
1

Minimum Spanning Trees

!weighted graph API

!cycles and cuts

!Kruskal’s algorithm

!Prim’s algorithm

!advanced topics

References:

 Algorithms in Java, Chapter 20
 http://www.cs.princeton.edu/introalgsds/54mst

2

23

10

21

 14

24

 16

 4

18

9

7

11

 8

5

6

Given. Undirected graph G with positive edge weights (connected).

Goal. Find a min weight set of edges that connects all of the vertices.

Minimum Spanning Tree

G

3

Given. Undirected graph G with positive edge weights (connected).

Goal. Find a min weight set of edges that connects all of the vertices.

weight(T) = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

Brute force. Try all possible spanning trees.

• Problem 1: not so easy to implement.

• Problem 2: far too many of them. VV-2 spanning trees on the complete
graph on V vertices [Cayley 1889]

23

21

 14

24

 16

 4

18

9

7

11

 8

5

6

10

Minimum Spanning Tree

4

Otakar Boruvka (1926).

• Electrical Power Company of Western Moravia in Brno.

• Most economical construction of electrical power network.

• Concrete engineering problem is now a cornerstone

problem-solving model in combinatorial optimization.

Otakar Boruvka

MST Origin

5

MST is fundamental problem with diverse applications.

• Network design.

telephone, electrical, hydraulic, TV cable, computer, road

• Approximation algorithms for NP-hard problems.

traveling salesperson problem, Steiner tree

• Indirect applications.

max bottleneck paths

LDPC codes for error correction

image registration with Renyi entropy

learning salient features for real-time face verification

reducing data storage in sequencing amino acids in a protein

model locality of particle interactions in turbulent fluid flows

autoconfig protocol for Ethernet bridging to avoid cycles in a network

• Cluster analysis.

Applications

6

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

Medical Image Processing

7http://ginger.indstate.edu/ge/gfx 8

Kruskal's algorithm. Consider edges in ascending order of weight.

Add to T the next edge unless doing so would create a cycle.

Prim's algorithm. Start with any vertex s and greedily grow a tree T

from s. At each step, add to T the edge of min weight that has exactly

one endpoint in T.

Proposition. Both greedy algorithms compute an MST.

“ Greed is good. Greed is right. Greed works. Greed
 clarifies, cuts through, and captures the essence of
 the evolutionary spirit. ” - Gordon Gecko

Two Greedy Algorithms

9

!weighted graph API

!cycles and cuts

!Kruskal’s algorithm

!Prim’s algorithm

!advanced topics

10

create an empty graph with V verticesWeightedGraph(int V)

public class WeightedGraph

insert edge einsert(Edge e)void

return an iterator over edges incident to vadj(int v)Iterable<Edge>

return the number of verticesV()int

return a string representationtoString()String

Weighted graph and Edge APIs

create an edge v-w with given weightEdge(int v, int w, double weight)

public class Edge implements Comparable<Edge>

return either endpointeither()int

return the endpoint that's not vother(int v)int

return the weightweight()double

return a string representationtoString()String

Edge abstraction needed for weights

Weighted graph client

11

iterate through all edges
(once in each direction)

for (int v = 0; v < G.V(); v++)
{
 for (Edge e : G.adj(v))
 {
 // edge v-w
 int w = e.other(v);
 }
}

create an empty graph with V verticesWeightedGraph(int V)

public class WeightedGraph

insert edge einsert(Edge e)void

return an iterator over edges incident to vadj(int v)Iterable<Edge>

return the number of verticesV()int

return a string representationtoString()String

Identical to Graph.java but use Edge adjacency sets instead of int.

12

public class WeightedGraph
{
 private final int V;
 private final SET<Edge>[] adj;

 public WeightedGraph(int V)
 {
 this.V = V;
 adj = (SET<Edge>[]) new SET[V];
 for (int v = 0; v < V; v++)
 adj[v] = new SET<Edge>();
 }

 public void addEdge(Edge e)
 {
 int v = e.either(), w = e.other(v);
 adj[v].add(e);
 adj[w].add(e);
 }

 public Iterable<Edge> adj(int v)
 { return adj[v]; }

}

Weighted graph data type

no parallel edges

13

public class Edge implements Comparable<Edge>
{
 private final int v, w;
 private final double weight;

 public Edge(int v, int w, double weight)
 {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int either()
 { return v; }

 public int other(int vertex)
 {
 if (vertex == v) return w;
 else return v;
 }

 public int weight()
 { return weight; }

 // See facing box for compare methods.

}

Weighted edge data type

// sorted by edge weight
public final static Comparator<Edge>
 BY_WEIGHT = new ByWeight();

private static class ByWeight
 implements Comparator<Edge>
{
 public int compare(Edge e, Edge f)
 {
 if (e.weight < f.weight) return -1;
 if (e.weight > f.weight) return +1;
 return 0;
 }
}

// sorted by edge endpoints
public int compareTo(Edge that)
{
 if (this.v < that.v) return -1;
 if (this.v > that.v) return +1;
 if (this.w < that.w) return -1;
 if (this.w > that.w) return +1;
 return 0;
}

14

!weighted graph API

!cycles and cuts

!Kruskal’s algorithm

!Prim’s algorithm

!advanced topics

15

MST. Given connected graph G with positive edge weights,

find a min weight set of edges that connects all of the vertices.

Def. A spanning tree of a graph G is a subgraph T that is

connected and acyclic.

Property. MST of G is always a spanning tree.

Spanning Tree

16

Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge

belonging to C. Then the MST does not contain f.

Cut property. Let S be any subset of vertices, and let e be the min

weight edge with exactly one endpoint in S. Then the MST contains e.

f
C

S

e is in the MST

e

f is not in the MST

Greedy Algorithms

17

Simplifying assumption. All edge weights we are distinct.

Cycle property. Let C be any cycle, and let f be the max weight edge

belonging to C. Then the MST T* does not contain f.

Pf. [by contradiction]

• Suppose f belongs to T*. Let's see what happens.

• Deleting f from T* disconnects T*. Let S be one side of the cut.

• Some other edge in C, say e, has exactly one endpoint in S.

• T = T* ! { e } " { f } is also a spanning tree.

• Since we < wf, weight(T) < weight(T*).

• Contradicts minimality of T*. !

f

e

S

Cycle Property

 MST T*

cycle C

18

Simplifying assumption. All edge weights we are distinct.

Cut property. Let S be any subset of vertices, and let e be the min weight

edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. [by contradiction]

• Suppose e does not belong to T*. Let's see what happens.

• Adding e to T* creates a (unique) cycle C in T*.

• Some other edge in C, say f, has exactly one endpoint in S.

• T = T* ! { e } " { f } is also a spanning tree.

• Since we < wf, weight(T) < weight(T*).

• Contradicts minimality of T*. !

f

 MST T*

e

S

cycle C

Cut Property

19

!weighted graph API

!cycles and cuts

!Kruskal’s algorithm

!Prim’s algorithm

!advanced algorithms

!clustering

20

Kruskal's algorithm. [Kruskal, 1956] Consider edges in ascending order

of weight. Add the next edge to T unless doing so would create a cycle.

3-5 1-7 6-7

0-2 0-7 0-1 3-4 4-5 4-7

3-5 0.18

1-7 0.21

6-7 0.25

0-2 0.29

0-7 0.31

0-1 0.32

3-4 0.34

4-5 0.40

4-7 0.46

0-6 0.51

4-6 0.51

0-5 0.60

Kruskal's Algorithm: Example

21

25%

50%

75%

100%

Kruskal's algorithm example

22

C

e

Proposition. Kruskal's algorithm computes the MST.

Pf. [case 1] Suppose that adding e to T creates a cycle C:

• e is the max weight edge in C (weights come in increasing order).

• e is not in the MST (cycle property).

Kruskal's algorithm correctness proof

23

w

v

e
S

Proposition. Kruskal's algorithm computes the MST.

Pf. [case 2] Suppose that adding e = (v, w) to T does not create a cycle:

• let S be the vertices in v’s connected component.

• w is not in S.

• e is the min weight edge with exactly one endpoint in S.

• e is in the MST (cut property). "

Kruskal's algorithm correctness proof

24

Q. How to check if adding an edge to T would create a cycle?

A1. Naïve solution: use DFS.

• O(V) time per (undirected) cycle check.

• O(E V) time overall.

Kruskal's algorithm implementation

25

Q. How to check if adding an edge to T would create a cycle?

A2. Use the union-find data structure from lecture 1 (!).

• Maintain a set for each connected component.

• If v and w are in same component, then adding v-w creates a cycle.

• To add v-w to T, merge sets containing v and w.

Case 2: add v-w to T and merge sets

v w

Case 1: adding v-w creates a cycle

v

w

Kruskal's algorithm implementation

Easy speedup: Stop as soon as there are V-1 edges in MST.

sort edges
by weight

greedily add
edges to MST

return to client iterable
sequence of edges

26

public class Kruskal
{
 private SET<Edge> mst = new SET<Edge>();

 public Kruskal(WeightedGraph G)
 {
 Edge[] edges = G.edges();
 Arrays.sort(edges, Edge.BY_WEIGHT);

 UnionFind uf = new UnionFind(G.V());
 for (Edge e: edges)
 {
 int v = e.either(), w = e.other(v);
 if (!uf.find(v ,w))
 {
 uf.unite(v, w);
 mst.add(edge);
 }
 }
 }

 public Iterable<Edge> mst()
 { return mst; }
}

Kruskal's algorithm: Java implementation

27

Proposition. Kruskal finds MST in time proportional to E log V.

Remark 1. If edges are already sorted, time is proportional to E log* V

Remark 2. Linear in practice with PQ or quicksort partitioning

 (see book: don’t need full sort)

Operation

sort

union

find

Time per op

E log V

 log* V †

 log* V †

Frequency

1

V

E

† amortized bound using weighted quick union with path compression

Kruskal's algorithm running time

recall: log* V # 5
in this universe

28

!weighted graph API

!cycles and cuts

!Kruskal’s algorithm

!Prim’s algorithm

!advanced topics

29

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]

Start with vertex 0 and greedily grow tree T. At each step,

add edge of min weight that has exactly one endpoint in T.

0-1 0.32

0-2 0.29

0-5 0.60

0-6 0.51

0-7 0.31

1-7 0.21

3-4 0.34

3-5 0.18

4-5 0.40

4-6 0.51

4-7 0.46

6-7 0.25

Prim's algorithm example

30

25%

50%

75%

100%

Prim's Algorithm example

31

Proposition. Prim's algorithm computes the MST.

Pf.

• Let S be the subset of vertices in current tree T.

• Prim adds the min weight edge e with exactly one endpoint in S.

• e is in the MST (cut property) "

S e

Prim's algorithm correctness proof

32

Q. How to find min weight edge with exactly one endpoint in S?

A1. Brute force: try all edges.

• O(E) time per spanning tree edge.

• O(E V) time overall.

Prim's algorithm implementation

33

Q. How to find min weight edge with exactly one endpoint in S?

A2. Maintain a priority queue of vertices connected by an edge to S

• Delete min to determine next vertex v to add to S.

• Disregard v if already in S.

• Add to PQ any vertex brought closer to S by v.

Running time.

• log V steps per edge (using a binary heap).

• E log V steps overall.

Note: This is a lazy version of implementation in Algs in Java

 lazy: put all adjacent vertices (that are not already in MST) on PQ

eager: first check whether vertex is already on PQ and decrease its key

Prim's algorithm implementation

34

Associate a value with each key in a priority queue.

API:

Implementation:

• start with same code as standard heap-based priority queue

• use a parallel array vals[] (value associated with keys[i] is vals[i])

• modify exch() to maintain parallel arrays (do exch in vals[])

• modify delMin() to return Value

public class MinPQplus<Key extends Comparable<Key>, Value>

MinPQplus() create a key-value priority queue

void put(Key key, Value val) put key-value pair into the priority queue

Value delMin() return value paired with minimal key

Key-value priority queue

35

marks vertices in MST

public class LazyPrim
{
 boolean[] marked;
 double[] dist;
 private Edge[] pred;

 public LazyPrim(WeightedGraph G)
 {
 marked = new boolean[G.V()];
 pred = new Edge[G.V()];
 dist = new double[G.V()];
 for (int v = 0; v < G.V(); v++)
 dist[v] = Double.POSITIVE_INFINITY;
 prim(G, 0);
 }

 // See next slide for prim() implementation.
}

pred[v] is edge
attaching v to MST

distance to MST

Lazy implementation of Prim's algorithm

add to PQ any vertices
brought closer to S by v

36

private void prim(WeightedGraph G, int s)
{
 dist[s] = 0.0;
 marked[s] = true;

 MinPQplus<Double, Integer> pq;
 pq = new MinPQplus<Double, Integer>();
 pq.put(dist[s], s);

 while (!pq.isEmpty())
 {
 int v = pq.delMin();
 if (marked[v]) continue;
 marked[v] = true;
 for (Edge e : G.adj(v))
 {
 int w = e.other(v);
 if (!marked[w] && (dist[w] > e.weight()))
 {
 dist[w] = e.weight();
 pred[w] = e;
 pq.insert(dist[w], w);
 }
 }
 }
}

get next vertex

ignore if already in MST

key-value PQ

Lazy implementation of Prim's algorithm

37

Priority queue key is distance (edge weight); value is vertex

Lazy version leaves obsolete entries in the PQ

 therefore may have multiple entries with same value

0-1 0.32

0-2 0.29

0-5 0.60

0-6 0.51

0-7 0.31

1-7 0.21

3-4 0.34

3-5 0.18

4-5 0.40

4-6 0.51

4-7 0.46

6-7 0.25

0-2 0-7 0-1 0-6 0-5 0-7 0-1 0-6 0-5 7-1 7-6 0-1 7-4 0-6 0-5 7-6 0-1 7-4 0-6 0-5

0-1 7-4 0-6 0-5 4-3 4-5 0-6 0-5 3-5 4-5 0-6 0-5

 red: pq value (vertex)

blue: obsolete pq value (vertex)

Prim's algorithm (lazy) example

Use indexed priority queue that supports:

• contains(v): is there a key associated with value v?

• decreaseKey(key, v): decrease the key associated with v to key.

Implementation. More complicated than MinPQ, see text.

Main benefit: reduces PQ size guarantee from E to V.

• Not important for the huge sparse graphs found in practice.

• PQ size is far smaller in practice.

• Widely used, but practical utility is debatable.

38

Eager implementation of Prim’s algorithm

39

Simplifying assumption. All edge weights we are distinct.

Approach 1: introduce tie-breaking rule for compare().

Approach 2: Prim and Kruskal still find MST if equal weights!

(only our proof of correctness fails)

public int compare(Edge e, Edge f)
{
 if (e.weight < f.weight) return -1;
 if (e.weight > f.weight) return +1;
 if (e.v < f.v) return -1;
 if (e.v > f.v) return +1;
 if (e.w < f.w) return -1;
 if (e.w > f.w) return +1;
 return 0;
}

Removing the distinct edge weight assumption

40

!weighted graph API

!cycles and cuts

!Kruskal’s algorithm

!Prim’s algorithm

!advanced topics

41

Worst Case

E log log V

E log log V

E log* V, E + V log V

E log (log* V)

E $(V) log $(V)

Discovered By

Yao

Cheriton-Tarjan

Fredman-Tarjan

Gabow-Galil-Spencer-Tarjan

Chazelle

E $(V)

optimal

Chazelle

Pettie-Ramachandran

Year

1975

1976

1984

1986

1997

2000

2002

deterministic comparison-based MST algorithms

related problems

Problem

planar MST

MST verification

Discovered By

Cheriton-Tarjan

Dixon-Rauch-Tarjan

Year

1976

1992

Time

E

E

randomized MST Karger-Klein-Tarjan1995 E

E ???20xx

Advanced MST theorems: does an algorithm with a linear-time guarantee exist?

42

Euclidean MST. Given N points in the plane, find MST connecting them.

(distances between point pairs are Euclidean distances)

Brute force. Compute ~ N2/2 distances and run Prim's algorithm.

Ingenuity. Exploit geometry and do it in O(N log N)

 [stay tuned for geometric algorithms]

Euclidean MST

43

k-clustering. Divide a set of objects classify into k coherent groups.

distance function. Numeric value specifying "closeness" of two objects.

Fundamental problem.

 Divide into clusters so that points in different clusters are far apart.

Applications.

• Routing in mobile ad hoc networks.

• Identify patterns in gene expression.

• Document categorization for web search.

• Similarity searching in medical image databases

• Skycat: cluster 109 sky objects into stars, quasars, galaxies.

outbreak of cholera deaths in London in 1850s
Reference: Nina Mishra, HP Labs

Scientific application: clustering

44

k-clustering. Divide a set of objects classify into k coherent groups.

distance function. Numeric value specifying "closeness" of two objects.

Spacing. Min distance between any pair of points in different clusters.

k-clustering of maximum spacing.

Given an integer k, find a k-clustering such that spacing is maximized.

spacing

k = 4

k-clustering of maximum spacing

45

“Well-known” algorithm for single-link clustering:

• Form V clusters of one object each.

• Find the closest pair of objects such that each object is in a

different cluster, and add an edge between them.

• Repeat until there are exactly k clusters.

Observation. This procedure is precisely Kruskal's algorithm

 (stop when there are k connected components).

Proposition. Kruskal’s algorithm finds a k-clustering of maximum spacing.

Alternate algorithm. Run Prim and delete k-1 edges of largest weight.

Single-link clustering algorithm

46

Dendrogram.

Scientific visualization of hypothetical sequence of evolutionary events.

• Leaves = genes.

• Internal nodes = hypothetical ancestors.

Reference: http://www.biostat.wisc.edu/bmi576/fall-2003/lecture13.pdf

Clustering application: dendrograms

47

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed

gene not expressed

Dendrogram of cancers in human

