
1

Binary Search Trees

!basic implementations

!randomized BSTs

!deletion in BSTs

References:
 Algorithms in Java, Chapter 12
 Intro to Programming, Section 4.4
 http://www.cs.princeton.edu/introalgsds/43bst

2

Elementary implementations: summary

Challenge:

 Efficient implementations of get() and put() and ordered iteration.

implementation
worst case average case ordered

iteration?
operations

on keys
search insert search insert

unordered array N N N/2 N/2 no equals()

ordered array lg N N lg N N/2 yes compareTo()

unordered list N N N/2 N no equals()

ordered list N N N/2 N/2 yes compareTo()

3

!basic implementations

!randomized BSTs

!deletion in BSTs

4

Binary Search Trees (BSTs)

Def. A BINARY SEARCH TREE is a binary tree in symmetric order.

A binary tree is either:

• empty

• a key-value pair and two binary trees

[neither of which contain that key]

Symmetric order means that:

• every node has a key

• every node’s key is

larger than all keys in its left subtree

smaller than all keys in its right subtree

smaller larger

x

node

subtrees

the

was

it

of times

best

equal keys ruled out to facilitate
associative array implementations

5

BST representation

A BST is a reference to a Node.

A Node is comprised of four fields:

• A key and a value.

• A reference to the left and right subtree.

Key and Value are generic types;
Key is Comparable

root

it 2

was 2

the 1

best 1

of 1 times 1

private class Node

{

 Key key;

 Value val;

 Node left, right;

}

smaller keys larger keys

public class BST<Key extends Comparable<Key>, Value>

 implements Iterable<Key>

{

 private Node root;

 private class Node

 {

 Key key;

 Value val;

 Node left, right;

 Node(Key key, Value val)

 {

 this.key = key;

 this.val = val;

 }

 }

 public void put(Key key, Value val)

 // see next slides

 public Val get(Key key)
 // see next slides

}

6

BST implementation (skeleton)

instance variable

inner class

7

BST implementation (search)

public Value get(Key key)

{
 Node x = root;

 while (x != null)
 {
 int cmp = key.compareTo(x.key);

 if (cmp == 0) return x.val;
 else if (cmp < 0) x = x.left;

 else if (cmp > 0) x = x.right;
 }
 return null;

}

get(“the”)

returns 1

get(“worst”)

returns null

root

it 2

was 2

the 1

best 1

of 1 times 1

8

BST implementation (insert)

public void put(Key key, Value val)

{ root = put(root, key, val); }

root

it 2

was 2

the 1

best 1

of 1 times 1

put(“the”, 2)

overwrites the 1

put(“worst”, 1)

adds a new entry

worst 1

private Node put(Node x, Key key, Value val)

{

 if (x == null) return new Node(key, val);

 int cmp = key.compareTo(x.key);

 if (cmp == 0) x.val = val;

 else if (cmp < 0) x.left = put(x.left, key, val);

 else if (cmp > 0) x.right = put(x.right, key, val);

 return x;

}

Caution: tricky recursive code.
Read carefully!

9

BST: Construction

Insert the following keys into BST. A S E R C H I N G X M P L Tree shape.

• Many BSTs correspond to same input data.

• Cost of search/insert is proportional to depth of node.

Tree shape depends on order of insertion

10

Tree Shape

E

S

A

C

H

H

A E I S

C R

R

I

H

A

E

I

S

C

R

typical best

worst

BST implementation: iterator?

11

public Iterator<Key> iterator()
{ return new BSTIterator(); }

private class BSTIterator
 implements Iterator<Key>

{

 BSTIterator()
 { }

 public boolean hasNext()
 { }

 public Key next()
 { }

}

E

S
A

C

H R

I

N

BST implementation: iterator?

12

public void visit(Node x)

{
 if (x == null) return;

 visit(x.left)
 StdOut.println(x.key);
 visit(x.right);

}

E

S
A

C

H R

I

N

Approach: mimic recursive inorder traversal

visit(E)
 visit(A)
 print A
 visit(C)
 print C
 print E
 visit(S)
 visit(I)
 visit(H)
 print H
 print I
 visit(R)
 visit(N)
 print N
 print R
 print S

 A

 C
 E

 H

 I

 N
 R
 S

E
A E
E
C E
E

S
I S
H I S
I S
S
R S
N R S
R S
S

Stack contents

To process a node

• follow left links until empty

 (pushing onto stack)

• pop and process

• process node at right link

13

BST implementation: iterator

public Iterator<Key> iterator()
{ return new BSTIterator(); }

private class BSTIterator
 implements Iterator<Key>

{
 private Stack<Node>

 stack = new Stack<Node>();

 private void pushLeft(Node x)

 {
 while (x != null)

 { stack.push(x); x = x.left; }
 }

 BSTIterator()
 { pushLeft(root); }

 public boolean hasNext()
 { return !stack.isEmpty(); }

 public Key next()

 {
 Node x = stack.pop();
 pushLeft(x.right);

 return x.key;
 }

}

E

S
A

C

H R

I

 A E

A C E

C E

E H I S

H I S

I N R S

N R S

R S

S

N

1-1 correspondence between BSTs and Quicksort partitioning

14

A

C

E

I

K

L

M

O

P

Q

R

S

T

U

XE

no
equal
 keys

15

BSTs: analysis

Theorem. If keys are inserted in random order, the expected number

of comparisons for a search/insert is about 2 ln N.

Proof: 1-1 correspondence with quicksort partitioning

Theorem. If keys are inserted in random order, height of tree

is proportional to lg N, except with exponentially small probability.

But… Worst-case for search/insert/height is N.

e.g., keys inserted in ascending order

mean ! 6.22 lg N, variance = O(1)

! 1.38 lg N, variance = O(1)

Searching challenge 3 (revisited):

Problem: Frequency counts in “Tale of Two Cities”

Assumptions: book has 135,000+ words

 about 10,000 distinct words

Which searching method to use?

1) unordered array

2) unordered linked list

3) ordered array with binary search

4) need better method, all too slow

5) doesn’t matter much, all fast enough

6) BSTs

16

insertion cost < 10000 * 1.38 * lg 10000 < .2 million

lookup cost < 135000 * 1.38 * lg 10000 < 2.5 million

17

Elementary implementations: summary

Next challenge:

 Guaranteed efficiency for get() and put() and ordered iteration.

implementation
guarantee average case ordered

iteration?
operations

on keys
search insert search insert

unordered array N N N/2 N/2 no equals()

ordered array lg N N lg N N/2 yes compareTo()

unordered list N N N/2 N no equals()

ordered list N N N/2 N/2 yes compareTo()

BST N N 1.38 lg N 1.38 lg N yes compareTo()

18

!basic implementations

!randomized BSTs

!deletion in BSTs

Two fundamental operations to rearrange nodes in a tree.

• maintain symmetric order.

• local transformations (change just 3 pointers).

• basis for advanced BST algorithms

Strategy: use rotations on insert to adjust tree shape to be more balanced

Key point: no change in search code (!)

19

Rotation in BSTs

h = rotL(u)

h = rotR(v)

A B

C

CB

A

u
h

h

v
u

v

20

Rotation

Fundamental operation to rearrange nodes in a tree.

• easier done than said

• raise some nodes, lowers some others

private Node rotL(Node h)

{

 Node v = h.r;

 h.r = v.l;

 v.l = h;

 return v;

}

private Node rotR(Node h)

{

 Node u = h.l;

 h.l = u.r;

 u.r = h;

 return u;

}

root = rotL(A) A.left = rotR(S)

21

Recursive BST Root Insertion

Root insertion: insert a node and make it the new root.

• Insert as in standard BST.

• Rotate inserted node to the root.

• Easy recursive implementation

insert G

private Node putRoot(Node x, Key key, Val val)

{

 if (x == null) return new Node(key, val);

 int cmp = key.compareTo(x.key);

 if (cmp == 0) x.val = val;

 else if (cmp < 0)

 { x.left = putRoot(x.left, key, val); x = rotR(x); }

 else if (cmp > 0)

 { x.right = putRoot(x.right, key, val); x = rotL(x); }

 return x;

}

Caution: very tricky recursive
code.

Read very carefully!

22

Constructing a BST with root insertion

Ex. A S E R C H I N G X M P L

Why bother?

• Recently inserted keys are near the top (better for some clients).

• Basis for advanced algorithms.

Randomized BSTs (Roura, 1996)

Intuition. If tree is random, height is logarithmic.

Fact. Each node in a random tree is equally likely to be the root.

Idea. Since new node should be the root with probability 1/(N+1),

make it the root (via root insertion) with probability 1/(N+1).

23

private Node put(Node x, Key key, Value val)

{

 if (x == null) return new Node(key, val);

 int cmp = key.compareTo(x.key);

 if (cmp == 0) { x.val = val; return x; }

 if (StdRandom.bernoulli(1.0 / (x.N + 1.0))

 return putRoot(h, key, val);

 if (cmp < 0) x.left = put(x.left, key, val);

 else if (cmp > 0) x.right = put(x.right, key, val);

 x.N++;

 return x;

}

need to maintain count of
nodes in tree rooted at x

24

Constructing a randomized BST

Ex: Insert distinct keys in ascending order.

Surprising fact:

 Tree has same shape as if keys were

 inserted in random order.

Random trees result from any insert order

Note: to maintain associative array abstraction
need to check whether key is in table and replace
value without rotations if that is the case.

25

Randomized BST

Property. Randomized BSTs have the same distribution as BSTs under

random insertion order, no matter in what order keys are inserted.

• Expected height is ~6.22 lg N

• Average search cost is ~1.38 lg N.

• Exponentially small chance of bad balance.

Implementation cost. Need to maintain subtree size in each node.

Summary of symbol-table implementations

Randomized BSTs provide the desired guarantee

Bonus (next): Randomized BSTs also support delete (!)
26

implementation
guarantee average case ordered

iteration?
operations

on keys
search insert search insert

unordered array N N N/2 N/2 no equals()

ordered array lg N N lg N N/2 yes compareTo()

unordered list N N N/2 N no equals()

ordered list N N N/2 N/2 yes compareTo()

BST N N 1.38 lg N 1.38 lg N yes compareTo()

randomized BST 7 lg N 7 lg N 1.38 lg N 1.38 lg N yes compareTo()

probabilistic, with
exponentially small

chance of quadratic time

27

!basic implementations

!randomized BSTs

!deletion in BSTs

28

BST delete: lazy approach

To remove a node with a given key

• set its value to null

• leave key in tree to guide searches

[but do not consider it equal to any search key]

Cost. O(log N') per insert, search, and delete, where N' is the number

of elements ever inserted in the BST.

Unsatisfactory solution: Can get overloaded with tombstones.

E

S
A

C

H R

I

N

E

S
A

C

H R

I

N

remove I a “tombstone”

29

BST delete: first approach

To remove a node from a BST. [Hibbard, 1960s]

• Zero children: just remove it.

• One child: pass the child up.

• Two children: find the next largest node using right-left*

 swap with next largest

 remove as above.

Unsatisfactory solution. Not symmetric, code is clumsy.

Surprising consequence. Trees not random (!) " sqrt(N) per op.

Longstanding open problem: simple and efficient delete for BSTs

zero children one child two children

Deletion in randomized BSTs

To delete a node containing a given key

• remove the node

• join the two remaining subtrees to make a tree

Ex. Delete S in

30

E

S
A

C

H R

I

N

X

Deletion in randomized BSTs

To delete a node containing a given key

• remove the node

• join its two subtrees

Ex. Delete S in

31

E

A

C

H R

I

N

X

join these
two subtrees

private Node remove(Node x, Key key)

{

 if (x == null)

 return new Node(key, val);

 int cmp = key.compareTo(x.key);

 if (cmp == 0)

 return join(x.left, x.right);

 else if (cmp < 0)

 x.left = remove(x.left, key);

 else if (cmp > 0)

 x.right = remove(x.right, key);

 return x;

}

Join in randomized BSTs

To join two subtrees with all keys in one less than all keys in the other

• maintain counts of nodes in subtrees (L and R)

• with probability L/(L+R)

make the root of the left the root

make its left subtree the left subtree of the root

join its right subtree to R to make the right subtree of the root

• with probability L/(L+R) do the symmetric moves on the right

32

H R

I

N

X

to join these
two subtrees

H

R

N

X

make I the root
with probability 4/5

I need to join these
two subtrees

Join in randomized BSTs

To join two subtrees with all keys in one less than all keys in the other

• maintain counts of nodes in subtrees (L and R)

• with probability L/(L+R)

make the root of the left the root

make its left subtree the left subtree of the root

join its right subtree to R to make the right subtree of the root

• with probability L/(L+R) do the symmetric moves on the right

33X

to join these
two subtrees

R

N

X

make R the root
with probability 2/3

R

N

private Node join(Node a, Node b)

{

 if (a == null) return a;

 if (b == null) return b;

 int cmp = key.compareTo(x.key);

 if (StdRandom.bernoulli((double)*a.N / (a.N + b.N))

 { a.right = join(a.right, b); return a; }

 else

 { b.left = join(a, b.left); return b; }

}

Deletion in randomized BSTs

To delete a node containing a given key

• remove the node

• join its two subtrees

Ex. Delete S in

Theorem. Tree still random after delete (!)

Bottom line. Logarithmic guarantee for search/insert/delete
34

E

S
A

C

H R

I

N

X

E

X

A

C H R

I

N

Summary of symbol-table implementations

Randomized BSTs provide the desired guarantees

Next lecture: Can we do better?
35

implementation
guarantee average case ordered

iteration?
search insert delete search insert delete

unordered array N N N N/2 N/2 N/2 no

ordered array lg N N N lg N N/2 N/2 yes

unordered list N N N N/2 N N/2 no

ordered list N N N N/2 N/2 N/2 yes

BST N N N 1.38 lg N 1.38 lg N ? yes

randomized BST 7 lg N 7 lg N 7 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes

probabilistic, with
exponentially small

chance of error

