

SOURCE Ornithorhynchus anatinus (platypus)

ORIGIN

1 tg ttgaccgtge tg gtacggtgtt agggagccac
61 g // a
121 g g ta
128101 tg
String regexp = "[ 1*[0-9]1+([actg ]*).*";

Pattern pattern = Pattern.compile (regexp) ;
In in = new In(filename) ;
while (!'in.isEmpty())

{
String line = in.readLine();
Matcher matcher = pattern.matcher (line);
if (matcher.find())
{
String s = matcher.group(l) .replaceAll (" ", "R);
}
} replace this RE with this string

the part of the match delimited
by the first group of parentheses 54

Not-so-regular expressions

Back-references.
* \1 notation matches sub-expression that was matched earlier.
e Supported by typical RE implementations.

java Harvester "\b(.+)\1\b" dictionary.txt
beriberi LN
couscous word boundary

Some hon-regular languages.

* set of strings of the form ww for some string w: beriberi.

e set of bitstrings with an equal number of Os and 1s: 01110100.
¢ set of Watson-Crick complemented palindromes: atttcggaaat.

Remark. Pattern matching with back-references is intractable.



Context Summary of pattern-matching algorithms

Abstract machines, languages, and nhondeterminism.
* basis of the theory of computation o Implement exact pattern matching by DFA simulation (KMP).
* intensively studied since the 1930s * REs are a powerful pattern matching tool.

* basis of programming languages * Implement RE pattern matching by NFA simulation (grep).

Programmer:

Compiler. A program that translates a program to machine code.

Theoretician:
* KMP  string = DFA. o RE is a compact description of a set of strings.
* grep RE = NFA. » NFA is an abstract machine equivalent in power to RE.
e javac Javalanguage = Java byte code.

¢ DFAs and REs have limitations.

You: Practical application of core CS principles.

pattern string RE program Example of essential paradigm in computer science.
¢ Build intermediate abstractions.

compiler output DFA NFA byte code * Pick the right ones!
* Solve important practical problems.
simulator DFA simulator NFA simulator JVM

parser unnecessary check if legal check if legal
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