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Balanced Trees

!2-3-4 trees

!red-black trees

!B-trees

References:
    Algorithms in Java, Chapter 13
    http://www.cs.princeton.edu/introalgsds/44balanced
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Symbol Table Review

Symbol table:  key-value pair abstraction.

• Insert a value with specified key.

• Search for value given key.

• Delete value with given key.

Randomized BST.

• Guarantee of ~c lg N time per operation (probabilistic).

• Need subtree count in each node.

• Need random numbers for each insert/delete op.

This lecture.  2-3-4 trees, left-leaning red-black trees, B-trees.

new for Fall 2007!

Summary of symbol-table implementations

Randomized BSTs provide the desired guarantees

This lecture: Can we do better?
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implementation
guarantee average case ordered

iteration?search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.39 lg N 1.39 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.39 lg N 1.39 lg N 1.39 lg N yes

probabilistic, with
exponentially small

chance of quadratic time

Typical random BSTs
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           N  =  250
       lg N  !  8
1.39 lg N  !  11

average node depth
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!2-3-4 trees

!red-black trees

!B-trees
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2-3-4 Tree

2-3-4 tree.  Generalize node to allow multiple keys; keep tree balanced.

Perfect balance.  Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node.

• 2-node:  one key, two children.

• 3-node:  two keys, three children.

• 4-node:  three keys, four children.

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

smaller than K larger than R

between
K and R

Search.

• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

Ex. Search for L
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Searching in a 2-3-4 Tree

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

found L

smaller than M

between
K and R

8

Insertion in a 2-3-4 Tree

Insert.

• Search to bottom for key.

Ex. Insert B

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

smaller than K

B not found

smaller than C
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Insertion in a 2-3-4 Tree

Insert.

• Search to bottom for key.

• 2-node at bottom:  convert to 3-node.

Ex. Insert B

S  VF  G  J

K  R

C  E M  O W

D L N Q Y  Z

smaller than K

B fits here

smaller than C

A  B

Insert.

• Search to bottom for key.

Ex. Insert X
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Insertion in a 2-3-4 Tree

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

X not found

larger than R

larger than W
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Insertion in a 2-3-4 Tree

Insert.

• Search to bottom for key.

• 2-node at bottom:  convert to 3-node.

• 3-node at bottom:  convert to 4-node.

Ex. Insert X

S  VF  G  J

K  R

C  E M  O W

D L N Q

X fits here

A  B X  Y  Z

Insert.

• Search to bottom for key.

Ex. Insert H
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Insertion in a 2-3-4 Tree

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

smaller than K

larger than E

H not found



13

Insertion in a 2-3-4 Tree

Insert.

• Search to bottom for key.

• 2-node at bottom:  convert to 3-node.

• 3-node at bottom:  convert to 4-node.

• 4-node at bottom:  ??

Ex. Insert H

S  VF  G  J

K  R

C  E M  O W

D L N Q

H does not fit here!

A  B X  Y  Z

Idea: split the 4-node to make room 

Problem: Doesn’t work if parent is a 4-node

Solution 1: Split the parent (and continue splitting up while necessary). 

Solution 2: Split 4-nodes on the way down.
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Splitting a 4-node in a 2-3-4 tree

F  G  J

C  E

D

H does not fit here

A  B
D

H does fit here!

A  B

C  E  G

F J

DA  B

C  E  G

F H  J

move middle
key to parent

split remainder
into two 2-nodes
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Splitting 4-nodes in a 2-3-4 tree

Idea: split 4-nodes on the way down the tree.

• Ensures that most recently seen node is not a 4-node.

• Transformations to split 4-nodes:

Invariant.  Current node is not a 4-node.

Consequences  

• 4-node below a 4-node case never happens

• insertion at bottom node is easy since it's not a 4-node.

local transformations
that work anywhere

in the tree
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Splitting a 4-node below a 2-node in a 2-3-4 tree

A local transformation that works anywhere in the tree

A-C

E-J L-P R-V X-Z

A-C

E-J L-P R-V X-Z

K Q W

D QD

K W

could be huge  unchanged
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A-C

I-J L-P R-V X-Z I-J L-P R-V X-Z

K Q W K W

could be huge  unchanged

E-G

D H

A-C E-G

D H Q

Splitting a 4-node below a 3-node in a 2-3-4 tree

A local transformation that works anywhere in the tree

Growth of a 2-3-4 tree

Tree grows up from the bottom
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A  E  S

A

A  S

insert A

insert S

insert E

insert R

E

A R  S

E

A S

split 4-node to

and then insert

insert C

E

R  SA  C

insert H

E

R  S

tree grows
up one level

A  C  H

insert I

E

A  C  H I  R  S

Growth of a 2-3-4 tree (continued)

Tree grows up from the bottom
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split 4-node to

and then insert

tree grows
up one level

E

A  C  H I  R  S

A  C  H

E  R

I S

SI  N

E  R

split 4-node to

and then insert

SI  N

split 4-node to

and then insert

E  C  R

A H

E  C  R

A G  H

C

E R

I  NA G  H

C

E R

S  X
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Balance in 2-3-4 trees

Key property:  All paths from root to leaf have same length.

Tree height.

• Worst case: lg N    [all 2-nodes]

• Best case: log4 N = 1/2 lg N    [all 4-nodes]

• Between 10 and 20 for a million nodes.

• Between 15 and 30 for a billion nodes.



21

2-3-4 Tree:  Implementation?

Direct implementation is complicated, because:

• Maintaining multiple node types is cumbersome.

• Implementation of getChild() involves multiple compares.

• Large number of cases for split(), make3Node(), and make4Node().

Bottom line: could do it, but stay tuned for an easier way.

fantasy code

private void insert(Key key, Val val)
{
   Node x = root;
   while (x.getChild(key) != null)
   {
      x = x.getChild(key);
      if (x.is4Node()) x.split();
   }
   if      (x.is2Node()) x.make3Node(key, val);
   else if (x.is3Node()) x.make4Node(key, val);
}

Summary of symbol-table implementations
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implementation
guarantee average case ordered

iteration?search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.38 lg N 1.38 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N yes

constants depend upon
implementation
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!2-3-4 trees

!red-black trees

!B-trees
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Left-leaning red-black trees (Guibas-Sedgewick, 1979 and Sedgewick, 2007)

1. Represent 2-3-4 tree as a BST.

2. Use "internal" left-leaning edges for 3- and 4- nodes.

Key Properties

• elementary BST search works

• 1-1 correspondence between 2-3-4 and left-leaning red-black trees

F  G  J

C  E

D

internal “glue”

A  B

A

B

C

D

E

F

G

J
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Left-leaning red-black trees

1. Represent 2-3-4 tree as a BST.

2. Use "internal" left-leaning edges for 3- and 4- nodes.

Disallowed: 

• right-leaning red edges

• three red edges in a row

    

 

 
       

 

 

 

standard red-black trees
allow these two

Search implementation for red-black trees

Search code is the same as elementary BST (ignores the color)

[runs faster because of better balance in tree]

Note: iterator code is also the same.
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public Val get(Key key)

{
   Node x = root;

   while (x != null)
   {
      int cmp = key.compareTo(x.key);

      if (cmp == 0)     return x.val;
      else if (cmp < 0) x = x.left;

      else if (cmp > 0) x = x.right;
   }
   return null;

}

A

B

C

D

E

F

G

J

Insert implementation for red-black trees (skeleton)

27

public class BST<Key extends Comparable<Key>, Value>

             implements Iterable<Key>

{

    private static final boolean RED   = true;

    private static final boolean BLACK = false;

    private Node root;

    private class Node

    {

        Key key;

        Value val;

        Node left, right;

        boolean color;

        Node(Key key, Value val, boolean color)

        {

            this.key   = key;

            this.val = val;

            this.color = color;

        }

    }

     

   public void put(Key key, Value val)

   {

      root = put(root, key, val);

      root.color = BLACK;

   }

}

color of incoming link

private boolean isRed(Node x)

{  

   if (x == null) return false;

   return (x.color == RED);

}

helper method to test node color

Basic idea: maintain 1-1 correspondence with 2-3-4 trees

1. If key found on recursive search reset value, as usual

2. If key not found  insert a new red node at the bottom

3. Split 4-nodes on the way DOWN the tree.

Insert implementation for left-leaning red-black trees (strategy)
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[stay tuned]

[stay tuned]

[stay tuned]

[stay tuned]



Inserting a new node at the bottom in a LLRB tree

Maintain 1-1 correspondence with 2-3-4 trees

1. Add new node as usual, with red link to glue it to node above

2. Rotate left if necessary to make link lean left
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or

or or

OK

rotate
left

rotate
left

rotate
left

OK
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Splitting a 4-node below a 2-node in a left-leaning red-black tree

Maintain correspondence with 2-3-4 trees

A-C

E-J L-P R-V X-Z

A-C

E-J L-P R-V X-Z

D

K

W

could be huge  unchanged

K

Q

W D

Q

left rotate
(if necessary)

to make red link
lean left 

also make
this black

right rotate and
switch colors to

attach middle node
to node above

b

c

d

b

c

d eb

d

ce

a
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Splitting a 4-node below a 3-node in a left-leaning red-black tree

A-C

I-J L-P R-V X-Z I-J L-P R-V X-Z

K W

could be huge  unchanged

E-G A-C E-G

Maintain correspondence with 2-3-4 trees

also make
this black

b

c

d

e
b

c

d
eb

d

c
e

a

a

left rotate
(if necessary)

to make red link
lean left 

right rotate and
switch colors to

attach middle node
to node above

K

Q

WD

H

H
Q

D
a
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Splitting 4-nodes a left-leaning red-black tree

The two transformations are the same

left
rotate

(if necessary)

also make
this black

right
rotate

b

c

d

e
b

c

d
eb

d

c
e

a

left
rotate

(if necessary)
right

rotate

b

c

d

e b

c

d eb

d

ce

a

also make
this black



Insert implementation for left-leaning red-black trees (strategy revisited)

Basic idea: maintain 1-1 correspondence with 2-3-4 trees

Search as usual

• if key found reset value, as usual

• if key not found  insert a new red node at the bottom

[might be right-leaning red link]

Split 4-nodes on the way DOWN the tree.

• right-rotate and flip color

• might leave right-leaning link higher up in the tree

NEW TRICK: enforce left-leaning condition on the way UP the tree.

• left-rotate any right-leaning link on search path

• trivial with recursion (do it after recursive calls)

• no other right-leaning links elsewhere

Note: nonrecursive top-down implementation possible, but requires
keeping track of great-grandparent on search path (!) and lots of cases.
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or

Insert implementation for left-leaning red-black trees (basic operations)

Insert a new node at bottom

Split a 4-node

Enforce left-leaning condition
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right
rotate

fix
color

or

left
rotate

Key point: may leave
right-leaning link
to be fixed later

Insert implementation for left-leaning red-black trees (code for basic operations)

Insert a new node at bottom

Split a 4-node

Enforce left-leaning condition
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right

rotate

fix color of 

left node

or

left

rotate

private Node splitFourNode(Node h)

{  

   x = rotR(h);

   x.left.color  = BLACK;

   return x;

}

private Node leanLeft(Node h)

{  

   x = rotL(h);

   x.color      = x.left.color;                   

   x.left.color = RED;                     

   return x;

}

if (h == null) 

      return new Node(key, value, RED);

could be

red or black

h x

h
x

could be

left or right

middle node

is red

Insert implementation for left-leaning red-black trees (code)
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   private Node insert(Node h, Key key, Value val)
   { 
      if (h == null) 
         return new Node(key, val, RED);

      if (isRed(h.left))
         if (isRed(h.left.left))
            h = splitFourNode(h);

      int cmp = key.compareTo(h.key);
      if (cmp == 0) h.val = val;
      else if (cmp < 0) 
         h.left = insert(h.left, key, val); 
      else 
         h.right = insert(h.right, key, val); 

      if (isRed(h.right))
         h = leanLeft(h);

      return h;
   }

insert new node at bottom

split 4-nodes on the way down

search

enforce left-leaning condition
on the way back up
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Balance in left-leaning red-black trees

Proposition A.  Every path from root to leaf has same number of black links.

Proposition B.  Never three red links in-a-row.

Proposition C.  Height of tree is less than 3 lg N + 2 in the worst case. 

Property D.  Height of tree is ~lg N in typical applications.

Property E.  Nearly all 4-nodes are on the bottom in the typical applications.

Why left-leaning trees?
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private Node insert(Node x, Key key, Value val, boolean sw)
{ 
   if (x == null)
      return new Node(key, value, RED);
   int cmp = key.compareTo(x.key);

   if (isRed(x.left) && isRed(x.right))
   { 
      x.color = RED;
      x.left.color  = BLACK;
      x.right.color = BLACK;
   }
   if (cmp == 0) x.val = val;
   else if (cmp < 0))
   { 
     x.left = insert(x.left, key, val, false); 
     if (isRed(x) && isRed(x.left) && sw)
        x = rotR(x);
     if (isRed(x.left) && isRed(x.left.left))         
      {
         x = rotR(x);
         x.color = BLACK; x.right.color = RED;  
      }
   }
   else // if (cmp > 0)
   { 
      x.right = insert(x.right, key, val, true);
      if (isRed(h) && isRed(x.right) && !sw)
         x = rotL(x);
      if (isRed(h.right) && isRed(h.right.right)) 
      {
         x = rotL(x);
         x.color = BLACK; x.left.color = RED;   
      }
   }
   return x;
}

private Node insert(Node h, Key key, Value val)
{ 
    int cmp = key.compareTo(h.key); 
    if (h == null) 
      return new Node(key, val, RED);
    if (isRed(h.left))
      if (isRed(h.left.left))
      {  
         h = rotR(h);
         h.left.color  = BLACK;
      }
   if (cmp == 0) x.val = val;
   else if (cmp < 0) 
      h.left = insert(h.left, key, val); 
   else 
      h.right = insert(h.right, key, val); 
   if (isRed(h.right))
   {  
      h = rotL(h);
      h.color      = h.left.color;                   
      h.left.color = RED;                     
   }
   return h;
}

old code (that students had to learn in the past) new code (that you have to learn)

extremely tricky

straightforward
 (if you’ve paid attention)

Take your pick:

Why left-leaning trees?
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Simplified code

• left-leaning restriction reduces number of cases 

• recursion gives two (easy) chances to fix each node

• short inner loop

Same ideas simplify implementation of other operations

• delete min

• delete max 

• delete

Built on the shoulders of many, many old balanced tree algorithms

• AVL trees

• 2-3 trees

• 2-3-4 trees

• skip lists

Bottom line: Left-leaning red-black trees are the simplest to implement

and at least as efficient

old

new

Summary of symbol-table implementations
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implementation
guarantee average case ordered

iteration?search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.38 lg N 1.38 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N yes

red-black tree 3 lg N 3 lg N 3 lg N lg N lg N lg N yes

exact value of coefficient unknown
but extremely close to 1



Typical random left-leaning red-black trees
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 N  =  500

lg N  !  9

average node depth
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!2-3-4 trees

!red-black trees

!B-trees
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B-trees (Bayer-McCreight, 1972)

B-Tree.  Generalizes 2-3-4 trees by allowing up to M links per node.

Main application:  file systems.

• Reading a page into memory from disk is expensive.

• Accessing info on a page in memory is free.

• Goal:  minimize # page accesses.

• Node size M = page size.

Space-time tradeoff.

• M large  !   only a few levels in tree.

• M small  !   less wasted space.

• Typical M = 1000,  N < 1 trillion.

Bottom line.  Number of page accesses is logMN per op.

in practice: 3 or 4 (!)
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B-Tree Example

M = 5

no room
for 275

no room
for 737
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B-Tree Example (cont)

no room
for 526

Summary of symbol-table implementations
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implementation
guarantee average case ordered

iteration?search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.44 lg N 1.44 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.44 lg N 1.44 lg N 1.44 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N yes

red-black tree 2 lg N 2 lg N 2 lg N lg N lg N lg N yes

B-tree 1 1 1 1 1 1 yes

B-Tree.  Number of page accesses is logMN per op.
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Balanced trees in the wild

Red-black trees: widely used as system symbol tables

• Java:  java.util.TreeMap, java.util.TreeSet.

• C++ STL:  map, multimap, multiset.

• Linux kernel:  linux/rbtree.h.

B-Trees: widely used for file systems and databases

• Windows:  HPFS.

• Mac:  HFS, HFS+. 

• Linux:  ReiserFS, XFS, Ext3FS, JFS.

• Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL

Bottom line:  ST implementation with lg N guarantee for all ops.

• Algorithms are variations on a theme:  rotations when inserting.

• Easiest to implement, optimal, fastest in practice: LLRB trees

• Abstraction extends to give search algorithms for huge files:  B-trees

After the break: Can we do better??

Red-black trees in the wild
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!!

Common sense. Sixth sense.
Together they're the FBI's newest team.

red-black tree


