
1

Balanced Trees

!2-3-4 trees

!red-black trees

!B-trees

References:
    Algorithms in Java, Chapter 13
    http://www.cs.princeton.edu/introalgsds/44balanced

2

Symbol Table Review

Symbol table:  key-value pair abstraction.

• Insert a value with specified key.

• Search for value given key.

• Delete value with given key.

Randomized BST.

• Guarantee of ~c lg N time per operation (probabilistic).

• Need subtree count in each node.

• Need random numbers for each insert/delete op.

This lecture.  2-3-4 trees, left-leaning red-black trees, B-trees.

new for Fall 2007!

Summary of symbol-table implementations

Randomized BSTs provide the desired guarantees

This lecture: Can we do better?
3

implementation
guarantee average case ordered

iteration?search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.39 lg N 1.39 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.39 lg N 1.39 lg N 1.39 lg N yes

probabilistic, with
exponentially small

chance of quadratic time

Typical random BSTs

4

           N  =  250
       lg N  !  8
1.39 lg N  !  11

average node depth



5

!2-3-4 trees

!red-black trees

!B-trees

6

2-3-4 Tree

2-3-4 tree.  Generalize node to allow multiple keys; keep tree balanced.

Perfect balance.  Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node.

• 2-node:  one key, two children.

• 3-node:  two keys, three children.

• 4-node:  three keys, four children.

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

smaller than K larger than R

between
K and R

Search.

• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

Ex. Search for L

7

Searching in a 2-3-4 Tree

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

found L

smaller than M

between
K and R

8

Insertion in a 2-3-4 Tree

Insert.

• Search to bottom for key.

Ex. Insert B

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

smaller than K

B not found

smaller than C



9

Insertion in a 2-3-4 Tree

Insert.

• Search to bottom for key.

• 2-node at bottom:  convert to 3-node.

Ex. Insert B

S  VF  G  J

K  R

C  E M  O W

D L N Q Y  Z

smaller than K

B fits here

smaller than C

A  B

Insert.

• Search to bottom for key.

Ex. Insert X

10

Insertion in a 2-3-4 Tree

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

X not found

larger than R

larger than W

11

Insertion in a 2-3-4 Tree

Insert.

• Search to bottom for key.

• 2-node at bottom:  convert to 3-node.

• 3-node at bottom:  convert to 4-node.

Ex. Insert X

S  VF  G  J

K  R

C  E M  O W

D L N Q

X fits here

A  B X  Y  Z

Insert.

• Search to bottom for key.

Ex. Insert H

12

Insertion in a 2-3-4 Tree

S  VF  G  J

K  R

C  E M  O W

A D L N Q Y  Z

smaller than K

larger than E

H not found



13

Insertion in a 2-3-4 Tree

Insert.

• Search to bottom for key.

• 2-node at bottom:  convert to 3-node.

• 3-node at bottom:  convert to 4-node.

• 4-node at bottom:  ??

Ex. Insert H

S  VF  G  J

K  R

C  E M  O W

D L N Q

H does not fit here!

A  B X  Y  Z

Idea: split the 4-node to make room 

Problem: Doesn’t work if parent is a 4-node

Solution 1: Split the parent (and continue splitting up while necessary). 

Solution 2: Split 4-nodes on the way down.
14

Splitting a 4-node in a 2-3-4 tree

F  G  J

C  E

D

H does not fit here

A  B
D

H does fit here!

A  B

C  E  G

F J

DA  B

C  E  G

F H  J

move middle
key to parent

split remainder
into two 2-nodes

15

Splitting 4-nodes in a 2-3-4 tree

Idea: split 4-nodes on the way down the tree.

• Ensures that most recently seen node is not a 4-node.

• Transformations to split 4-nodes:

Invariant.  Current node is not a 4-node.

Consequences  

• 4-node below a 4-node case never happens

• insertion at bottom node is easy since it's not a 4-node.

local transformations
that work anywhere

in the tree

16

Splitting a 4-node below a 2-node in a 2-3-4 tree

A local transformation that works anywhere in the tree

A-C

E-J L-P R-V X-Z

A-C

E-J L-P R-V X-Z

K Q W

D QD

K W

could be huge  unchanged



17

A-C

I-J L-P R-V X-Z I-J L-P R-V X-Z

K Q W K W

could be huge  unchanged

E-G

D H

A-C E-G

D H Q

Splitting a 4-node below a 3-node in a 2-3-4 tree

A local transformation that works anywhere in the tree

Growth of a 2-3-4 tree

Tree grows up from the bottom

18

A  E  S

A

A  S

insert A

insert S

insert E

insert R

E

A R  S

E

A S

split 4-node to

and then insert

insert C

E

R  SA  C

insert H

E

R  S

tree grows
up one level

A  C  H

insert I

E

A  C  H I  R  S

Growth of a 2-3-4 tree (continued)

Tree grows up from the bottom

19

split 4-node to

and then insert

tree grows
up one level

E

A  C  H I  R  S

A  C  H

E  R

I S

SI  N

E  R

split 4-node to

and then insert

SI  N

split 4-node to

and then insert

E  C  R

A H

E  C  R

A G  H

C

E R

I  NA G  H

C

E R

S  X
20

Balance in 2-3-4 trees

Key property:  All paths from root to leaf have same length.

Tree height.

• Worst case: lg N    [all 2-nodes]

• Best case: log4 N = 1/2 lg N    [all 4-nodes]

• Between 10 and 20 for a million nodes.

• Between 15 and 30 for a billion nodes.



21

2-3-4 Tree:  Implementation?

Direct implementation is complicated, because:

• Maintaining multiple node types is cumbersome.

• Implementation of getChild() involves multiple compares.

• Large number of cases for split(), make3Node(), and make4Node().

Bottom line: could do it, but stay tuned for an easier way.

fantasy code

private void insert(Key key, Val val)
{
   Node x = root;
   while (x.getChild(key) != null)
   {
      x = x.getChild(key);
      if (x.is4Node()) x.split();
   }
   if      (x.is2Node()) x.make3Node(key, val);
   else if (x.is3Node()) x.make4Node(key, val);
}

Summary of symbol-table implementations

22

implementation
guarantee average case ordered

iteration?search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.38 lg N 1.38 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N yes

constants depend upon
implementation

23

!2-3-4 trees

!red-black trees

!B-trees

24

Left-leaning red-black trees (Guibas-Sedgewick, 1979 and Sedgewick, 2007)

1. Represent 2-3-4 tree as a BST.

2. Use "internal" left-leaning edges for 3- and 4- nodes.

Key Properties

• elementary BST search works

• 1-1 correspondence between 2-3-4 and left-leaning red-black trees

F  G  J

C  E

D

internal “glue”

A  B

A

B

C

D

E

F

G

J

    

 

 
       

 

 

 



25

Left-leaning red-black trees

1. Represent 2-3-4 tree as a BST.

2. Use "internal" left-leaning edges for 3- and 4- nodes.

Disallowed: 

• right-leaning red edges

• three red edges in a row

    

 

 
       

 

 

 

standard red-black trees
allow these two

Search implementation for red-black trees

Search code is the same as elementary BST (ignores the color)

[runs faster because of better balance in tree]

Note: iterator code is also the same.

26

public Val get(Key key)

{
   Node x = root;

   while (x != null)
   {
      int cmp = key.compareTo(x.key);

      if (cmp == 0)     return x.val;
      else if (cmp < 0) x = x.left;

      else if (cmp > 0) x = x.right;
   }
   return null;

}

A

B

C

D

E

F

G

J

Insert implementation for red-black trees (skeleton)

27

public class BST<Key extends Comparable<Key>, Value>

             implements Iterable<Key>

{

    private static final boolean RED   = true;

    private static final boolean BLACK = false;

    private Node root;

    private class Node

    {

        Key key;

        Value val;

        Node left, right;

        boolean color;

        Node(Key key, Value val, boolean color)

        {

            this.key   = key;

            this.val = val;

            this.color = color;

        }

    }

     

   public void put(Key key, Value val)

   {

      root = put(root, key, val);

      root.color = BLACK;

   }

}

color of incoming link

private boolean isRed(Node x)

{  

   if (x == null) return false;

   return (x.color == RED);

}

helper method to test node color

Basic idea: maintain 1-1 correspondence with 2-3-4 trees

1. If key found on recursive search reset value, as usual

2. If key not found  insert a new red node at the bottom

3. Split 4-nodes on the way DOWN the tree.

Insert implementation for left-leaning red-black trees (strategy)

28

[stay tuned]

[stay tuned]

[stay tuned]

[stay tuned]



Inserting a new node at the bottom in a LLRB tree

Maintain 1-1 correspondence with 2-3-4 trees

1. Add new node as usual, with red link to glue it to node above

2. Rotate left if necessary to make link lean left

29

or

or or

OK

rotate
left

rotate
left

rotate
left

OK

30

Splitting a 4-node below a 2-node in a left-leaning red-black tree

Maintain correspondence with 2-3-4 trees

A-C

E-J L-P R-V X-Z

A-C

E-J L-P R-V X-Z

D

K

W

could be huge  unchanged

K

Q

W D

Q

left rotate
(if necessary)

to make red link
lean left 

also make
this black

right rotate and
switch colors to

attach middle node
to node above

b

c

d

b

c

d eb

d

ce

a

31

Splitting a 4-node below a 3-node in a left-leaning red-black tree

A-C

I-J L-P R-V X-Z I-J L-P R-V X-Z

K W

could be huge  unchanged

E-G A-C E-G

Maintain correspondence with 2-3-4 trees

also make
this black

b

c

d

e
b

c

d
eb

d

c
e

a

a

left rotate
(if necessary)

to make red link
lean left 

right rotate and
switch colors to

attach middle node
to node above

K

Q

WD

H

H
Q

D
a

32

Splitting 4-nodes a left-leaning red-black tree

The two transformations are the same

left
rotate

(if necessary)

also make
this black

right
rotate

b

c

d

e
b

c

d
eb

d

c
e

a

left
rotate

(if necessary)
right

rotate

b

c

d

e b

c

d eb

d

ce

a

also make
this black



Insert implementation for left-leaning red-black trees (strategy revisited)

Basic idea: maintain 1-1 correspondence with 2-3-4 trees

Search as usual

• if key found reset value, as usual

• if key not found  insert a new red node at the bottom

[might be right-leaning red link]

Split 4-nodes on the way DOWN the tree.

• right-rotate and flip color

• might leave right-leaning link higher up in the tree

NEW TRICK: enforce left-leaning condition on the way UP the tree.

• left-rotate any right-leaning link on search path

• trivial with recursion (do it after recursive calls)

• no other right-leaning links elsewhere

Note: nonrecursive top-down implementation possible, but requires
keeping track of great-grandparent on search path (!) and lots of cases.

33

or

Insert implementation for left-leaning red-black trees (basic operations)

Insert a new node at bottom

Split a 4-node

Enforce left-leaning condition

34

right
rotate

fix
color

or

left
rotate

Key point: may leave
right-leaning link
to be fixed later

Insert implementation for left-leaning red-black trees (code for basic operations)

Insert a new node at bottom

Split a 4-node

Enforce left-leaning condition

35

right

rotate

fix color of 

left node

or

left

rotate

private Node splitFourNode(Node h)

{  

   x = rotR(h);

   x.left.color  = BLACK;

   return x;

}

private Node leanLeft(Node h)

{  

   x = rotL(h);

   x.color      = x.left.color;                   

   x.left.color = RED;                     

   return x;

}

if (h == null) 

      return new Node(key, value, RED);

could be

red or black

h x

h
x

could be

left or right

middle node

is red

Insert implementation for left-leaning red-black trees (code)

36

   private Node insert(Node h, Key key, Value val)
   { 
      if (h == null) 
         return new Node(key, val, RED);

      if (isRed(h.left))
         if (isRed(h.left.left))
            h = splitFourNode(h);

      int cmp = key.compareTo(h.key);
      if (cmp == 0) h.val = val;
      else if (cmp < 0) 
         h.left = insert(h.left, key, val); 
      else 
         h.right = insert(h.right, key, val); 

      if (isRed(h.right))
         h = leanLeft(h);

      return h;
   }

insert new node at bottom

split 4-nodes on the way down

search

enforce left-leaning condition
on the way back up



37

Balance in left-leaning red-black trees

Proposition A.  Every path from root to leaf has same number of black links.

Proposition B.  Never three red links in-a-row.

Proposition C.  Height of tree is less than 3 lg N + 2 in the worst case. 

Property D.  Height of tree is ~lg N in typical applications.

Property E.  Nearly all 4-nodes are on the bottom in the typical applications.

Why left-leaning trees?

38

private Node insert(Node x, Key key, Value val, boolean sw)
{ 
   if (x == null)
      return new Node(key, value, RED);
   int cmp = key.compareTo(x.key);

   if (isRed(x.left) && isRed(x.right))
   { 
      x.color = RED;
      x.left.color  = BLACK;
      x.right.color = BLACK;
   }
   if (cmp == 0) x.val = val;
   else if (cmp < 0))
   { 
     x.left = insert(x.left, key, val, false); 
     if (isRed(x) && isRed(x.left) && sw)
        x = rotR(x);
     if (isRed(x.left) && isRed(x.left.left))         
      {
         x = rotR(x);
         x.color = BLACK; x.right.color = RED;  
      }
   }
   else // if (cmp > 0)
   { 
      x.right = insert(x.right, key, val, true);
      if (isRed(h) && isRed(x.right) && !sw)
         x = rotL(x);
      if (isRed(h.right) && isRed(h.right.right)) 
      {
         x = rotL(x);
         x.color = BLACK; x.left.color = RED;   
      }
   }
   return x;
}

private Node insert(Node h, Key key, Value val)
{ 
    int cmp = key.compareTo(h.key); 
    if (h == null) 
      return new Node(key, val, RED);
    if (isRed(h.left))
      if (isRed(h.left.left))
      {  
         h = rotR(h);
         h.left.color  = BLACK;
      }
   if (cmp == 0) x.val = val;
   else if (cmp < 0) 
      h.left = insert(h.left, key, val); 
   else 
      h.right = insert(h.right, key, val); 
   if (isRed(h.right))
   {  
      h = rotL(h);
      h.color      = h.left.color;                   
      h.left.color = RED;                     
   }
   return h;
}

old code (that students had to learn in the past) new code (that you have to learn)

extremely tricky

straightforward
 (if you’ve paid attention)

Take your pick:

Why left-leaning trees?

39

Simplified code

• left-leaning restriction reduces number of cases 

• recursion gives two (easy) chances to fix each node

• short inner loop

Same ideas simplify implementation of other operations

• delete min

• delete max 

• delete

Built on the shoulders of many, many old balanced tree algorithms

• AVL trees

• 2-3 trees

• 2-3-4 trees

• skip lists

Bottom line: Left-leaning red-black trees are the simplest to implement

and at least as efficient

old

new

Summary of symbol-table implementations

40

implementation
guarantee average case ordered

iteration?search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.38 lg N 1.38 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N yes

red-black tree 3 lg N 3 lg N 3 lg N lg N lg N lg N yes

exact value of coefficient unknown
but extremely close to 1



Typical random left-leaning red-black trees

41

 N  =  500

lg N  !  9

average node depth

42

!2-3-4 trees

!red-black trees

!B-trees

43

B-trees (Bayer-McCreight, 1972)

B-Tree.  Generalizes 2-3-4 trees by allowing up to M links per node.

Main application:  file systems.

• Reading a page into memory from disk is expensive.

• Accessing info on a page in memory is free.

• Goal:  minimize # page accesses.

• Node size M = page size.

Space-time tradeoff.

• M large  !   only a few levels in tree.

• M small  !   less wasted space.

• Typical M = 1000,  N < 1 trillion.

Bottom line.  Number of page accesses is logMN per op.

in practice: 3 or 4 (!)

44

B-Tree Example

M = 5

no room
for 275

no room
for 737



45

B-Tree Example (cont)

no room
for 526

Summary of symbol-table implementations

46

implementation
guarantee average case ordered

iteration?search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.44 lg N 1.44 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.44 lg N 1.44 lg N 1.44 lg N yes

2-3-4 tree c lg N c lg N c lg N c lg N yes

red-black tree 2 lg N 2 lg N 2 lg N lg N lg N lg N yes

B-tree 1 1 1 1 1 1 yes

B-Tree.  Number of page accesses is logMN per op.

47

Balanced trees in the wild

Red-black trees: widely used as system symbol tables

• Java:  java.util.TreeMap, java.util.TreeSet.

• C++ STL:  map, multimap, multiset.

• Linux kernel:  linux/rbtree.h.

B-Trees: widely used for file systems and databases

• Windows:  HPFS.

• Mac:  HFS, HFS+. 

• Linux:  ReiserFS, XFS, Ext3FS, JFS.

• Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL

Bottom line:  ST implementation with lg N guarantee for all ops.

• Algorithms are variations on a theme:  rotations when inserting.

• Easiest to implement, optimal, fastest in practice: LLRB trees

• Abstraction extends to give search algorithms for huge files:  B-trees

After the break: Can we do better??

Red-black trees in the wild

48

!!

Common sense. Sixth sense.
Together they're the FBI's newest team.

red-black tree


